Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (785.07 KB, 126 trang )
<span class='text_page_counter'>(1)</span>Ngày soạn:. Ngày dạy: Dạy lớp 7B Ngày dạy: Dạy lớp 7D TIẾT 11:TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU 1. Mục tiêu: a) Về kiến thức: Học sinh nắm vững tính chất của dãy tỉ số bằng nhau b) Về kĩ năng: - Có kĩ năng vận dụng tính chất này để giải các bài toán chia theo tỉ lệ - Bước đầu biết suy luận. c) Về thái độ: Học sinh yêu thích môn học. 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ ghi cách chứng minh dãy tỉ số bằng nhau. b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình dạy học: * Ổn định tổ chức: 7B.............7D.............. a) Kiểm tra bài cũ: (5’) Câu hỏi: Nhắc lại định nghĩa tỉ lệ thức? Các tính chất của tỉ lệ thức? Đáp án: ĐN: (SGK – 24) a c TC1: Nếu b d thì ad = bc TC2:Nếu ad = bc (a,b,c,d 0) ta có các tỉ lệ thức: a c a b d c d b ; ; ; b d c d b a c a. * Đặt vấn đề vào bài mới: (1') a. c. a. a+ c. Từ tỉ lệ thức b d có thể suy ra được tỉ lệ thức b b+d không? Để trả lời được câu hỏi đó ta vào bài học hôm nay. b) Dạy nội dung bài mới: Hoạt động của thầy trò Học sinh ghi 1. Tính chất của dãy tỉ số bằng nhau (25') ? 1 (Sgk/28) GV Yêu cầu học sinh làm ? 1 2 3 Cho tỉ lệ thức: 4 6 . Hãy so sánh 2 3 2 3 các tỉ số 4 6 và 4 6 với các tỉ số. trong tỉ lệ thức đã cho.. 2 3 1 4 6 2 2 3 5 1 4 6 10 2 2 3 1 1 4 6 2 2.
<span class='text_page_counter'>(2)</span> 2 3 2 3 2 3 1 GV Gợi ý: rút gọn các tỉ số phân số Vậy 4 6 4 6 4 6 2 tối giản. Rồi so sánh. ? Em có nhận xét gì về tử và mẫu 2 3 2 3 của phân số 4 6 và 4 6 với tỉ lệ 2 3 thức 4 6. TB Có tử bằng tổng (hiệu) các tử. Có mẫu bằng tổng (hiệu) các mẫu GV Từ a c có thể suy ra b d a c a c b d bd a c a c b d b d được hay không?. GV Để biết dự đoán trên có đúng hay không cả lớp nghiên cứu phần chứng minh trong SGK -28 ? Lên trình bày lại cách chứng minh đó. K Từ tỉ lệ thức a c . Gọi a b c k, ta có: d a c k (1) b d. d. ⇒. b. a = k.b, c =. k.d. *Tính chất:. Ta có: a+ c b+d. (b+d a−c b− d. k (b- d. k . b+ k .d b+ d. 0) (2) k . b − k .d b−d. a+ c b+d. k (b − d) b−d. 0 (3). Từ (1); (2); (3) GV. k (b+ d) k b+ d. ⇒. a c b d. a−c b− d. Để chứng minh trước hết người ta a c đặt b d =k rồi chứng minh cho. a c Từ tỉ lệ thức: b d ⇒. d, b. a c a+ c b d b+d. -d). a − c (b b− d.
<span class='text_page_counter'>(3)</span> a c a c ; b d b d cũng bằng k từ đó suy ra. điều phải chứng minh GV Tính chất trên còn được mở rộng * Tính chất trên còn mở rộng cho dãy tỉ cho dãy tỉ số bằng nhau. số bằng nhau: Từ dãy tỉ số bằng nhau:. a c b d. e f. e f. a c e a+ c+ e b d f b+d + f a − c+ e b− d + f. ⇒. ?. a c Từ dãy tỉ số bằng nhau: b d a c e a+ c+ e b d f b+d + f a − c+ e b− d + f. ⇒. Hãy nêu hướng chứng minh đối (giả thiết các tỉ số đều có nghĩa) với tính chất mở rộng đó. * Chứng minh:. a c e Xét dãy tỉ số: b d f. K. a. c. e. Đặt b d f k (4) a = b.k, c = d.k, e = f.k Ta có:. a. c. e. Đặt b d f k (4) a = b.k, c = d.k, e = f.k Ta có:. a c e bk dk fk k (b d f ) a c e bk dk fk k (b d f ) k 5 k 5 bd f bd f bd f bd f bd f bd f a c e bk dk fk k (b d f ) a c e bk dk fk k (b d f ) k 6 k 6 b d f b d f b d f b d f b d f b d f. Từ(4),(5),(6). a c e a+ c+ e ⇒ b d f b+d + f a − c+ e b− d + f. ? K. Tương tự các tỉ số trên còn bằng tỉ số nào? Các tỉ số trên còn bằng các tỉ số: a c e b d f. . a c e a c e b d f bd f a c e ...... b d f. GV Lưu ý tính tương ứng của các số hạng và dấu +, - trong các tỉ số. HS Đọc tính chất mở rộng của dãy tỉ số bằng nhau (Sgk/29). Từ(4),(5),(6). a c e a+ c+ e b d f b+d + f a − c+ e b− d + f. ⇒.
<span class='text_page_counter'>(4)</span> HS Đọc ví dụ (Sgk/29) * Ví dụ: (Sgk/29) 1 0,15 6 ? 3 0, 45 18 đã làm Từ dãy tỉ số. K. 7,15 như thế nào để có được tỉ số 21, 45 1 0,15 6 Từ dãy tỉ số 3 0, 45 18 áp dụng. tính chất của dãy tỉ số bằng nhau có: 1 0,15 6 1 0,15 6 7,15 3 0, 45 18 3 0, 45 18 21, 45 a b c GV Giới thiệu khi có dãy tỉ số 2 3 5. 2. Chú ý(6') (SGK -29). ta nói các số a, b, c tỉ lệ với các số 2; 3; 5 ta cũng viết a: b: c = 2: 3: 5 TB Đọc nội dung chú ý này trong ? 2 (Sgk/29) Sgk/29 GV Cho học sinh làm ? 2 dùng dãy tỉ số Giải: bằng nhau để thể hiện câu nói sau: Gọi số học sinh của các lớp 7A, 7B, 7C a b c Số học sinh của lớp 7A, 7B, 7C tỉ lệ 8 9 10 lần lượt là a, b, c thì ta có: với các số 8; 9; 10. ? Ta có dãy tỉ số bằng nhau như thế nào? GV Như vậy khi có dãy tỉ số: a b c 8 9 10 các số a, b, c tỉ lệ với. các số 8; 9; 10. Ta cũng viết a: b: c = 8: 9 : 10 c) Luyện tập - Củng cố (6') 3. Luyện tập Tb? Viết tính chất của dãy tỉ số bằng nhau? GV Yêu cầu HS nghiên cứu và làm Bài *Bài 54 (Sgk/30) tập 54 Sgk -30 Giải: x y ? Bài cho biết gì và yêu cầu gì? 3 5 và x + y = 16 (đầu bài) x y Ta có: Y áp dụng tính chất dãy tỉ số bằng nhau Biết 3 5 và x + y = 16 có: Tìm x và y. ? Để tìm x và y ta dựa vào đâu và.
<span class='text_page_counter'>(5)</span> x y x y 16 làm như thế nào? 2 3 5 35 8 TB Ta dựa vào tính chất của dãy tỉ số x bằng nhau tính giá trị của các tỉ số 3 2 x 2.3 6 này bằng bao nhiêu. Từ đó tính giá y 2 y 2.5 10 5 trị của x và y. HS Học sinh lên bảng làm - Cả lớp làm vào vở. TB Nhận xét bài của bạn - Gv chữa hoàn chỉnh. d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết: Tính chất; chú ý - Làm bài tập: 54, 55, 56, 60, 61, 62, 64 (Sgk/30,31) -HSKG:74,75,76,77,78 (SBT-14) - Hướng dẫn bài tập về nhà: a. Bài tập 58: Tỉ số giữa số cây của hai lớp là 0,8 tức là: b = 0,8 ( a là số cây lớp 7A; …) ⇒. a = b. 8 . 10. ⇒. b = 10. a . 8. Sau đó sử dụng tính chất của dãy tỉ số bằng nhau ⇒ a,b - Chuẩn bị bài sau: học lí thuyết, làm bài tập để bài sau luyện tập. * Rút kinh nghiệm sau giờ dạy: ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ..........................................................................................................................................................................................................................................
<span class='text_page_counter'>(6)</span> Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp: 7B Dạy lớp: 7D. TIẾT 12: LUYỆN TẬP 1. Mục tiêu. a) Về kiến thức: Học sinh vận dụng tính chất của dãy tỉ số bằng nhau để làm bài tập b) Về kĩ năng: - Có kĩ năng tìm các số khi biết tổng và thương của các số - Vận dụng các kiến thức lí thuyết vào làm các bài toán thực tế c) Về thái độ: Học sinh yêu thích môn học. 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình dạy học: * Ổn định tổ chức: 7B.............7D.................. a) Kiểm tra bài cũ: ( 6' ) * Câu hỏi: Viết các tính chất của dãy tỉ số bằng nhau. * Đáp án: Từ tỉ lệ thức: (5đ). a c b d. ⇒. a c a+ c b d b+d. a c e Từ dãy tỉ số bằng nhau: b d f. a − c+ e b− d + f. ⇒. . a−c (b b− d. d, b. -d). a c e a+ c+ e b d f b+d + f. (5đ). * Đặt vấn đề vào bài mới (1’): Trong tiết học trước chúng ta đã được học về tính chất của dãy tỉ số bằng nhau. Vậy các tính chất của dãy tỉ số bằng nhau được vận dụng để giải các bài toán, đặc biệt là các bài toán thực tế như thế nào. Ta vào bài học hôm nay. b) Dạy nội dung bài mới Hoạt động của thầy trò Học sinh ghi GV Nghiên cứu và làm Bài tập 59 (sgk- *Bài 59 (SGK -31) (7') 31) ? Bài yêu cầu chúng ta làm gì?.
<span class='text_page_counter'>(7)</span> Y. 2, 04 204 17 Thay tỉ số giữa các số hữu tỷ bằng tỉ số 2, 04 : ( 3,12) 3,12 312 26 giữa các số nguyên. a, HS Hoạt động cá nhân trong vòng 4' 3 5 3 4 6 1 1 2 :1, 25 2 : 4 2 5 5 TB 2 em lên bảng làm: b, Hs1: Câu a, b. 3 23 4 16 4 : 5 4 : 4 Hs2: Câu c, d. 4 4 23 23 c, HS Nhận xét bài của bạn. 3 3 73 73 73 14 2 10 : 5 : d, 7 14 7 14 7 73 1. HS Đọc và nghiên cứu Bài tập 61(sgk-31) ? Bài yêu cầu tìm gì? TB Tìm 3 số x, y, z biết rằng: ? Từ hai tỉ lệ thức làm thế nào để có dãy tỉ số bằng nhau. K Ta phải biến đổi sao cho trong hai tỉ lệ thức có các tỉ số bằng nhau. y ? Đứng tại chỗ biến đổi sao cho 3 và y 4 có cùng tỉ số, từ đó có dãy tỉ số. *Bài 61 (SGK/31): (10') Tìm 3 số x, y, z biết rằng: x y y z , 2 3 4 5 và x + y - z = 10.. Giải: x y 2 3 y z 4 5. x y x y z 8 12 y z 8 12 15 12 15 . bằng nhau như thế nào? K. x y 2 3 y z 4 5. x y x y z 8 12 y z 8 12 15 12 15 . Áp dụng tính chất mở rộng dãy tỉ số bằng nhau có:. x y z x y z 10 2 8 12 15 8 12 15 5 x ? Đến đây ta áp dụnh tính chất nào để 2 giải bài tập này. Vậy 8 x = 2.8 = 16 y TB Áp dụng tính chất mở rộng dãy tỉ số 2 bằng nhau 12 y = 2.12 = 24 GV Cho học sinh hoạt động nhóm để tìm x 2 giá trị của x, y, z. 15 z = 2.15 = 30. GV Gọi 1 em lên bảng trình bày - các nhóm khác nhận xét bài của bạn. GV Chốt lại: Để đưa được về tính chất của dãy 3 tỉ số bằng nhau ta cần: y. y. - Quy đồng các tỉ số 3 ; 4 - Đưa các tỉ số. x ; 2. z 5. bằng các tỉ. số tương ứng vừa quy đồng. HS Đọc nội dung bài 62 (Sgk/31) *Bài 64 (SGK/31): (12') ? Gọi số học sinh 4 khối 6; 7; 8; 9 lần Giải: lượt là a, b, c, d theo đầu bài ta có dãy Gọi số học sinh 4 khối 6; 7; 8; 9 lần tỉ số như thế nào? lượt là a, b, c, d mà số học sinh khối.
<span class='text_page_counter'>(8)</span> K ? K ? TB. 6, 7, 8, 9 tỉ lệ với 9, 8, 7, 6 nên ta. a b c d 9 8 7 6. a b c d có: 9 8 7 6 và b - d = 70. Số học sinh khối 9 ít hơn số học sinh khối 7 là 70 học sinh. Ta có đẳng Áp dụng tính chất của dãy tỉ số thức như thế nào? bằng nhau có: b - d = 70 b d b d 70 35 Vậy từ dãy tỉ số trên ta thiết lập tỉ lệ 8 6 8 6 2 thức như thế nào? b 35 b 8.35 280 8 d 35 d 6.35 210 6 a b 9.b 9.280 a 315 9 8 8 8 c d 7.d 7.210 c 245 7 6 6 6. b d 8 6. K. Lên bảng giải và tính giá trị b, d. Từ đó Vậy số học sinh của 4 khối lớp lần tính giá trị của a và c. lượt là: 315 h/s;280 h/s; 245 h/s và 210 h/s. GV Chốt lại: Để giải bài toán có lời văn Đáp số: 315 h/s; 280 h/s; như trên. ta cần biến đổi từ ngôn ngữ 245 h/s; 210 h/s. thông thường sang ngôn ngữ đại số sau đó vận dụng cá tính chất để thực hiện. c) Củng cố (3') Qua bài học cần nắm vững các tính chất của dãy tỉ số bằng nhau. Biết giải các bài toán thực tế có liên quan đến các tỉ số bằng nhau. d) Hướng dẫn HS tự học ở nhà (7’) - Học lí thuyết: các tính chất của dãy tỉ số bằng nhau - Làm bài tập: 60, 62, 63 (Sgk -31) - HSKG: 80,82,83,84 (SBT-14) - Hướng dẫn bài tập về nhà *Bài 62 (Sgk -31) x. y. Đặt k 2 5 ⇒ x = 2k; y = 5k Tính x.y = 10 (1) Thay giá trị x, y vào đẳng thức (1) có: 2k.5k = 10. Tính giá trị của k Thay giá trị k vừa tìm được đó ta sẽ tìm được x,y. *Bài 63 (Sgk -31) Đặt. a c k b d. ⇒. a = b.k; c = d.k. Thay a, b vào các tỉ số cần chứng. minh và khai triển chứng tỏ chúng bằng nhau. - Chuẩn bị bài sau: Đọc trước bài. Số thập phân hữu hạn, số thập phân vô hạn tuần hoàn. - Đọc trước bài: Số thập phân hữu hạn, số thập phân tuần hoàn. - Ôn: Định nghĩa số hữu tỉ, tiết sau mang máy tính bỏ túi. * Rút kinh nghiệm sau giờ dạy:.
<span class='text_page_counter'>(9)</span> ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Dạy lớp 7B Ngày dạy: Dạy lớp 7D TIẾT 13: SỐ THẬP PHÂN HỮU HẠN. SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN. 1. Mục tiêu a) Về kiến thức: Học sinh hiểu được số thập phân hữu hạn, điều kiện để một phân số tối giản biểu diễn được dưới dạng số thập phân hữu hạn và vô hạn tuần hoàn - Hiểu được rằng số hữu tỉ là số có biểu diễn thập phân hữu hạn hoặc thập phân vô hạn tuần hoàn b) Về kĩ năng: Có kĩ năng nhận dạng được phân số nào viết được dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn c) Về thái độ: Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Máy tính b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan + Máy tính. 3. Tiến trình dạy học *Ổn định tổ chức: 7B:...................7D: ................ a) Kiểm tra bài cũ: (5' ) *Câu hỏi: Thế nào là số hữu tỉ? Viết các phân số thập phân dưới dạng số thập 3 14 ; phân: 10 100 a *Đáp án: Số hữu tỉ là số viết được dưới dạng phân số b với a, b , b 0 (4đ) 3 14 0,3; 0,14 10 100 (6đ). b) Dạy nội dungbài mới:.
<span class='text_page_counter'>(10)</span> 3 14 ; * Đặt vấn đề vào bài mới(1’): Ta đã biết các phân số thập phân 10 100 ... có thể 3 14 0,3; 0,14 100 viết được dưới dạng số thập phân 10 . Các số thập phân đó là các số. hữu tỉ, còn số 0,323232… có phải là số hữu tỉ hay không và ngược lại mọi số hữu tỉ có thể viết được dưới dạng số thập phân hay không. Ta vào bài học hôm nay Hoạt động của GV và HS. ?. 3 37 ; Để viết các phân số 20 25 dưới dạng số. Học sinh ghi 1. Số thập phân hữu hạn, số thập phân vô hạn tuần hoàn (11') * Ví dụ 1: Viết các phân số 3 37 ; 20 25 dưới dạng số thập phân. 3 37 0,15; 1, 48 25 Cách 1: 20. thập phân ta làm như thể nào? K Ta chia tử cho mẫu HS 2 học sinh lên bảng thực hiện phép chia. ? Yêu cầu h/s kiểm tra lại bằng máy tính. ? Ngoài cách làm trên ta còn cách khác Cách 2: 3 3 3.5 15 như thế nào? 2 2 2 0,15 20 2 .5 2 .5 100 37 37 37.22 148 1, 48 25 52 52.22 100. GV Hướng dẫn: Phân tích mẫu ra thừa số nguyên tố. Bổ xung thừa số vào mẫu sao cho mẫu có dạng là luỹ thừa của 10 HS Đứng tại chỗ giải GV Giới thiệu các số thập phân như 0,15; 1,48 còn gọi là số thập phân hữu hạn. 5 ? Viết phân số 12 dưới dạng số thập phân K Lên bảng làm: tiến hành chia tử cho mẫu ? Em có nhận xét gì về phép chia này TB Phép chia này không bao giờ chấm dứt trong thương chữ số 6 được lặp đi lặp lại GV Số 0,4166 ... gọi là số thập phân vô hạn tuần hoàn. GV Giới thiệu cách viết gọn, kí hiệu, chu kì của số thập phân vô hạn tuần hoàn. ? Tự nghiên cứu SGK tìm hiểu xem các số 0,15;1,48 có phải là các số TPVHTH. * Số 0,15; 1,48 gọi là số thập phân hữu hạn. 5 * Ví dụ 2: Viết phân số 12 dưới. dạng số thập phân. 5 0, 4166..... 12. Số 0,4166 ... gọi là số thập phân vô hạn tuần hoàn. Cách viết gọn: 0,4166 ... 0,41(6) Số 6 gọi là chu kì của số thập phân vô hạn tuần hoàn..
<span class='text_page_counter'>(11)</span> HS Không 1 1 17 ? ; ; Hãy viết các p/số 99 9 11 dưới dạng số thập phân và chỉ ra chu kì của nó rồi viết gọn. GV (h/s dùng máy tính thực hiện phép chia) HS 3 em lên bảng làm - Cả lớp làm bài vào vở GV Như vậy khi viết một phân số dưới dạng số TP có hai khả năng xảy ra: -Nếu sau một số bước chia có số dư bằng 0 kết quả cho ta một số thập phân hữu hạn - Nếu sau vô số bước chia số dư cứ lặp lại như cũ kết quả cho ta một số TPVHTH những chữ số được lặp lại trong thương được gọi là chu kì của số TPVHTH. * Chú ý: (SGK-33) * Ví dụ: 1 0, 0101.... 0, (01) 99 1 0,111.... 0, (1) 9 17 1,5454.... 1, (54) 11. 2. Nhận xét:(21') GV Ở ví dụ 1 ta đã viết được các phân số 3 37 ; 20 25 dưới dạng số thập phân hữu hạn. 5 -Ở ví dụ 2 ta viết phân số 12 dưới dạng số. ? TB. thập phân vô hạn tuần hoàn. Các phân số này đều ở dạng tối giản. Hãy xét xem mẫu của các phân số này chứa các thừa số nguyên tố nào? 3 Phân số 20 có mẫu là 20 chứa thừa số. nguyên tố là 2 và 5. 37 Phân số 25 có mẫu là 25 chứa thừa số. nguyên tố là 5. 5 Phân số 12 có mẫu là 12 chứa thừa số. nguyên tố là 2 và 3. ? Vậy các phân số tối giản với mẫu dương, phải có mẫu như thể nào thì viết được dưới dạng số thập phân hữu hạn. TB Phân số tối giản với mẫu dương không có ước nguyên tố khác 2 và 5 thì phân số đó.
<span class='text_page_counter'>(12)</span> viết được dưới dạng số thập phân hữu hạn. ? Vậy các phân số tối giản với mẫu dương, phải có mẫu như thể nào thì viết được dưới dạng số thập phân vô hạn tuần hoàn K Phân số tối giản với mẫu dương có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số TPVHTH. GV Đây là điều kiện để 1 phân số tối giản viết được dưới dạng số thập phân hữu hạn và số thập phân vô hạn tuần hoàn. Cũng chính là nội dung phần nhận xét (Sgk/33) TB Đọc nhận xét trong (Sgk/33) a. Nhận xét (Sgk/33) 6 7 ? b. Ví dụ: ; 75 30 6 2 Cho 2 phân số . Hỏi mỗi phân số trên viết được dưới dạng số thập phân * 75 25 là phân số tối giản có hữu hạn hay số thập phân vô hạn tuần mẫu là 25 = 52 không có ước 6 TB hoàn? Vì sao? nguyên tố khác 2 và 5 nên 75 Đứng tại chỗ làm viết được dưới dạng số thập phân hữu hạn. 7 GV Chốt: Để xét xem 1 phân số là số thập phân hữu hạn hay số thập phân vô hạn * 30 là phân số tối giản có mẫu tuần hoàn ta xét từng phân số theo các là 30 = 2.3.5 có ước nguyên tố 3 7 bước: - Phân số đã tối giản chưa? Nếu chưa phải khác 2 và 5 nên 30 viết được dưới dạng số thập phân vô hạn rút gọn đến tối giản. - Xét mẫu của phân số xem chứa các ước tuần hoàn. 7 nguyên tố nào rồi dựa theo nhận xét để kết 0, 2333..... 0, 2(3) 30 luận. ? (Sgk/33) GV Áp dụng làm ? GV Cho học sinh hoạt động nhóm Giải: 17 7 1 Nhóm 1: Tìm ra số TPVHTH và viết dạng 1 13 ; 4 ; 50 ; 125 14 2 viết thập phân của các phân số đó. Nhóm 2: Tìm các số thập phân hữu hạn và được dưới dạng số thập phân viết dưới dạng thập phân của các phân số hữu hạn. đó. 11 −5 6 ; 45 viết được dưới dạng số thập phân vô hạn tuần hoàn..
<span class='text_page_counter'>(13)</span> ?. Đại diện 2 em lên bảng trình bày (Cho học sinh sử dụng máy tính tính kết quả) GV Chốt: - Số thập phân hữu hạn mẫu chỉ có ước nguyên tố là 2 và 5 - Số TP Vô hạn tuần hoàn mẫu có ước nguyên tố khác 2 và 5 - Các phân số phải ở dạng tối giản GV Như vậy một phân số bất kì có thể viết được dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn. Nhưng mọi số hữu tỉ đều viết được dưới dạng phân số nên có thể nói mọi số hữu tỉ đều viết được dưới dạng số thập phân hữu hạn hoặc số thập phân vô hạn tuần hoàn. SHT STPHH hoặc STPVHTH Ngược lại người ta đã chứng minh được mỗi STPHH hoặc STPVHTH đều là 1 số hữu tỉ. STPHH hoặc STPVHTH SHT 1 4 4 9 VD: 0,(4) = 0,(1).4 = 9. 1 0, 25 4 17 0,136 125 5 0,8(3) 6. 13 0, 26 50 7 1 0,5 14 2 11 0, 2(4) 45. * Ví dụ (Sgk/33) 1 3 1 3 9 3 0,(3) = 0,(1).3 = 9 1 25 25 99 0,(25) = 0,(01).25 = 99. ?. Tương tự trên hãy viết các số thập phân sau dưới dạng phân số: 0,(3); 0,(25) K Làm bài vào vở - Hai em lên bảng làm. GV SHT STPHH hoặc STPVHTH * Kết luận (Sgk/34) c) Luyện tập củng cố (5' ) ? Khi nào thì một phân số viết được dưới dạng số TPHH, số TPVHTH? ? Số 0,323232… có là số hữu tỉ không? K Số 0,323232… có là số hữu tỉ là số TPVHTH ⇒ viết được dưới dạng phân số *Bài tập: Câu hỏi. Đáp án hãy thay chữ x bằng một x = 2; 5 thì viết được dưới dạng số thập phân hữu hạn số nguyên tố có một chữ số để viết x = 3; 7; 11… thì viết được dưới dạng số được dưới dạng số thập phân vô hạn, thập phân vô hạn tuần hoàn 3 Cho a 2 . x.
<span class='text_page_counter'>(14)</span> hữu hạn. d) Hướng dẫn HS tự học ởnhà (2') - Học lí thuyết: phần nhận xét - Làm bài tập: 65, 66, 68, 69, 70, 71, 72 (Sgk/34, 35) - HSKG:85,86,87,88 (SBT-15) - Hướng dẫn bài tập về nhà bài 72: so sánh phần nguyên và phần thập phân - Giờ sau: Luyện tập * Rút kinh nghiệm sau giờ dạy: ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp: 7B Dạy lớp: 7D. TIẾT 14: LUYỆN TẬP 1. Mục tiêu: a) Về kiến thức: Học sinh biết vận dụng kiến thức lí thuyết vào làm các bài tập về số thập phân hữu hạn, số thập phân vô hạn tuần hoàn b) Về kĩ năng: Có kĩ năng phân biệt giữa phân số viết được dưới dạng số thập phân hữu hạn và phân số, số thập phân vô hạn tuần hoàn. Kĩ năng viết một phân số dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn và ngược lại. c) Về thái độ:Học sinh yêu thích môn đại số 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Máy tính bỏ túi b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan + Máy tính bỏ túi 3. Tiến trình bài dạy: * Ổn định tổ chức : 7B.............7D................ a) Kiểm tra bài cũ: ( 7' ) *Câu hỏi:.
<span class='text_page_counter'>(15)</span> Học sinh 1: Hãy nêu điều kiện để một phân số viết được dưới dạng số thập phân hữu hạn và số thập phân vô hạn tuần hoàn. Cho ví dụ Học sinh 2: Giải thích vì sao phân số hữu hạn. Viết chúng dưới dạng đó. 3 8. viết được dưới dạng số thập phân. −7. - Giải thích vì sao phân số 18 viết được dưới dạng số thập phân vô hạn tuần hoàn. Viết chúng dưới dạng đó. * Đáp án: HS1: Phân số tối giản với mẫu không có ước nguyên tố khác 2và5 thì phân số đó viết được dưới dạng số thập phân hữu hạn 3. Ví dụ: 10 là PS viết được dưới dạng số thập phân hữu hạn (5đ) Phân số tối giản với mẫu có ước nguyên tố khác 2và5 thì phân số đó viết được dưới dạng số thập phân TPVHTH 5 12. HS2:. viết được dưới dạng số thập phân vô hạn tuần hoàn. (5đ). 3. - Phân số 8 viết được dưới dạng số thập phân hữu hạn vì 8 = 2 3 không có ước nguyên tố khác 2 và 5 (5đ) −7. - Phân số 18 viết được dưới dạng số thập phân vô hạn tuần hoàn vì 18= 2.32 có ước nguyên tố khác 2 và 5 (5đ) * Đặt vấn đề vào bài mới: (1') Ở tiết học trước chúng ta đã biết một phân số tối giản khi nào thì viết được dưới dạng số thập phân hữu hạn, khi nào thì viết được dưới dạng số thập phân vô hạn. Trong tiết học hôm nay chúng ta sẽ vận dụng kiến thức lí thuyết vào làm các bài tập dạng đó. b) Dạy nội dung bài mới: Hoạt động của GV và HS Dạng 1: Viết các phân số hoặc một thương dưới dạng số thập phân . ? Viết các thương sau dưới dạng số thập phân vô hạn tuần hoàn (dạng viết gọn) TB Lên bảng dùng máy tính thực hiện phép chia và viết kết quả dưới dạng viết gọn. HS Nhận xét bài của bạn 1 1 ? ; Viết các phân số 99 999 dưới dạng số thập phân. K Lên bảng dùng máy tính thực hiện phép chia. Học sinh ghi *Bài 69 (SGK/34) (5') a, 8,5 : 3 = 2,8(3) b, 18,7 : 6 = 3,11(6) c, 58 : 11 = 5,(27) d, 14,2 : 3,33 = 4,(264) *Bài 71 (SGK/35) (4') Giải:.
<span class='text_page_counter'>(16)</span> 1 0, 0101... 0, (01) 99 1 0, 001001... 0, (001) 999. GV Nghiên cứu nội dung bài 85 (SBT/15) *Bài 85 (SBT/15) (6') ? Qua nghiên cứu hãy cho biết bài yêu cầu chúng ta làm gì? 7 2 11 14 HS ; ; ; Giải thích tại sao các phân số 16 125 40 25 viết được dưới dạng số thập phân hữu hạn, rồi viết chúng dưới dạng đó. GV Yêu cầu học sinh hoạt động nhóm HS Các phân số này đều ở dạng tối giản mẫu không chứa thừa số nguyên tố nào khác 2 và 5 16 = 24 40 = 23.5 125 = 53 25 = 52 7 0, 4375 16 11 0, 275 40. 2 0, 016 125 14 0,56 25. HS Đại diện hai nhóm lên trình bày GV Chốt: Viết 1 phân số dưới dạng số thập phân ta chia tử cho mẫu. - Nếu phân số chỉ có thừa số nguyên tố là 2, 5 thì viết được dưới dạng số thập phân hữu hạn. - Nếu phân số chỉ có ước nguyên tố khác 2 và 5 thì viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2: Viết số thập phân dưới dạng p /số GV Nghiên cứu nội dung bài 70 (Sgk/35) ? Qua nghiên cứu hãy cho biết muốn viết các số thập phân dưới dạng phân số tối giản ta phải làm gì? HS Ta viết các số thập phân hữu hạn dưới dạng psố thập phân rồi rút gọn Phân số tối giản. ? Viết các số thập phân hữu hạn sau dưới dạng phân số tối giải. a, 0,32 GV Gợi ý: đưa 0,32 phân số thập phân rút. *Bài 70 (SGK/35) (9') 32 8 0,32 100 25 a,. b,. 0,124 . 0,124 31 1000 250. 128 32 1, 28 100 25 c, 312 78 3,12 100 25 d,.
<span class='text_page_counter'>(17)</span> gọn phân số tối giản. Tương tự 3 em lên bảng làm tiếp câu b, c, d. GV Tiếp tục nghiên cứu bài 88 (SBT/15) *Bài 88 (SBT/15) (7') ? Qua nghiên cứu hãy cho biết bài yêu cầu Giải: 1 5 chúng ta làm gì? 5 9 a, 0,(5) = 0,(1).5 = 9 1 HS Viết các số thập phân sau dưới dạng phân số. 34 b, 0,(34) = 0,(01).34 = 99 34 = 99. HS Gọi 3 em lên bảng làm.. c, 0,(132) = 0,(001).132 = 1 132 132 999 999. ? Bài 89 yêu cầu ta làm gì? *Bài 89 (SBT/15) (4') TB viết các số thập phân sau dưới dạng phân số a, GV Đây là các số thập phân mà chu kì không bắt 0, 0(8) 1 .0, (8) 1 0, (1).8 10 10 đầu ngay sau dấu phẩy. Ta phải biến đổi để đưa số thập phân có chu kì bắt đầu ngay sau 1 1 8 1 8 8 4 10 9 10 9 90 45 dấu phẩy rồi làm tương tự như bài 88. ? Cả lớp hoạt động cá nhân làm câu a. HS Một em lên bảng trình bày ? Tương tự về nhà làm các ý còn lại c) Củng cố (1') Cách nhận dạng 1 phân số viết dưới dạng số thập phân hữu hạn, số TP vô hạn tuần hoàn d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết - Bài tập về nhà:72 (SGK -35);86,90,91 (SBT-15) - Hướng dẫn bài tập về nhà. Bài tập 72 -Viết dưới dạng số thập phân vô hạn tuần hoàn bỏ dấu ngoặc kí hiệu chu kì sau đó so sánh 2 số thập phân thông thường. - Chuẩn bị bài sau: Đọc trước bài “ Làm tròn số” * Rút kinh nghiệm sau giờ dạy: ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ..........................................................................................................................................................................................................................................
<span class='text_page_counter'>(18)</span> ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D. TIẾT 15: LÀM TRÒN SỐ 1. Mục tiêu: a) Về kiến thức: Học sinh hiểu khái niệm làm tròn số, biết ý nghĩa của việc làm tròn số trong thực tiễn b) Về kĩ năng: Nắm vững và vận dụng thành thạo các quy ước làm tròn số. Sử dụng đúng các thuật ngữ nêu trong bài - Có ý thức vận dụng các quy ước làm tròn số trong đời sống hàng ngày c) Về thái độ: Yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: *Ổn định tổ chức: 7B............7D................ a) Kiểm tra bài cũ: ( 5' ).
<span class='text_page_counter'>(19)</span> * Câu hỏi: Một trường học có 425 học sinh, số học sinh khá giỏi có 302. Tính tỷ số phần trăm học sinh khá giỏi của trường đó. * Đáp án: Tỷ số phần trăm số học sinh khá giỏi của trường đó là: 302.100% 71, 058823...% 425. * Đặt vấn đề vào bài mới: Qua bài toán bạn vừa làm ta thấy tỷ số phần trăm của số học sinh khá giỏi của nhà trường là một số thập phân vô hạn. Để dễ nhớ, dễ so sánh, tính toán người ta thường làm tròn số. Vậy làm tròn như thế nào? Đó là nội dung bài hôm nay. b) Dạy nội dung bài mới: Hoạt động của thầy trò Học sinh ghi 1. Ví dụ:(15') GV Treo bảng phụ ví dụ về làm tròn số. + Số học sinh dự thi tốt nghiệp THCS năm học 2002 - 2003 toàn quốc hơn 1,35 triệu học sinh. + Theo thống kê của uỷ ban dân số gia đình và trẻ em hiện nay cả nước vẫn còn khoảng 2.600 trẻ lang thang. Riêng Hà Nội còn khoảng 6000 trẻ. TB Đọc các ví dụ về làm tròn số giáo viên đưa ra. ? Lấy một số ví dụ về làm tròn số mà em tìm hiểu được. K Nêu 1 số ví dụ. GV Như vậy qua thực tế ta thấy việc làm tròn số được dùng rất nhiều trong đời sống, nó giúp ta dễ nhớ, dễ so sánh còn giúp ta ước lượng nhanh kết quả các phép toán. GV Treo bảng phụ vẽ hình 4 ( SGK - 35 ) Ví dụ 1: Làm tròn số các STP 4,3 (Chưa có STP 4,3 và 4,9) và 4,9 đến hàng đơn vị. GV Mời 1 em lên bảng biểu diễn số thập phân 4,3 và 4,9 tròn trục số. ? Nhận xét STP 4,3 gần số nguyên nào nhất, STP 4,9 gần số nguyên nào nhất. TB Số 4,3 gần số nguyên 4 nhất, số 4,9 gần số nguyên 5 nhất GV Để làm tròn số các STP trên ta làm như 4,3 4 sau: 4,3 4 4,9 5 4,9 5 GV Giới thiệu ký hiệu " " đọc là gần bằng "sấp xỉ". ? Vậy để làm tròn số thập phân đến hàng.
<span class='text_page_counter'>(20)</span> K. đơn vị ta lấy số nguyên nào. Để làm tròn số thập phân đến hàng đơn * Để làm tròn STP đến hàng đơn vị ta lấy số nguyên gần với số đó nhất. vị ta lấy số nguyên gần với số đó nhất.. GV Cho học sinh làm ?1 ?1 (Sgk - 35) Điền số thích hợp vào ô vuông sau khi đã Giải. làm tròn đến hàng đơn vị. 5,4 5 ; 5,8 6 5,4 ; 5,8 ; 4,5 4,5 4 ; 4,5 5 HS Lên bảng điền vào ô trống - cả lớp điền vào vở GV Tại sao 4,5 ở đây làm tròn đến hàng đơn vị có thể nhận 2 kết quả. HS Vì 4,5 cách đều cả 2 số 4 và 5. GV Chính vì như vậy nên dẫn đến nhu cầu cần phải có quy ước làm tròn số để có kết quả duy nhất. GV Làm tròn số 72900 đến hàng nghìn ( Nói Ví dụ 2: Làm tròn số 72900 đến gọn là làm tròn nghìn). hàng nghìn. Có 72900 73000 ( Tròn nghìn ) TB Lên bảng làm - Cả lớp nghi vào vở. ? Tại sao 72900 73000 K Do 73000 gần với 72900 hơn là 72000 ? Vậy giữ lại mấy chữ số ở phần kết quả. Ví dụ 3: Làm tròn số 0,8134 đến hàng phần nghìn. TB Giữ lại 3 chữ số thập phân ở phần kết quả. ? Làm tròn số 0,8134 đến hàng phần nghìn và giải thích cách làm. K 0,8134 0,813 Do 0,813 gần với 0,8134 hơn là 0,814. GV Trên các ví dụ như trên người ta đưa ra 2 quy ước làm tròn số như sau. 2. Quy ước làm tròn số.(15') GV Hướng dẫn học sinh: Làm tròn số 86,149 * Trường hợp 1 (Sgk - 36) : Làm đến chữ số thập phân thứ nhất. tròn số 86,149 đến chữ số thập (Dùng bút chì, phấn vạch nét mờ ngăn phân thứ nhất. phần còn lại và phần bỏ đi. 86,1 49 86,1 49 86,1 - Nếu chữ số đầu tiên bỏ đi nhỏ hơn 5 thì phải giữ nguyên bộ phận còn lại trong trường hợp số nguyên thì ta thay các chữ số bỏ đi bằng các chữ số 0. Làm tròn số 542 đến hàng chục b, Làm tròn số 542 đến hàng chục GV hướng dẫn - gọi học sinh làm. 542 540.
<span class='text_page_counter'>(21)</span> HS 54 2 540 ? Nhắc lại trường hợp 1 (Sgk - 36) TB Đọc trường hợp 2(Sgk - 36) * Trường hợp 2: (Sgk - 36) Làm tròn số 0,0861 đến chữ số thập phân VD: Làm tròn số 0,0861 đến chữ thứ 2 số thập phân thứ 2. 0,0861 0,09 HS 0,08 61 0,09 ? Làm tròn số 1573 đến hàng trăm. b, Làm tròn số 1573 đến hàng trăm 1573 1600 K 1573 1600 GV Yêu cầu học sinh làm ? 2 bằng cách gọi ? 2 (Sgk - 36). HS HS GV ? TB HS. ?. HS GV HS ? TB. học sinh lên bảng làm. a. Làm tròn số 79,3826 đến CSTP thứ ba b. Làm tròn số 79,3826 đến CSTP thứ hai. c. Làm tròn số 79,3826 đến CSTP thứ nhất a. 79,3826 79,383 b.79,3826 79,38 c.79,3826 79,4 Nhận xét bài làm của bạn Nhận xét chữa hoàn chỉnh bài, sửa sai và uốn nắn cho học sinh. Vậy cho biết 4,5 làm tròn đến hàng đơn vị thì kết quả ntn? 4,5 5 c) Luyện tập củng cố (8') Đọc nội dung bài tập 73 (Sgk/36) - Làm tròn các số sau đến chữ số thập phân thứ hai: 7, 923; 17, 418; 79, 1364; 50, 401; 0,155; 60, 996. Hai em lên bảng trình bày mỗi học sinh 3 câu, cả lớp làm vào vở. a. 79,3826 79,383 b.79,3826 79,38 c.79,3826 79,4. 3. Luyện tập *Bài 73 (Sgk/36). 7,923 7,92 50, 401 50,40 17,418 17,42 0,155 016 79,1364 79,14 60,996 61,00. Nhận xét bài làm của bạn Yêu cầu 2 học sinh giải thích rõ từng câu Đọc nội dung bài tập 74 *Bài 74 (Sgk- 36, 37) Bài cho biết gì? Yêu câù tìm gì? Giải Cho biết Điểm hệ số 1 là: Điểm toán bạn Cường 7+ 8+ 6+ 10 = 31 Hệ số1: 7,8,6,10 Điểm hệ số 2 là:.
<span class='text_page_counter'>(22)</span> 2: 7,6,5,9 (7+ 6+ 5+ 9) = 54 3: 8 Điểm hệ số 3 là: Hãy tính: Điểm trung bình môn toán học 8.3 = 24. kỳ I. GV Cho học sinh công thức tính điểm trung Điểm trung bình môn toán HKI bình môn toán học kỳ I như sau. bạn Cường là. . DKTH1 + (DKTHS2).2 + DHK3 SLKT. 31+ 54 + 24 7,3 15. ĐTB HS Lên bảng làm: Cả lớp làm bài vào vở. Điểm hệ số 1. Điểm hệ số 2. Điểm hệ số 3. HS Nhận xét bài làm của bạn. GV Nhận xét, chữa bài, chốt toàn bài. d) Hướng dẫn HS tự học ở nhà (2') - Nắm vững 2 quy ước của phép làm tròn số. Bài tập: 76, 77, 78 ( SGK - 37, 38) 93,94( SBT - 16 ) HSKG: 95,96,98,100 ( SBT - 16 ) - Áp dụng các quy ước của phép làm tròn số để làm bài tập. - Tiết sau mang máy tính bỏ túi thước dây (hoặc thước cuộn ). HD bài 77: Xem bài mẫu rồi vận dụng. * Rút kinh nghiệm sau giờ dạy:. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................ Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D. TIẾT 16: LUYỆN TẬP 1. Mục tiêu: a) Về kiến thức: Học sinh được vận dụng quy ước làm tròn số để giải bài tập b) Về kĩ năng: - Có kĩ năng làm tròn số chính xác - Hiểu được ý nghĩa của pháp làm tròn số trong các bài toán thực tế c) Về thái độ: Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B.............7D...........
<span class='text_page_counter'>(23)</span> a) Kiểm tra bài cũ: ( 5' ) *Câu hỏi: Phát biểu quy ước làm tròn số? Bài tập: Làm tròn số 76324753 đến hàng chục, hàng trăm, hàng nghìn. *Đáp án: *Quy ước sgk-36 (4đ) *Bài tập: + Hàng chục: 76324753 76324750 + Hàng trăm: 76324753 763244800 + Hàng nghìn: 76324753 76325000 b) Dạy nội dung bài mới: Hoạt động của GV và HS Cả lớp nghiên cứu đọc bài 77( Sgk ? 37) GV Nêu các bước làm: - Làm tròn các thừa số đến chữ số ở hàng cao nhất - Nhân, chia, ......Các số đã được làm tròn, được kết quả ước lượng. - Tính đến kết quả đúng, so sánh với kết quả ước lượng K? Hãy ước lượng kết quả các phép tính sau: HS Gọi 3 em lên bảng làm Tb? Dùng máy tính để tính kết quả đúng GV Gọi 3 em lên bảng làm Tb? So sánh giữa kết quả đúng và kết quả ước lượng ? Tiếp tục nghiên cứu nội dung bài 79 (Sgk - 38). ?. Qua nghiên cứu hãy cho biết bài cho biết gì và yêu cầu gì? TB Cho biết: Chiều dài:10,234m, rộng 4,7 m Yêu cầu: Tính C = ?, S = ? ? Muốn tính chu vi hình chữ nhật ta làm như thế nào? TB ( 10,234 + 4,7 ).2 = ? ? Muốn tính diện tích hình chữ nhật. (2đ) (2đ) (2đ) Học sinh ghi *Bài 77 ( Sgk - 37) (8') Giải: * Kết quả ước lượng: a. 495 . 52 500. 50 = 25000 b. 82,36 . 5,1 80. 5,0 = 400 c. 6730 : 48 7000: 50 = 140 * Kết quả đúng: a. 495 . 52 = 25740 b. 82,36 . 5,1= 420,036 c. 6730 : 48 = 140,2083333... Vậy: Kết quả đúng > Kết quả ước lượng. *Bài 79 ( Sgk - 38) (12') Cho: Dài:10,234m, rộng 4,7 m Tìm: C = ?, S = ? Giải: Diện tích của mảnh vườn hình chữ nhật là: (10,234 . 4,7) = 48,0998 48(m2) Chu vi của mảnh vườn hình chữ nhật là: ( 10,234 + 4,7 ).2 = 29,868 30m Đáp số: S = 48(m2) C = 30m.
<span class='text_page_counter'>(24)</span> ta làm thế nào? TB ( 10,234 . 4,7 ) = ? HS Một học sinh lên bảng trình bày, cả lớp làm bài vào vở. ? Tiếp tục nghiên cứu bài 81 (Sgk - 38 ) *Bài 81 (Sgk/38) (10') ? Qua nghiên cứu hãy cho biết bài Tính giá trị của biểu thức bằng 2 toán yêu cầu chúng ta làm gì? cách. 17, 68.5,8 Y Giải: A 8,9 a, Cho Tính giá trị của biểu thức bằng hai 14,61 - 7,15 + 3,2 15 - 7 + 3 11 14,61 - 7,15 + 3,2 = 10,66 11 cách GV Cho học sinh tự nghiên cứu ví dụ tính b, 7,56.5,173 8.5 40 7,56.5,173 = 39,10788 39 giá trị biểu thức. ? Trong cách 1 ta đã làm như thế c, 73,95 : 14,2 74 : 14 5 73,95 : 14,2 = 5,0277 5 nào? TB Ta đã làm tròn các số trước rồi mới d , 21,73.0,815 22.1 3 thực hiện phép tính. 7,3 7 ? Trong cách 2 ta đã làm như thế 21,73.0,815 17,70995 2, 426... 2 nào? 7,3 7,3 TB Thực thiện phép tính rồi làm tròn kết *Bài 78 (SGK -39) (5’) quả. GV Yêu cầu Hs nghiên cứu bài 78 (SGK Giải: Đường chéo của màn hình ti vi 21 -39) Tb? Nói ti vi 21 inch em hiểu nghĩa là inch là 21.2,54 cm = 53,34 (cm) 53 (cm) thế nào ? TB ?. 1 inch =? cm 1 inch 2,54 cm Hãy tính độ dài đường chéo của màn hình ti vi K Trình bày lời giải GV Chốt lại: Đối với một bài toán có một dãy các phép tính. Để làm tròn kết quả ta có thể thực hiện theo 2 cách sau: - Cách 1: Làm tròn các số trước rồi mới thực hiện phép tính - Cách 2: Thực hiện phép tính rồi làm tròn kết quả. GV Cho 4 nhóm làm bài Nhóm 1: 14,61 - 7,15 + 3,2 Nhóm 2: 7,56 . 5,173 Nhóm 3: 73,95 : 14,2.
<span class='text_page_counter'>(25)</span> 21, 73 0,515 7,3 Nhóm 4:. Gọi đại diện các nhóm lên bảng trình bày sử dụng HS Nhận xét bài làm các nhóm HS Đọc phần có thể em chưa biết. c) Củng cố, luyện tập: (3') Giáo viên chú ý cho học sinh tác dụng của việc làm tròn số: - Xuất hiện rất nhiều trong thực tế, sách báo, chẳng hạn: khoảng 25 nghìn khán giả có mặt tại sân vận động; mặt trăng cách trái đất khoảng 4000 km; diện tích bề mặt trái đất khoảng 510,2 triệu km2; trọng lượng não của người TB 1400g - Các số làm tròn giúp ta dễ nhớ, dễ so sánh, giúp ta ước lượng nhanh kết quả của phép tính. d) Hướng dẫn HS tự học ở nhà (2') - Thực hành đo đường chéo ti vi ở gia dình em - Học lí thuyết: quy ước làm tròn số - Làm bài tập: 80 (Sgk/38); 98, 101 (SBT/16, 17) - HSKG:102,103,105(SBT/16, 17) - Hướng dẫn bài 80 (Sgk/38): áp dụng quy ước làm tròn. - Ôn tập kết luận quan hệ giữa số hữu tỉ và số thập phân. - Chuẩn bị bài sau: Đọc trước bài Số vô tỉ, khái niệm căn bậc hai * Rút kinh nghiệm sau giờ dạy: ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................ Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D. TIẾT 17:SỐ VÔ TỈ. KHÁI NIỆM VỀ CĂN BẬC HAI 1. Mục tiêu: a) Về kiến thức: - Học sinh có khái niệm về số vô tỉ và hiểu thế nào là căn bậc hai của một số không âm - Biết sử dụng đúng kí hiệu b) Về kĩ năng: Có kĩ năng tính căn bậc hai c) Về thái độ: Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS.
<span class='text_page_counter'>(26)</span> a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ + Phiếu học tập. b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * ổn định tổ chức: 7B:……………7D:………….. E. A. a) Kiểm tra bài cũ: ( Không kiểm tra ) * Đặt vấn đề vào bài mới: (1') Chúng ta đã biết mọi số hữu tỉ đều có thể viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. Vậy một số không viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn người ta gọi đó là số nào? Có phép toán nào(kí hiệu toán học nào) để biểu diễn, tính giá trị có liên quan đến số hữu tỉ. Ta vào bài học hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi 1. Số vô tỉ:(13') 1m GV Cả lớp đọc và nghiên cứu bài toán (Sgk/40) GV Treo bảng phụ có hình 5 ? Bài toán cho biết gì và yêu cầu gì? Y Cho: hình vuông AEBF có cạnh bằng 1m, hình vuông ABCD cạnh AB là đường chéo của hình AEBF Tìm: SABCD và độ dài đường chéo AB GV Để tính SABCD ta tính SAEBF ? Hãy tính SAEBF TB SAEBF = AE.EB = 1.1 = 1 Giải: GV Nhìn hình vẽ ta thấy diện tích hình Diện tích hình vuông AEBF là: vuông AEBF bằng 2 lần diện tích tam 1.1 = 1 (m2) giác ABF. Còn S hình vuông ABCD Diện tích hình vuông ABCD gấp 2 bằng 4 lần diện tích tam giác ABF lần diện tích hình vuông AEBF ? Vậy diện tích hình vuông ABCD Vậy diện tích hình vuông ABCD là: bằng bao nhiêu? TB Diện tích hình vuông ABCD bằng: 2.1 = 2 (m2) 1.1 = 1 (m2) Gọi độ dài cạnh AB là x (m) (x> 0) Diện tích hình vuông ABCD gấp 2 lần Ta có: x2 = 2 x = 1,414213562373095 ... Là diện tích hình vuông AEBF. Vậy diện tích hình vuông ABCD bằng một số thập phân vô hạn mà ở phần 2.1 = 2 (m2) thập phân không có chu kì nào cả. ? Gọi độ dài cạnh AB là x (m) đk: x > Đó là số thập phân vô hạn không 0. Hãy biến đổi diện tích hình vuông tuần hoàn. Người ta gọi là số vô tỉ. F. B. D. C.
<span class='text_page_counter'>(27)</span> ABCD theo x K Ta có x2 = 2 GV Người ta đã chứng minh được rằng không có số hữu tỉ nào mà bình phương bằng 2 và đã tính được x = 1,414213562373095 ... GV Số này là một số thập phân vô hạn mà ở phần thập phân của nó không có 1 chu kì nào cả. Đó là 1 số thập phân vô hạn không tuần hoàn. Ta gọi những số như vậy là số vô tỉ. ? Vậy số vô tỉ là gì? K Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn. ? Số vô tỉ khác số hữu tỉ như thế nào?. * Định nghĩa: Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn. Tập hợp các số vô tỉ được kí hiệu là I. K. Số vô tỉ viết được dưới dạng số thập phân vô hạn không tuần hoàn. Còn số hữu tỉ là số viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. GV Giới thiệu: tập hợp các số vô tỉ được kí hiệu là I GV Nhấn mạnh: Số thập phân gồm: STPHH SHT STPVHTH . STPVHKTH là số vô tỉ 2. Khái niệm về căn bậc hai(18') ?. 2. 2. Hãy tính 3 = ? ; (-3) = ? 2. 2. 2 2 2 ?; ?;0 ? 3 3 . TB 32 = 9 ; (-3)2 = 9 2. 2. 4 2 4 2 2 3 9 ; 3 9 ;0 0 . GV Ta nói 3 và (-3) là các căn bậc hai của 9 2 2 ? ; Tương tự 3 3 là căn bậc hai của số nào?.
<span class='text_page_counter'>(28)</span> K. 2 2 4 ; 3 3 là các căn bậc hai của 9. ? TB ? K. 0 là căn bậc hai của số nào? 0 là căn bậc hai của 0 Tìm x biết x2 = - 1 Không có x vì không có số nào bình phương lên bằng (-1) GV Vậy (-1) không có căn bậc hai ? Vậy căn bậc hai của một số a không âm là 1 số như thế nào? K Căn bậc hai của một số a không âm là số x sao cho x2 = a Y Đọc định nghĩa (Sgk/41) ? Áp dụng làm ? 1 HS Hoạt động cá nhân trong vòng 3 phút. Lên bảng trình bày. ? Tương tự hãy tìm các căn bậc hai. * Định nghĩa: Căn bậc hai của một số a không âm là số x sao cho x2 = a ? 1 (Sgk/41) Giải: Các căn bậc hai của 16 là 4 và - 4. 9 ; 16 của 25. TB. 9 3 3 Căn bậc hai của 25 là 5 và 5 .. Không có căn bậc hai của -16 vì không có số nào bình phương lên bằng -16 GV Vậy chỉ có số dương và số 0 mới có căn bậc hai, số âm không có căn bậc hai. ? Mỗi số dương có bao nhiêu căn bậc hai? Số 0 có bao nhiêu căn bậc hai? K Mỗi số dương có đúng hai căn bậc hai. Số 0 chỉ có một căn bậc hai là 0 Tb? Số dương a có mấy căn bậc hai? Số a < 0 có mấy căn bậc hai? Số 0 có mấy căn bậc hai? GV Chốt lại: số dương a có đúng 2 căn bậc hai là a 0 và a 0 Số 0 có đúng một căn bậc hai 0 0 Ví dụ: Số 4 có 2 căn bậc hai là:. * Nhận xét: -Số dương a có đúng hai căn bậc hai là hai số đối nhau: số dương kí hiệu là a và số âm kí hiệu là - a . - Số 0 có đúng 1 căn bậc hai là chính số 0, ta viết 0 0.
<span class='text_page_counter'>(29)</span> 4 2; . 4 2. GV Chú ý không được viết: 4 2 vì vế trái 4 là ký hiệu chỉ cho căn dương của 4 ? 2 (Sgk/41) GV Cho học sinh làm ? 2 ? Viết các căn bậc hai của 3; 10; 25 Giải: TB 3 em lên bảng làm, mỗi em làm 1 câu - Các căn bậc hai của 3 là √ 3 và √3 - Các căn bậc hai của 10 là 10 và 10. - Các căn bậc hai của 25 là và - 25 =-5. c) Luyện tập củng cố (11') 3. Luyện tập:(11') ? Nêu khái niệm về số vô tỉ, định *Bài 82 (Sgk/41) nghĩa căn bậc hai TB Làm bài 82 (Sgk/41) a. vì 52= 25 nên √ 25 = 5 Thảo luận nhóm trong 4 phút để hoàn b. vì 72= 49 nên √ 49 = 7 thiện bài tập ra phiếu học tập c. vì 12= 1 nên √ 1 = 1 2. 2 d. vì 3 =. 4 9. nên. GV Chốt lại bài học: - Khái niệm số vô tỉ, sự khác nhau giữa số hữu tỉ và số vô tỉ - Định nghĩa căn bậc hai. Căn bậc hai chỉ tồn tại ⇔ a không âm HS Làm Bài tập: *Bài tập : GV Treo bảng phụ: Đáp án đúng: Chọn đáp án đúng trong các câu sau: 1) B 2 1)Nếu √ x =2 thì x bằng: 2) B A. 2 B. 4 C. 8 D. 16 3) Đúng 2)Số 16 có 2 căn bạc hai là: 4) Sai A) √ 16 và √ −16 B) √ 16 và - √ 16 3) √ 16 = 4 vì 42 = 16 4) √ 16 = - 4 vì (- 4)2 = 16 d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết: Khái niệm số vô tỉ; định nghĩa căn bậc hai - Làm bài tập: 83; 84; 85; 86 (Sgk/41, 42) - HSKG: Bài 106; 107; 110; 114 (SBT/18, 19). √. 4 9 =. 25 = 5. 2 3.
<span class='text_page_counter'>(30)</span> - Hướng dẫn: Bài 86 (Sgk/42): Gv hướng dẫn cách sử dụng máy tính bỏ túi: VD: Tính 3783025 thì ấn số trước sau đó ấn nút - Tiết sau mang thước kẻ, compa. - Chuẩn bị bài sau: Đọc trước bài “ Số thực” * Rút kinh nghiệm sau giờ dạy. trên máy được kết quả.. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D. TIẾT 18: SỐ THỰC. 1. Mục tiêu: a) Về kiến thức: Học sinh nhận biết được số thực là tên gọi chung cho cả số hữu tỉ và số vô tỉ; biết được biểu diễn thập phân của số thực; hiểu được ý nghĩa của trục số thực.
<span class='text_page_counter'>(31)</span> - Thấy được sự phát triển của hệ thống số từ N đến Z ; Q đến R. b) Về kĩ năng: Có kĩ năng so sánh số thực và biểu diễn trên trục số c) Về thái độ: Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Máy tính bỏ túi + Bảng phụ b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan + Thước kẻ, compa + Máy tính bỏ túi. 3. Tiến trình bài dạy: * ổn định tổ chức:7B............7D............. a) Kiểm tra bài cũ: ( 5' ) * Câu hỏi: Học sinh 1(HSY): Thế nào là số vô tỉ. Cho 2 ví dụ về số vô tỉ Học sinh 2: Định nghĩa căn bậc hai. - Tìm các căn bậc hai của 5 và 25? - Tính √ 4 ? * Đáp án: HS1: Định nghĩa(Sgk- 40) (5đ) Ví dụ về số vô tỉ: √ 2 ; √ 5 (5đ) HS2: Định nghĩa (Sgk- 41) (4đ) Số 5 có 2 căn bậc hai là √ 5 và - √ 5 (2đ) 25 25 Số 25 có 2 căn bậc hai là √ = 5 và - √ = -5 (2đ) (2đ) √4 = 2 * Đặt vấn đề vào bài mới(1'): Chúng ta đã được nghiên cứu các tập số N; Z; Q. và được nghiên cứu về số vô tỉ. Vậy có tập số nào bao hàm các tập số trên không? Ta vào bài học hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS ?. TB ? TB. Hãy cho ví dụ về số tự nhiên, số nguyên âm, phân số, số thập phân, STPHH, STPVH, VHKTH, số vô tỷ viết dưới dạng căn bậc hai. 1 0; 2; 5; ; 0, 2; 1, (45); 3, 21347.....; 2; 3,... 3. Chỉ ra trong các số trên số nào là số hữu tỉ, số nào là số vô tỉ 1 Số hữu tỉ: 0; 2; -5; 3 ; 0,2 ; 1,(45) Số vô tỉ: 3,21347...; 2; 3. GV Tất cả các số trên: SHT và số vô tỉ đều. Học sinh ghi 1. Số Thực:(15').
<span class='text_page_counter'>(32)</span> ?. được gọi chung là số thực. Thế nào gọi là số thực. K. Số hữu tỉ và số vô tỉ gọi chung là số thực. * Khái niệm: Số hữu tỉ và số vô tỉ được gọi chung là số thực -Ví dụ: 2;. 2 1 ;-3 ; 3 7. √2 ; √5. là số thực. Tb? Lấy ví dụ về số thực GV Tập hợp số thực được kí hiệu là R. ? - Vậy tất cả các tập hợp số đã học: tập N, tập Z, tập Q, tập I có quan hệ như thế nào với tập hơp R?p K - Đều là tập hợp con của tập R GV Yêu cầu học sinh làm ? 1 (Sgk/43) ? Đọc và nghiên cứu bài ? 1 ? Cách viết x R cho ta biết điều gì? TB Cách viết x R có nghĩa; x là số thực GV Nói: Với 2 số thực x, y bất kỳ ta luôn có hoặc x = y hoặc x > y hoặc x < y ? Số thực được biểu diễn dưới dạng số thập phân như thế nào? vì sao? TB Biểu diễn dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. Vì số thực là số thập hữu tỉ hoặc vô tỉ GV Để so sánh hai số thực ta so sánh tương tự như so sánh hai số hữu tỉ viết dưới dạng số thập phân Ví dụ: So sánh: a, Số 0,3192... và 0,32(5) b, Số 1,24598... và 1,24596 ? Để so sánh 2 số thực ta so sánh như thế nào? K So sánh nhau sau: a, Hai số này có phần nguyên bằng nhau phần mười bằng nhau, hàng phần trăm của số 0,3192.. nhỏ hơn hàng phần trăm của số 0,32(5) = 0,235.... Nên 0,3192... < 0,32(5) K b, Hai số này có phần nguyên bằng nhau, phần mười, hàng phần trăm, hàng phần nghìn, hàng phần chục bằng nhau hàng phần trăm nghìn của số 1,24598 lớn hơn hàng phần trăm của số 1,24596.... Nên 1,24598... > 1,24596 GV Chốt lại cách so sánh hai số thực:. - Tập hợp số thực kí hiệu là R. ? 1 (Sgk/43) Giải: R có nghĩa; x là số. Cách viết x thực - Với x, y là số thực ta luôn có: x=y hoặc x < y hoặc x > y. - Số thực được biểu diễn dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn. * Ví dụ (Sgk/43).
<span class='text_page_counter'>(33)</span> - So sánh phần nguyên: Nếu phần nguyên bằng nhau So sánh phần mười. Nếu phần mười bằng nhau So sánh đến hàng phần trăm ... - Đối với số thập phân vô hạn tuần hoàn có lúc so sánh ta phải phá chu kì của nó. ? Áp dụng làm ? 2 ? 2 (Sgk/43) HS Hoạt động cá nhân trong vòng 2' Giải: ? Hai em lên bảng làm (giải thích cách so a, 2,(35) = 2,353535... < 2,369121... sánh). b, - 0,(63) = - 0,6363... 7 0, 6363.... 11 7 0, (63) 11 Vậy . GV Giới thiệu: Với a, b là 2 số thực dương * Chú ý: (Sgk/43) nếu a > b thì a b GV Ta đã biết cách biểu diễn một số hữu tỉ trên trục số. Vậy có biểu diễn được số vô tỉ 2 trên trục số không? Ta sang phần 2. 2. Trục số thực: (8') HS Hãy đọc và nghiên cứu Sgk và xem hình Biểu diễn 2 trên trục số: 6b (Sgk/44) để biểu diễn số 2 trên trục số. GV Vẽ trục số lên bảng rồi gọi 1 học sinh lên bảng biểu diễn 0 1 GV 2 là độ dài đường chéo của hình vuông 0 có cạnh là 1. Vậy ta vẽ hình vuông có cạnh là 1. Vẽ - Mỗi số thực được biểu diễn bởi đường chéo của hình vuông đó. Lấy 0 một điểm trên trục số làm tâm quay 1 cung tròn có bán kính là - Ngược lại, mỗi điểm trên trục số đều biểu diễn một số thực đường chéo hình vuông ( 2 ) cắt trục số ở đâu đấy chính là điểm 2 . Như vậy ta đã biểu diễn 2 trên trục số. GV Nói tiếp: Để biểu diễn được số vô tỉ 2 trên trục số chứng tỏ không phải mỗi điểm trên trục số đều biểu diễn số hữu tỉ hay các điểm hữu tỉ không lấp đầy trục số. Người ta chứng minh được rằng: - Mỗi số thực được biểu diễn bởi 1 điểm trên trục số. - Ngược lại mỗi điểm trên trục số đều biểu diễn 1 số thực..
<span class='text_page_counter'>(34)</span> Như vậy có thể nói rằng các điểm biểu diễn số thực đã lấp đầy trục số. Vì thế trục số còn gọi là trục số thực. GV Treo bảng phụ hình 7. HS Quan sát H.7 và trả lời câu hỏi sau: ? Ngoài số nguyên trên trục số này có biểu diễn các số hữu tỉ nào? Các số vô tỉ nào? TB Ngoài số nguyên trên trục số này có biểu 3 1 ; 0,3; 2 ; 2 diễn các số hữu tỉ: 5 4,1(6) và các số vô tỉ: 2; 3. ? K GV HS ? HS ? K GV ?. Trong tập hợp các số hữu tỉ có các phép toán nào? Là: Phép cộng, trừ, nhân, chia, luỹ thừa. Trong tập hợp các số thực cũng có các phép toán và các tính chất như trong tập hợp các số hữu tỉ. Đọc chú ý trong (Sgk/44) c)Luyện tập - củng cố (13') Tập hợp số thực bao gồm những số nào? Tập hợp số thực bao gồm số hữu tỉ và số vô tỉ. Vì sao nói trục số là trục số thực? Nói trục số là trục số thực vì các điểm biểu diễn số thực lấp đầy trục số Yêu cầu học sinh hoạt động cá nhân trong vòng 2' Một em lên bảng trình bày. GV Treo bảng phụ nội dung bài tập sau: Hãy chọn kết quả "Đúng", "Sai" trong các câu sau: a. Nếu a là số thực thì a là số hữu tỉ hoặc vô tỉ b. Nếu b là số vô tỉ thì b dược viét dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn c. Nếu a là số nguyên thì a cũng là số thực d. Chỉ cố số 0 không là số hữu tỉ dương và cũng không là số hữu tỉ âm e. Nếu a là số tự nhiên thì thì a không là số vô tỉ. * Chú ý: (Sgk/44) 3. Luyện tập:(13'). *Bài 87 (Sgk/44) Giải: 3 Q; 3 R; 3 I; -2,35 Q; 0,2(35) I; N Z; I R *Bài tập: a. Đúng b. Sai c. Đúng d. Sai Vì ngoài số 0 số vô tỉ cũng không phải là số hữu tỉ âm. e. Đúng.
<span class='text_page_counter'>(35)</span> GV Chốt lại: Tập Số tự nhiên, số nguyên, số hữu tỉ, số vô tỉ đều là Tập con của số thực d) Hướng dẫn HS tự học ở nhà (3') - Học lí thuyết: Khái niệm về số thực, biểu diễn số thực trên trục số - Làm bài tập: 91, 92, 93, 94, 95 (Sgk/45) - HSKG 120,121,122,128 (SBT/20,21) - Hướng dẫn bài tập về nhà. Bài 94: Giao của hai tập hợp là một tập hợp gồm các phần tử chung của hai tập hợp đó - Xét xem tập Q và tập I; tập R và tập I có phần tử nào chung hay không? - Nếu không có phần tử chung thì giao bằng rỗng * Chuẩn bị bài sau: Luyện tập. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy:. TIẾT 19: LUYỆN TẬP. Dạy lớp 7B Dạy lớp 7D.
<span class='text_page_counter'>(36)</span> 1. Mục tiêu: a) Về kiến thức: - Học sinh được làm các bài tập về so sánh các số thực, sắp xếp số thực theo thứ tự, tìm mối quan hệ giữa hai tập hợp, tính giá trị của biểu thức. - Thông qua các bài tập học sinh được hiểu sâu hơn về các tập số, mối quan hệ giữa chúng b) Về kỹ năng: - Có thể mô tả mối quan hệ giữa các tập hợp bằng hình vẽ( vòng kín) c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ + Phấn mầu. b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định tổ chức: 7B...........7D............... *Câu hỏi: Học sinh 1: Phát biểu khái niệm về tập số thực Làm bài tập 88 (Sgk - 45) Học sinh 2: Làm bài tập 89 (Sgk- 45) *Đáp án: Hs1: Số hữu tỉ và số vô tỷ được gọi chung là số thực. (3đ) *Bài 88 a. Nếu a là số thực thì a là số hữu tỉ hoặc vô tỉ (3đ) b. Nếu b là số vô tỉ thì b được viết dưới dạng số thập phân vô hạn không tuần hoàn (4đ) Hs2: *Bài 89 a. Nếu a là số nguyên thì a cũng là số thực ( Đúng) (3đ) b. Chỉ có số 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm ( Sai) (4đ) ( Sai vì số vô tỉ cũng khônglà số hữi tỉ dương cũng không là số hữi tỉ âm) c. Nếu a là số tự nhiên thì a không là số vô tỉ ( Đúng) (3đ) 3. Dạy nội dung bài mới: * Đặt vấn đề vào bài mới:(1') Trong tiết học trước chúng ta đã được học về số thực . Trong tiết học hôm nay chúng ta sẽ củng cố kiến thức lí thuyết đó bằng một số bài tập. Hoạt động của GV và HS Học sinh ghi GV Yêu cầu học sinh đọc và nghiên cứu bài *Bài 91 (Sgk/45) (9') 91 (Sgk/45) a. Kết quả là số 0 GV Treo bảng phụ nội dung bài 91 (Sgk/45) b. Kết quả là số 0.
<span class='text_page_counter'>(37)</span> ? Nêu quy tắc so sánh 2 số âm TB Trong 2 số âm số nào có giá trị tuyệt đối lớn hơn thì số đónhỏ hơn. ? Vậy ô vuông phải điền là chữ số mấy TB Trong ô vuông phải điền là chữ số 0 - 3,02 < -3,01 ? Tương tự gọi 1 em lên bảng điền chữ số thích hợp vào ô vuông câu b, c, d. K b. -7,508 > - 7,513 c. - 0,49854 < - 0,49826 d. - 1,90765 < -1,892 GV Chốt lại: Để so sánh hai số thực ta so sánh như so sánh hai số hữu tỉ (Số tự nhiên, số nguyên, phân số, số thập phân…) HS Nghiên cứu bài 92 (Sgk/45) HS Hoạt động cá nhân trong vòng 3 phút HS Lên bảng làm cả lớp làm vào vở.. c. Kết quả là số 9 d. Kết quả là số 9. GV Lưu ý: Để so sánh được nhanh trước hết ta tìm những số thực âm và số thực dương sau đó so sánh như so sánh các số đã học. Ta có thể dựa vào trục số để so sánh. - ở câu b trước hết ta phải tính giá trị tuyệt đối của các số sau đó mới so sánh kết quả.. - 3,2 < -1,5 < - 2 < 0 < 1 < 7,4. b. Sắp sếp các số thực theo thứ tự từ nhỏ đến lớn của các giá trị tuyệt đối của chúng.. *Bài 92 (Sgk/45) (856pp') Giải: a. Sắp sếp các số thực theo thứ tự từ nhỏ đến lớn. 1. |0| <. |−12|. < |1| < |−1,5|. < |−3,2| < |7,4| ? Làm bài 94 (Sgk/45) *Bài 94 (Sgk/45) (5') HS Hoạt động cá nhân trong vòng 3 phút. Ta có: I= Φ GV Yêu cầu học sinh giải thích bằng một số Q R I=I câu hỏi phụ: ? Tập số Q là tập hợp có đặc điểm gì? ? Tập hợp số I là tập hợp có đặc điểm gì? ? Tập số R có đặc điểm gì? GV Giáo viên củng cố MQH của ba tập số bằng hình vẽ sau: I Q R -.
<span class='text_page_counter'>(38)</span> ? GV ? HS. HS. ? ? ? HS. Làm bài 93 (Sgk/45) *Bài 93 (Sgk/45) (8') Y/c h/s hoạt động cá nhân làm bài 93/a. Giải: Để tìm được x ta làm như thế nào ? a) 3,2.x + (-1,2). x + 2,7 = - 4,9 Để tìm được x ta cần sử dụng tính chất (3,2 - 1,2).x + 2,7 = - 4,9 phân phối của phép nhân đối với phép 2. x + 2,7 = - 4,9 cộng 2.x = - 4,9 - 2,7 Lên bảng trình bày - Cả lớp làm vào vở. 2.x = - 7,6 x = - 3,8 b) (- 5,6).x + 2,9.x - 3,86 = -9,8 (-5,6 + 2,9 ).x - 3,86 = -9,8 - 2,7.x = -9,8 + 3,86 - 2,7.x = - 5,94 x = -5,94 : (-2,7) x = 2,2 Yêu cầu HS nghiên cứu và làm bài *Bài 95 (Sgk/45) (5') 95a/45 Nêu thứ tự thực hiện phép toán trên R Tính giá trị của các biểu thức: 8 16 5 Để cộng các phân số không cùng mẫu ta 5,13 : 5 1 1, 25 1 63 28 9 làm ntn? A= 5 17 5 16 Lên bảng trình bày 5,13 : 5 1 28 9 4 63 A=. c) Củng cố (3') ? Giao của 2 tập hợp là gì? TB Giao của 2 tập hợp là một tập hợp gồm các phần tử chung của 2 tập hợp đó ? Vậy Q I là tập hợp như thế nào? K Q I= Φ ? R I=? K R I=I ? Từ trước đến nay em đã học những tập hợp số nào? K Từ trước đến nay em đã học các tập số: N; Z; Q; I; R. ? Hãy nêu mối quan hệ giữa các tập hợp đó? K Mối quan hệ giữa các tập hợp số đó là: N Z Q R; I R; I Q= Φ d) Hướng dẫn học sinh tự học ở nhà (2'). 13 16 5 5,13 : 5 2 1 36 63 28 A= 5 13 16 5-2+1 28 36 63 A= - 5,13 : . A=. 5,13 : (4 . 57 14 A= 5,13.14 57 A= 5,13 :. A = - 1,26. 1 ) 14.
<span class='text_page_counter'>(39)</span> - Học lí thuyết: Về tập hợp số thực - Ôn lại các bài tập đã chữa - Làm bài 95/ b (Sgk/45); 97, 101 (Sgk/49) - HSKG: 124,125,129(SBT- ) - Hướng dẫn bài 101/d (Sgk/49) 1 x 3 1 3 x 3 1 3 x 1 3 x 4 1 3 3 d. Chuyển vế đổi dấu. - Xem trước bảng tổng kết trang 47, 48 (Sgk) - Chuẩn bị bài sau: Làm đề cương ôn tập chương I những câu hỏi từ 1 đến 5 để giờ sau ôn tập chương I * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp: 7B Dạy lớp: 7D.
<span class='text_page_counter'>(40)</span> TIẾT 20: ÔN TẬP CHƯƠNG I 1. Mục tiêu: a) Về kiến thức: - Học sinh được hệ thống hoá kiến thức của chương I: Các phép tính về số hữu tỉ, các tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, khái niệm số vô tỉ, số thực, căn bậc hai - Thông qua giải các bài tập, củng cố khắc sâu các kiến thức trọng tâm của chương. b) Về kỹ năng: - Rèn kĩ năng thực hiện các phép tính về số hữu tỉ, kĩ năng vận dụng tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, tạo điều kiện cho học sinh làm tốt bài kiểm tra cuối chương. c) Về thái độ: - Thấy được sự cần thiết phải ôn tập sau một chương của môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV:Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Phiếu học tập b) Chuẩn bị của HS: Học bài cũ và làm 5 câu hỏi ôn tập chương I (Từ 1 đến 5) + Máy tính bỏ túi + Làm bài tập đầy đủ. 3. Tiến trình bài dạy: * ổn định tổ chức: 7B..............7D.............. a) Kiểm tra bài cũ: ( Kết hợp với ôn tập ) * Đặt vấn đề: Trong chương I đại số 7. Chúng ta được nghiên cứu về số hữu tỉ. Số thực. Trong tiết học này chúng ta sẽ ôn tập lại các kiến thức trọng tâm của chương. b) Dạy nội dung bài mới: Hoạt động của thầy trò *Ôn tập lí thuyết (20') GV Yêu cầu HS Hoàn thiện các bài tập sau: Phiếu học tập số1: Hãy viết dạng tổng quát các quy tắc sau: 1. Cộng trừ hai số hữu tỉ. 2. Nhân chia hai số hữu tỉ 3. Giá trị tuỵệt đối của một số hữu tỉ. Học sinh ghi 1. Lí thuyết *Bài tập 1: Với a, b, c, d, m. Z, m>0. Ta có:. b a+b m m a b a− b - Phép trừ: m m m a c a.c - Phép nhân: b d b. d a c a d a. d - Phép chia: b : d b c b . c. - Phép cộng:. a m. - Luỹ thừa: với x, y. Q, m, n. N.
<span class='text_page_counter'>(41)</span> 4. Phép toán luỹ thừa: - Tích và thương của hai luỹ thừa cùng cơ số - Luỹ thừa của luỹ thừa - Luỹ thừa của một tích - Luỹ thừa của một thương HS Học sinh thảo luận nhóm trong 3 phút HS Nhận xét đánh giá trong 2 phút. - Giá trị tuyệt đối của một số hữu tỉ:. GV Phiếu học tập số2: Hãy viết dạng tổng quát các quy tắc sau: 1. Tính chất của tỉ lệ thức 2. Tính chất của dãy tỉ số bằng nhau 3. Khi nào một phân số tối giản được viết dưới dạng số thập phân hữu hạn, khi nào thì viết được dưới dạng số thập phân vô hạn tuần hoàn? 4. Quy ước làm tròn số 5. Biểu diễn mối quan hệ giữa các tập hợp số N, Z, Q, R HS Học sinh thảo luận nhóm trong 4 phút GV Nhận xét đánh giá trong 2 phút. *Bài tập 2: - Tính chất của tỉ lệ thức:. x neu x 0 x x neu x 0. + xm. xn= xm+n + xm: xn= xm-n (m n x + (xm)n= xm.n + (x.y)n= xn.yn. 0). n. x xn n y 0 + y y . a. c. + Nếu b d thì a.d = b.c + Nếu a.d = b.c và a, b, c, d khác 0 thì ta có các tỉ lệ thức: a c ; b d. a b ; c d b a. d c ; b a. d c. - Tính chất của dãy tỉ số bằng nhau: Từ tỉ lệ thức a c b d. a c a+ c b d b+d a−c b− d. ⇒. . Từ dãy tỉ số bằng nhau a c e b d f. ⇒. a c e b d f. a+ c+ e a − c+ e b+d + f b− d + f. - Ta có N Z Q R * Ôn tập bài tập (20') 2. Luyện tập: GV Yêu cầu học sinh làm bài 97 *Bài 97 (Sgk/49): Tính nhanh (Sgk/49) ý a, b. Giải: HS Hoạt động cá nhân trong vòng a. (- 6,37.0,4).2,5 = - 6,37(0,4.2,5) 2' = - 6,37.1 = - 6,37 HS Hai en lên bảng trình bày b. (- 0,125) (- 5,3).8 = (- 0,125.8) . (-5,3).
<span class='text_page_counter'>(42)</span> ?. Nhận xét bài của bạn. = (-1). (- 5,3) = 5,3. GV Chữa hoàn chỉnh GV Chốt: Để tính nhanh chúng ta cần sử dụng hợp lí các tính chất kết hợp, giao hoán a.b= b.a a.(b.c) = (a.b).c ? Làm bài 101 (Sgk/49) *Bài 101 (Sgk/49) ? Để làm bài tập này ta áp dụng Giải: quy tắc nào? HS Áp dụng quy tắc xác định giá a. x 2,5 x 2,5 trị tuyệt đối của một số hữu tỉ. b. x 1, 2 Không tồn tại giá trị nào của x x neu x 0 x x neu x 0. ?. Tìm x biết:. HS Gọi 2 em lên bảng làm HS Nhận xét bài của bạn GV Chữa bài hoàn chỉnh. c. x 0,573 2 x. 2 0,573. x. 1, 427. x. 1, 427. d. x . 1 4 1 3. 1 3 3 1 1 2 ) x 3 x 3 x 2 3 3 3 1 1 1 ) x 3 x 3 x 3 3 3 3 x. GV Cho học sinh hoạt động cá *Bài 98 (Sgk/49) nhân trong 3 phút làm bài 98 Giải: (Sgk/49) ý a, b 3 21 HS Thảo luận nhóm trong 2 phút y 10 a. 5 HS Hai em lên trình bày 1 21 −3 3 GV Nhận xét đánh giá y = 10 : 5 - 2 b. y : y. 3 8. =. = . 1. 31 33. 64 3 −8 33 8 11.
<span class='text_page_counter'>(43)</span> c) Củng cố: (2') Trong chương I các em cần nắm vững các kiến thức lí thuyết như ở phần ôn tập. Cần vận dụng các kiến thức lí thuyết đó một cách hợp lí trong khi giải bài tập d) Hướng dẫn học sinh tự học ở nhà ( 3') - Học lí thuyết: Như phần ôn tập - Làm bài tập: 100,102, 103, 105 (Sgk/49, 50) - HSKG: 136,137,138 (SBT- 22) - Hướng dẫn bài 100 (Sgk/49): Muốn tìm lãi xuất hàng tháng ta phải tìm số tiền lãi 1 tháng sau đó tính lãi lãi xuất hàng tháng. - Làm tiếp 5 câu hỏi từ 6 đến 10 ôn tập chương I * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ....................................................................................................................................................................................................................................
<span class='text_page_counter'>(44)</span> Ngày soạn:. Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D. TIẾT 21: ÔN TẬP CHƯƠNG I (TIẾP) 1. Mục tiêu: a) Về kiến thức: - Học sinh biết vận dụng các kiến thức lí thuyết đã học vào tìm số chưa biết trong tỉ lệ thức, giải các bài tập về căn bậc hai, tính chất của tỉ lệ thức, tính chất của dãy tỉ số bằng nhau b) Về kĩ năng: - Có kĩ năng vận dụng đúng các kiến thức lí thuyết vào giải bài tập. - Biết vận dụng các kiến thức vào giải các bài toán thực tếB c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan + Làm câu hỏi ôn tập từ 6 đến 10 + Máy tính bỏ túi. 3. Tiến trình bài dạy: * Ổn định: 7B.................7D................... a) Kiểm tra bài cũ: ( Kết hợp trong lúc ôn tập ) * Đặt vấn đề vào bài mới: (1') Trong tiết học trước chúng ta đã được ôn tập chủ yếu về kiến thức lí thuyết trọng tâm của chương. Trong tiết học hôm nay chúng ta sẽ vận dụng một số kiến thức đó vào giải một số bài tập trọng tâm. b) Dạy nội dung bài mới:. H ? Y. ? TB. Hoạt động của thầy trò Học sinh ghi *Vận dụng tính chất của tỉ lệ thức giải bài toán chia theo tỉ lệ (13') Làm bài 103 (Sgk/50) *Bài 103 (Sgk/103) Bài cho biết gì ? Yêu cầu tìm gì? Chia lãi theo tỉ lệ 3 : 5 Tổng số lãi: 12 800 000 đồng Hỏi mỗi tổ được chia bao nhiêu?. Giải: Gọi số lãi hai tổ được chia lần lượt là x và y đồng. Theo đầu bài ta có: x y 3 5 và x + y = 12 800 000 (đ). Hai số x, y tỉ lệ với các số 3; 5 điều đó Áp dụng tính chất của dãy tỉ số bằng có nghĩa gì? nhau có: x y 3 5. x y x y 12800000 1600000 3 5 35 8 (đ).
<span class='text_page_counter'>(45)</span> HS. x Học sinh hoạt động cá nhân trong 5 1600 000 x 4800000 phút hoàn thịên bài tập Vậy 3 (đ) y 1600 000 y 8000 000 5 (đ). GV Chốt lại: Để giải được bài toán có lời Vậy số lãi của 2 tổ được chia lần lượt văn dạng trên chúng ta cần sử dụng các là 4 800 000 đồng và 8 000 000 khái niệm đã học: tính chất của tỉ lệ đồng. thức, dãy tỉ số bằng nhau Đáp số: 4 800 000 đồng 8 000 000 đồng *Rèn kĩ năng làm phép tính có chứa căn bậc hai ( 9 ') ? Nêu định nghĩa căn bậc hai của một số *Bài 105 (Sgk/50) không âm a? TB Căn bậc hai của một số a không âm là a. √ 0 , 01 - √ 0 ,25 = 0,1 - 0,5 = số x sao cho x2 = a 0,4 1 ? Tính giá trị của các biểu thức: 1 b. 0,5. √ 100 = 0,5.10 - 2 4 a. √ 0 , 01 - √ 0 ,25 = 5 - 0,5 1 b. 0,5. √ 100 = 4,5 4 K Hai học sinh lên bảng làm *Rèn kĩ năng làm bài tập về tỉ lệ thức, dãy tỉ số bằng nhau (20') ? Thế nào là tỉ số của hai số hữu tỉ a và b (b 0) K Tỉ số của hai số hữu tỉ a và b (b 0) là thương của phép chia a cho b. Tb? Lấy ví dụ về tỉ số của hai số? Tb? Tỉ lệ thức là gì? HS Hai tỉ số bằng nhau lập thành một tỉ lệ thức. ? Phát biểu tính chất cơ bản của tỉ lệ thức? a c K ad bc. √. √. b. d. GV Trong tỉ lệ thức tích các ngoại tỉ bằng tích các trung tỉ ? Tìm x trong tỉ lệ thức sau: *Bài 133 (SBT/22) a. x : (- 2,14) = (- 3,12) : 1,2 Tìm x trong tỉ lệ thức: TB Lên bảng trình bày Giải a. x : (- 2,14) = (- 3,12) : 1,2 x. 2,14 . 3,12 1, 2. x 5,564. HS. Đọc và nghiên cứu bài 81 (Sgk/14). *Bài 81 (SBT/14).
<span class='text_page_counter'>(46)</span> K?. Tìm các số a, b, c biết rằng: a b b c 2 3 5 4 và a - b + c = - 49. Giải Từ các dãy tỉ số: a b 2 3 b c 5 4. a b a b c 10 15 b c 10 15 12 15 12 . Y?. Bài yêu cầu tìm gì?. ?. Từ hai tỉ lệ thức làm thể nào để có dãy Áp dụng tính chất mở rộng của dãy tỉ tỉ số bằng nhau. số bằng nhau ta có: Ta phải biến đổi sao cho trong hai tỉ lệ a b c a b c 49 7 10 15 12 10 15 12 7 thức có các tỉ số bằng nhau. K ?. a b Đứng tại chỗ biến đổi sao cho 3 và 5. có cùng tỉ số, từ đó có dãy tỉ số bằng nhau như thế nào? ? TB GV GV. a 7 a ( 7).10 70 10 b 7 b ( 7).15 105 15 c 7 c ( 7).12 84 12. Đến đây ta áp dụng tính chất nào để giải bài tập này. áp dụng tính chất mở rộng của dãy tỉ Vậy a = - 70, b = - 105, c = - 84 số bằng nhau Cho học sinh hoạt động nhóm để tìm giá trị a, b, c. c) Củng cố : Để đưa được về tính chất của dãy 3 tỉ số bằng nhau ta cần: a b - Quy đồng các tỉ số 3 ; 5 a c - Đưa các tỉ số 2 ; 4 bằng các tỉ số. tương ứng vừa quy đồng. d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết: Như phần ôn tập chương, ôn lại các bài tập trọng tâm của chương - Chuẩn bị bài sau: Kiểm tra 1 tiết * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ..........................................................................................................................................................................................................................................
<span class='text_page_counter'>(47)</span> ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày kiểm tra: Ngày kiểm tra:. Lớp 7B Lớp 7D. TIẾT 22: KIỂM TRA CHƯƠNG I 1. Mục tiêu bài kiểm tra: a) Về kiến thức: Kiểm tra được học sinh một số kiến thức trọng tâm của chương: Nhân hai luỹ thừa, giá trị tuyệt đối, căn bậc hai, tính chất của tỉ lệ thức,.. b) Về kỹ năng: - Rèn kĩ năng sử dụng lí thuyết vào làm bài tập đúng, chính xác. - Rèn tính cẩn thận chính xác khi giải toán c) Về thái độ: Thấy được sự cần thiết, tầm quan trọng của bài kiểm tra 2. Nội dung đề : a) Ma trận đề : Mức Vận dụng độ Nhận biết Thông hiểu Tổng Vận dụng Vận dụng thấp cao Chủ đề 1. Tập hợp các số hữu tỉ. Nêu được công thức tính giá trị tuyệt đối của 1 số hữu tỉ.. Áp dụng tính được giá trị tuyệt đối của một số. Số câu Số điểm Tỉ lệ % 2. Tỉ lệ thức. 1 câu (câu 1a) 1 điểm. 1 câu(câu 1b) 1 điểm. Số câu Số điểm Tỉ lệ % 3. Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn. Làm tròn số. Số câu Số điểm Tỉ lệ % 4. Tập hợp số thực R.. Giải được bài toán tìm x trong các biểu thức chứa dấu GTTĐ. 1 câu( Câu 6) 1 điểm. Áp dụng được tính chất của dãy tỉ số bằng nhau giải được bài toán tỉ lệ 1 câu ( câu 5) 2điểm. 3câu 3 điểm 30%. 1 câu 1 điểm 20% Vận dụng thành thạo các quy tắc làm tròn số.. 1 câu ( câu 2) 1 điểm Biết khái niệm căn bậc hai của một số không âm. Tính được các. 1 câu 1điểm 10% Thực hiện được các phép toán cộng trừ, nhân, chia,.
<span class='text_page_counter'>(48)</span> Số câu Số điểm Tỉ lệ %. căn bậc hai của 1 số không âm 1 câu (Câu 4) 1 điểm. luỹ thừa đối với số thực. 1câu (Câu 3) 3 điểm. 2 câu 4 điểm 40%. Tổng: Số câu: 3 2 1 1 7câu 10 = 100% Số điểm: 4 = 40% 2=20% 3=30% 1=10% b. Nội dung đề: Câu 1(2 điểm): a) Giá trị tuyệt đối của số hữu tỉ x được xác định như thế nào? 7;. . 1 ; 3. 0;. 1. 2 3. b) Áp dụng: Tính Câu 2 (1điểm) Làm tròn các số sau đến chữ số thập phân thứ nhất. 5,467; 23,4033; 30,879; 0,2432. Câu 3( 3 điểm): Thực hiện phép tính ( bằng cách hợp lí nếu có thể) 2. 2 1 3 . a) 5 5 4 . 1 1 3. b) 3 3. Câu 4( 1 điểm): Thế nào là căn bậc hai của một số a không âm ? Áp dụng: Tính 36 Câu 5( 2 điểm): Số viên bi của ba bạn Hùng, Mạnh, Dũng tỉ lệ với các số 2; 5; 4. Tính số bi của mỗi bạn, biết rằng ba bạn có tất cả 55 viên bi. Câu 6( 1 điểm): Tìm x, biết: c. Đáp án, biểu điểm: Câu 1: a) ( 1 điểm) x . x 1, 7 2,3. x nếu x 0 x nếu x 0 7 7;. . 1 1 ; 3 3. 0 0;. 1. 2 2 1 3 3. b) ( 1 điểm) Câu 2: (Mỗi câu đúng được 0,25 điểm) 5,467 5,5; 23,4033 23,4; 30,879 30,9; Câu 3: a) ( 1,5 điểm). 0,2432 0,2.. 2 1 3 2 3 8 ( 3) 5 1 . 5 5 4 5 20 20 20 4 2. b) ( 1,5 điểm) Câu 4:( 1 điểm). 1 1 1 1 2 1 1 3. 3. 9 3 3 3 3 3 3. Căn bậc hai của một số a không âm là một số x sao cho x2 = a 36 =. 62 = 6. Câu 5: ( 2 điểm) Gọi số bi của ba bạn Hùng, Mạnh, Dũng lần lượt là x, y, z.
<span class='text_page_counter'>(49)</span> x y z Theo bài ra ta có: 2 5 4 ; x + y + z = 55. Áp dụng tính chất cơ bản của dãy tỉ số bằng nhau ta có x y z x y z 55 5 2 5 4 2 5 4 11 x 5 x 10 2 y 5 y 25 5 z 5 z 20 4. Vậy số bi của ba bạn Hùng, Mạnh, Dũng lần lượt là 10( viên), 25( viên), 20( viên ) Câu 6: ( 1 điểm) x 1, 7 2,3 x 1, 7 2,3 x 2, 3 1, 7 4. hoặc x 1, 7 2,3 x 2,3 1, 7 0,6 Vậy x = 4 và x = -0,6 Duyệt đề ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... 4. Đánh giá nhận xét sau khi chấm bài kiểm tra. ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ........................................................................................................................................................................................... ............................................................................................................................................................................................
<span class='text_page_counter'>(50)</span> Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. CHƯƠNG 2: HÀM SỐ VÀ ĐỒ THỊ TIẾT 23: ĐẠI LƯỢNG TỈ LỆ THUẬN 1.Mục tiêu: a) Về kiến thức - Biết được công thức biểu diễn mới liên hệ giữa 2 đại lượng tỷ lệ thuận. - Nhận biết được hai đai lượng có tỷ lệ thuận hay không. - Hiểu được các tính chất của hai đại lượng tỷ lệ thuận. b) Về kỹ năng - Biết cách tìm hệ số tỷ lệ khi biết 1 cặp giá trị tương ứng của 2 đại lượng tỷ lệ thuận, tìm giá trị của 1 đại lượng khi biết hệ số tỷ lệ và giá trị tương ứng của đại lượng kia. c) Về thái độ -Học tập tích cực hợp tác 2.Chuẩn bị của GV và HS: a) Chuẩn bị của GV: SGK, giáo án, bảng phụ ghi bài 2, 3(Sgk-54) b) Chuẩn bị của HS:- Đọc trước bài: Đại lượng tỷ lệ thuận. - Ôn lại tỷ lệ thuận ở lớp 5. 3. Tiến trình bài dạy * Ổn định: 7B:…………7D.................7Q................. a) Kiểm tra bài cũ (không) Giới thiệu mở đầu (5 phút) GV giới thiệu sơ lược về chương hàm số và đồ thị: gồm 17 tiết: 7 tiết lý thuyết, 7 tiết bài tập còn lại là ôn tập và kiểm tra. ? Thế nào là 2 đại lượng tỷ lệ thuận? VD. HS: Hai đại lượng liên hệ với nhau sao cho khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia cũng tăng (hoặc giảm) bấy nhiêu lần. Ví dụ: Chu vi và cạnh của hình vuông. GV: Như vậy ta đã biết được thế nào là đại lượng tỷ lệ thuận. Vậy có cách nào để mô tả ngắn gọn hai đại lượng tỷ lệ thuận không, ta nghiên cứu bài hôm nay. b)Dạy nội dung bài mới Hoạt động của GV và HS Gv Ta đã biết một số ví dụ về đại lượng tỷ lệ thuận: chu vi và cạnh của hình vuông, quãng đường đi được và thể tích một vật chuyển động đều, khối lượng và thể. Học sinh ghi 1. Định nghĩa.(10').
<span class='text_page_counter'>(51)</span> tích của một thanh kim loại đồng chất để rõ hơn chúng ta làm ? 1 ? 1 ( Sgk/51) Hs Đọc và nghiên cứu nội dung ? 1 Giải K? Quãng đường đi được S (km) theo thời gian t (h) của a, S = 15 t một vật chuyển động đều với vận tốc 15 (Km/h). Được tính theo công thức nào?. Hs ?. Hs Tb? Hs K? Hs. Gv Hs Gv Gv Hs K? Hs. Quãng đường đi được S (km) theo thời gian t (h) của một vật chuyển động đều với vận tốc 15 (Km/h). Được tính theo công thức nào? S = 15 t Khối lượng m(kg) theo thể tích V(m ❑3 ) của thanh kim loại đồng chất có khối lượng riêng D (kg/m 3 ❑ ) (chú ý: D là hằng số khác 0 ) tính theo công thức nào? m = D.V Nếu DSắt= 7800 kg/m ❑3 ta có công thức như thế nào? m = 7800.V Em hãy rút ra nhận xét về sự giống nhau giữa các công thức trên. Các công thức trên đều có điểm giống nhau là đại lượng này đều bằng đại lượng kia nhân với 1 bằng số khác 0. Giới thiệu định nghĩa trong khung (Sgk/52) Đọc định nghĩa trong (Sgk/52) Lưu ý: Khái niệm hai đại lượng tỷ lệ thuận học ở tiểu học ( k > 0) là một trường hợp riêng của k 0. Cho HS làm ? 2 Đọc nội dung ? 2 −3. Cho biết y tỷ lệ thuận với x theo hệ số tỷ lệ k 5 . Hỏi x tỷ lệ thuận với y theo hệ số tỷ lệ nào?. −3 −5 y 5 x (vì y tỷ lệ thuận với x ) ⇒ x 3 y.. b, m = D.V. *Nhận Xét (Sgk/52). * Định nghĩa ( Sgk/52) y = kx ( k là hằng số khác 0 ) ( k là hệ số tỷ lệ ) ? 2 ( SGK – 52) Giải −5 y 3 x (vì tỷ lệ thuận với x) ⇒ x . −5 y 3. Vậy x tỷ lệ thuận với y theo hệ số tỷ lệ a ⇒ Vậy x tỷ lệ thuận với y theo −5 1 hệ số tỷ lệ k = 3 . k. K?. y tỷ lệ thuận với x theo hệ số tỷ lệ k ( k lệ thuận với y theo hệ số nào?. 0) thì x tỷ.
<span class='text_page_counter'>(52)</span> Hs. x tỷ lệ thuận với y theo hệ số. 1 . Đọc chú ý *Chú ý(Sgk/52) k. (Sgk/52) ? 3 (Sgk/52) Gv Cho HS làm ? 3 ( treo bảng phụ) Giải Mỗi con khủng long có các cột b, c, d nặng bao nhiêu tấn nếu biết rằng con khủng long ở cột a nặng 10 tấn và chiều cao các cột được cho trong bảng sau. Cột a b c d Chiều cao(mm) 10 8 50 30 Khối lượng(tấn) 10 8 50 30 Hs Lên bảng điền vào ô trống. Giải thích cách tìm. y 10 y = k.x ⇒ k x 10 1 Nếu b = 1.8 = 8 (tấn) c = 1.50 = 50 (tấn) ; d = 1.30 = 30 (tấn). Gv. K? Hs. 2. Tính chất (12) ? 4 (Sgk/53) Giải a, vì y và x là 2 đại lượng tỷ lệ thuận ⇒ y ❑1 = k x. Cho HS làm ? 4 Cho biết hai đại lượng y và x tỷ lệ thuận với nhau. x x ❑1 x x ❑3 x ❑4 ❑2 = = 5 =3 =6 ❑1 4 y y ❑1 y ❑2 y ❑3 y ❑4 =? =? =? =? Hãy xác định hệ số tỷ lệ của y đối với x? hay 6 = k.3 ⇒ k= 2. Vì y và x là đại lượng tỷ lệ thuận ⇒ y ❑1 = k x Vậy hệ số tỷ lệ là 2. ❑1. Hay 6 = k.3 ⇒ k = 2. Vậy hệ số tỷ lệ là 2. Tb? Thay mỗi dấu "?" trong bảng trên bằng một số thích b, y ❑2 = k x ❑2 = 2.4 = hợp. 8 y ❑3 = k.x ❑3 = 2.5 Hs y ❑2 = k x ❑2 = 2.4 = 8; y ❑3 = k.x ❑3 = 2.5 =10 = 10 y ❑4 = k. x ❑4 = 2.6 y ❑4 = k. x ❑4 = 2.6 = 12 = 12 y1 y y K? Em có nhận xét gì về tỷ số giữa hai giá trị tương ứng c, 2 3 y1 ; x1. y2 y3 y4 ; ; x2 x3 x4. x1 y4 2 x4. của x và y.. x2. (chính là hệ số tỷ lệ) Hs. y1 x1. 6 2 ; 3. y2 x2. 8 2; 4. y3 x3. 10 5. 2;. x3.
<span class='text_page_counter'>(53)</span> y 4 12 2. 6 x4 y1 y2 y3 Vậy x x x 1 2 3. Gv. Gv Hs K? Hs ?. . Giả sử y và x là tỷ lệ thuận với nhau y = k.x. Khi đó với mỗi giá trị x ❑1 , x ❑2 , x ❑3 ,…. Khác 0 của x ta có giá trị tương ứng y ❑1 = k. x ❑1 , y ❑2 = k x ❑2 , y ❑3 = k.x ❑3 ,… của y và do đó. y1 x1. y 2 y 3 k x2 x3 y1 y2 Có x x hoán vị trung tỷ của tỷ lệ thức 1 2 x x 1 1 hay y 1 tương tự x 1 y1 x2 x2 y2 x3 y3. y1 y2. Giới thiệu hai tính chất của đại lượng tỷ lệ thuận * Tính chất (Sgk/53) Đọc nội dung tính chất (Sgk/ 53) Em hãy cho biết tỷ số 2 giá trị tương ứng của chúng luôn không đổi chính là số nào? chính là hệ số tỷ lệ. Hãy lấy VD cụ thể ở ? 4 để minh hoạ cho tính chất 2 của đại lượng tỷ lệ thuận. x1 y 3 ; 1 6 3 4 8 4 x2 y2 x1 =¿ x4. Hs K?. y4 2 x4. y1 ( 3 6 6 12 y4. ⇒. x1 y 1 hay x2 y2. 3. Luyện tập ( 16') * Bài tập 1: (Sgk/53) c) Củng cố luyện tập Giải Đọc nội dung bài tập 1 (Sgk/53) a, Vì hai đại lượng x,y tỷ lệ thuận nên y = k.x Hai đại lượng x, y tỷ lệ thuận với nhau và khi x = 6 thay x = 6; vào công thức ta 4 thì y = 4. Tìm hệ số tỷ lệ k của y đối với x. có: 4 = k.6 ⇒ k = = 1 ) 2. 6. 2 3. Tb? Hãy biểu diễn y theo x Tb? Tính giá trị của y khi x = 9, x = 15 Hs Lên bảng làm. Cả lớp làm vào vở. 2. b, y = 3 x 2. c, x = 9 ⇒ y = 3 .9 = 6 2 x = 15 ⇒ y= 3 .15 =10. Gv. Treo bảng phụ nội dung bài 2 (Sgk/54) cho biết x, y * Bài tập 2 (Sgk/54) là hai đại lượng tỷ lệ thuận. Điền số thích hợp vào ô Giải.
<span class='text_page_counter'>(54)</span> trống trong bảng sau: x -3 -1 y. 1. 2 -4. 5. Ta có x ❑4 = 2, y ❑4 = 4 vì x, y là hai đại lượng tỷ lệ nghịch nên y ❑4 = k.x ❑4. K? Hs Gv ? Hs ? Hs Gv. ⇒ k = y ❑4 : x ❑4 = (Để điền được các giá trị của y ta phải biết điều gì? 4) : 2 = -2 Ta tìm được hệ số k. x -3 -1 1 2 5 Cho HS hoạt động nhóm. y 6 2 -2 -4 10 Nhóm 1: tính k và điền y Nhóm 2: nhận xét Nhóm 3: lên điền vào các ô còn lại Nhóm 4: nhận xét Treo bảng phụ nội dung sau: Điền nội dung thích hợp vào chỗ trống. a, Nếu đại lượng y làm hệ với đại lượng x theo công thức y = k.x (k: hằng số khác 0) thì ta nói y tỷ lệ thuận với x theo hệ số tỷ lệ k.. 1 b, m tỷ lệ thuận với n theo hệ số tỷ lệ h = − 2 thì n tỷ lệ thuận với m theo hệ số tỷ lệ -2 c, Nếu 2 đại lượng tỷ lệ thuận với nhau thì + Tỷ số 2 giá trị tương ứng của chúng luôn không đổi. + Tỷ số 2 giá trị bất kỳ của đại lượng này bằng tỷ số 2 giá trị tương ứng của đại lượng kia. d) Hướng dẫn HS tự học ở nhà (2') - Học bài nắm được định nghĩa, tính chất đại lượng tỷ lệ thuận - Bài tập 3, 4 (Sgk – 54), bài 1, 2, 3, 4, 5, 6, 7 (SBT- 42, 43) Hướng dẫn bài 4: vì z tỷ lệ thuận với y theo hệ số k nên z = k.y y tỷ lệ thuận với x theo hệ số h nên y = h.x ⇒ z = k. (h.x) = (k.h)x Vậy z tỷ lệ thuận với x theo hệ số k.h - Đọc: Một số bài toán về đại lượng tỷ lệ thuận. * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ..........................................................................................................................................................................................................................................
<span class='text_page_counter'>(55)</span> ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7D. TIẾT 24: MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ THUẬN 1. Mục tiêu: a) Về kiến thức: Học sinh được làm một số bài toán cơ bản về đại lượng tỉ lệ thuận và chia tỉ lệ b) Về kỹ năng: Có kĩ năng thực hiện đúng, nhanh c) Về thái độ : Học tập nghiêm túc, hợp tác 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B:……………7D..................7Q................ a) Kiểm tra bài cũ: ( 8' ) *Câu hỏi: Học sinh 1: Định nghĩa hai đại lượng tỷ lệ thuận. Chữa bài tập 3 (Sgk- 54).
<span class='text_page_counter'>(56)</span> Học sinh 2: Phát biểu tính chất của hai đại lượng tỷ lệ thuận? Bài tập: Cho bảng sau: Em hãy chọn câu đúng , sai trong các câu sau, chú ý sửa câu sai thành câu đúng.. + S và t là hai đại thuận. t S. -2 90. 2 - 90. 3 -135. 4 -180. lượng tỉ lệ. + S tỉ lệ thuận với t theo hệ số tỉ lệ là: - 45 + t tỉ lệ thuận với S theo hệ số tỉ lệ là. 1 45. t1 S1 t S4 4 +. * Đáp án: Học sinh 1: Nếu đại lượng y liên hệ với đại lượng x theo công thức: y = kx (với k là hằng số khác 0) thì ta nói y tỷ lệ thuận với x theo hệ số tỷ lệ k. (2đ) *Bài tập 3(Sgk- 54) a. (4đ). V. 1 2 3 4 7,8 15,6 23,4 31,2 7,8 7,8 7,8 7,8. m m V m thuận vì V 7,8 m = 7,8 V. 5 39 7,8. b. m và V là hai đại lượng tỉ lệ. m tỉ lệ thuận với V theo hệ số tỉ lệ là 7,8 1 10 V tỉ lệ thuận với m theo hệ số tỉ lệ là 7,8 78 (4đ). Học sinh 2: Tính chất: Nếu hai đại lượng tỉ lệ thuận với nhau thì: + Tỉ số 2 giá trị tương ứng của chúng luôn không đổi. + Tỉ số 2 giá trị bất kì của hai đại lượng này bằng tỉ số 2 giá trị tương ứng của đại lượng kia (2đ) t 2 1 S 90 ; 45 2 *Bài tập: Có S 90 45 t + S và t là hai đại lượng tỉ lệ thuận D (2đ) + S tỉ lệ thuận với t theo hệ số tỉ lệ là: - 45 D (2đ) 1 1 S + t tỉ lệ thuận với S theo hệ số tỉ lệ là 45 sửa là 45 (2đ) t1 S1 D t S 4 4 + (2đ).
<span class='text_page_counter'>(57)</span> * Đặt vấn đề vào bài mới(1'): Trong giờ hôm trước chúng ta đã nắm được định nghĩa, tính chất 2 đại lượng tỉ lệ thuận hôm nay chúng ta xét một số bài toán về đại C , ,C ? lượng tỉ lệ thuận: Tam giác ABC có 1 2 3 Để trả lời câu hỏi đó. chúng ta nghiên cứu bài hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS Hs Đọc nội dung bài toán 1. Tb? Đề bài cho chúng ta biết những gì? Hỏi ta điều gì? Hs Đề bài cho chúng ta biết hai thanh chì có thể 3 3 tích 12cm và 17cm . Thanh chì thứ 2 nặng hơn thanh chì thứ nhất là 56,5g. Tìm: mỗi thanh nặng bao nhiêu gam? K? Khối lượng và thể tích của chì là 2 đại lượng như thế nào? Hs Khối lượng và thể tích của chì là hai đại lượng tỷ lệ thuận. K? Nếu gọi khối lượng của hai thanh chì lần lượt là m1(g) và m2(g) thì ta có tỷ lệ thức nào? Hs m1 m2 12. 17. Tb? m1 và m2 có quan hệ gì? Hs m2 - m1 = 56,5(g) K? Vậy làm thế nào để tìm được m 1 và m 2 Hs áp dụng tính chất của dãy tỷ số bằng nhau có m1 m2 m2 m1 56,5 11,3 12 17 17 12 5 m1 12 11,3 m 1 = 11,3.12 = 135,6 m2 17 11,3 m 2 = 11,3.17 = 192,1. Tb? Trả lời bài toán Hs Hai thanh chì có khối lượng là 135,6g và 192,1g Hs Đọc lại nội dung lời giải (Sgk 54) Gv Giới thiệu cách giải khác trên bảng phụ.. Học sinh ghi 1. Bài toán 1 (Sgk/54)( 19').
<span class='text_page_counter'>(58)</span> Gv K?. Hs Gv Hs Tb? Hs. ?. Hs ?. ? Hs K? Hs Gv Gv. Dựa vào bài toán trên ta có bảng sau. Hãy điền số thích hợp vào ô trống trong bảng. 3 V(cm ) 12 17 5 1 m(g) 135,6 192,1 56,5 11,3 (gợi ý). 56,5g là hiệu 2 khối lượng tương ứng với hiệu hai thể tích là 17 -12 = 5. Do 56,5 ứng với 5 nên số nào ứng với 1? Em hãy điền tiếp các số thích hợp vào ô trống. Sau đó trả lời bài toán. Lên bảng điền HS dưới lớp làm vào nháp và theo dõi bài làm trên bảng của bạn. Cho HS làm ? 1 Đọc nội dung ? 1 Đề bài cho chúng ta biết những gì? Đề bài cho ta biết hai thanh kim loại đồng 3 3 chất có thể tích là 10cm và 15cm , khối lượng của hai thanh chì là 222,5g. Hỏi: Mỗi thanh chì nặng bao nhiêu gam? Khối lượng và thể tích của hai thanh kim loại là hai đại lượng như thế nào? Là hai đại lượng tỷ lệ thuận.. ? 1 (Sgk 55) Giải Giả sử khối lượng của hai thanh kim loại tương ứng là m 1 (g) và m 2 (g) Do khối lượng và thể tích của vật thể là hai đại lượng tỷ lệ m1 m2 thuận ta có: 10 15 và. m 1 + m 2 = 222,5(g) Nếu gọi khối lượng của 2 thanh kim loại áp dụng tính chất của dãy tỷ số lần lượt là m1(g) và m2(g) ta có tỉ lệ thức bằng nhau có: m1 m2 m1 m2 222,5 nào? m1 và m2 có quam hệ gì? 8,9 Để tính được khối lượng của m 1 và m2 ta 10 15 10 15 = 25 Vậy dực vào đâu? Ta áp dụng tính chất của dãy tỷ số bằng m1 8,9 m1 10 = 8,9.10 =89(g) nhau. m2 8,9 m2 HS lên bảng giải tiếp. Cả lớp làm vào vở. 15 = 8,9.15 = Nhận xét bài của bạn. 133,5(g) Chữa hoàn chỉnh bài. Dựa vào lời giải bài toán 2, ta làm cách 2: Trả lời: hai thanh kim loại nặng cách làm bằng bảng GV treo bảng phụ. 89(g) và 133,5(g) Hãy điền số thích hợp vào ô trống trong bảng sau và trả lời bài toán. 3 V(cm ) 10 15 10 +15 1 m(g) 89 133,5 222,5 8,9.
<span class='text_page_counter'>(59)</span> Hs Từ bảng điền vào ô trống Hs Nhận xét bài của bạn Gv Để giải bài toán này em phải nắm được m và V là hai đại lượng tỷ lệ thuận và sử dụng tính chất của dãy tỷ số bằng nhau để giải. Gv Đưa ra chú ý: Bài toán ? 1 còn được phát * Chú ý: (Sgk 55) biểu đơn giản dưới dạng: Chia số 222,5 thành 2 phần tỷ lệ với 10 và 15. 2, Bài toán 2 (Sgk 55) (8') Hs Đọc nội dung bài toán 2 Giải Tb? Bài cho biết những gì? Và yêu cầu ta điều Gọi số đo các góc của ABC là A, B, C theo điều kiện đầu bài gì. A B C Hs Biết các góc A, B,C lần lượt tỷ lệ với 1, 2 và 1 2 3 và ta có: 0 3. Yêu cầu: tính A = ?, B = ?, C A+B+C =180 ( tổng các góc Gv Để tính được số đo của góc A, B ,C . Hãy vận trong một tam giác) dụng tính chất của dãy tỷ số bằng nhau để áp dụng tính chất mở rộng của giải bài toán 2. dãy tỷ số bằng nhau có Gv Yêu cầu HS hoạt động nhóm GV phát phiếu A B C A B C 1800 1 2 3 1 2 3 6 = 30. học tập 0 0 ? Đại diện 1 nhóm lên bảng trình bày bài các Vậy: A = 1.30 = 30 0 0 nhóm khác nhận xét GV thu phiếu học tập. B = 2.10 = 60 Nhận xét cho điểm 0 0 Gv Như vậy chúng ta đã tìm được số đo của góc C = 3.30 = 90 A, B ,C số đo các góc của ABC là đó cũng chính là câu trả lời phần đầu Vậy 0 0 0 30 , 60 , 90 bài của chúng ta. c) Củng cố luyện tập (8' ) ? Định nghĩa hai đại lượng tỉ lệ thuận? ? Phát biểu tính chất của hai đại lượng tỉ lệ thuận? Gv Đưa ra bảng phụ nội dung bài tập 5(Sgk/ 55) Hai đại lượng x, y có tỷ lệ thuận với nhau hay không nếu. a, x 1 2 3 4 5 y 9 18 27 36 45 b, x 1 2 5 6 9 y 12 24 60 72 90. 3. Luyện Tập (8'). *Bài tập 5 (Sgk 55) Giải a, x và y tỷ lệ thuận vì x y1 y2 .... 5 x1 x2 y5 9. b, x và y không tỷ lệ thuận vì 12 24 60 72 90 1 2 5 6 9.
<span class='text_page_counter'>(60)</span> Hs Hai em lên bảng làm - Cả lớp làm bài vào vở Hs Nhận xét bài của bạn d) Hướng dẫn HS tự học ở nhà (2') - Xem lại bài tập đã giải ở lớp + Sgk. - Làm bài tập 6, 7, 8, 11(Sgk-56) - Bài 8, 10, 11, 12 (SBT 44) - HD: bài tập 8: áp dụng tính chất mở rộng của dãy tỷ số bằng nhau có: x y z x yz 24 1 32 28 36 32 28 36 96 4 . Từ đó tính giá trị của x, y, z.. - Giờ sau luyện tập. * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp: 7B Dạy lớp: 7D Dạy lớp: 7Q. TIẾT 25: LUYỆN TẬP 1. Mục tiêu: a) Về kiến thức: - Học sinh làm thành thạo các bài toán cơ bản về đại lượng tỷ lệ thuận và chia tỷ lệ. b) Về kỹ năng: - Có kỹ nămg sử dụng thành thạo các tính chất của dãy tỉ số bằng nhau để giải toán. c) Về thái độ - Thông qua giờ luyện tập học sinh biết được thêm về nhiều bài toán liên quan đến thực tế. 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ.
<span class='text_page_counter'>(61)</span> b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: *Ổn định tổ chức: 7B.........................7D....................7Q................. a) Kiểm tra bài cũ: ( 8' ) *Câu hỏi: + Học sinh1: Làm bài tập 8/56 + Học sinh 2 : + Phát biểu định nghĩa hai đại lượng tỉ lệ thuận + Viết tính chất của hai đại lượng tỉ lệ thuận + Cho ba số a, b,c chia theo tỉ lệ 1; 2; 3 điều đó cho ta biết điều gì: *Đáp án: + Học sinh 1: Bài 8 (Sgk/56) Giải: Gọi số cây trồng của các lớp 7A, 7B, 7C lần lượt là x, y, z. (2đ) x y z Theo đề bài ta có: x + y + z = 24 và 32 28 36. (2đ). áp dụng tính chất mở rộng của dãy tỷ số bằng nhau ta có: x y z x yz 24 1 32 28 36 32 28 36 96 4 x 1 1 y 1 1 x 32. 8 y 28. 7 4 4 Vậy: 32 4 ; 28 4 ;. (2đ) z 1 1 z 36. 9 36 4 4. (3đ) Trả lời: Số cây trồng của các lớp 7A, 7B, 7C theo thứ tự là: 8, 7, 9 cây. (1đ) + Học sinh 2: + Định nghĩa: Nếu đại lượng y liên hệ với đại lượng x theo công thức: y = k.x (với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k. (3đ) + Tính chất: Nếu hai đại lượng tỉ lệ thuận với nhau thì: . Tỉ số hai giá trị tương ứng của chúng luôn không đổi . Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứngcủa đại lượng kia. (3đ) + Cho ba số a, b,c chia theo tỉ lệ 1; 2; 3 điều đó cho ta biết. a b c 1 2 3. (4đ) Giải một số bài tập về đại lượng tỷ lệ thuận có áp dụng tỷ lệ thuận và tính chất của dãy tỷ số bằng nhau. b) Dạy nội dung bài mới: Hoạt động của thầy trò Học sinh ghi Hs Đọc nội dung bài tập 7(Sgk – 56) *Bài 7 (Sgk - 56) (8') Tb? Tóm tắt đề bài. Tóm tắt:.
<span class='text_page_counter'>(62)</span> Hs 2kg dâu cần 3kg đường 2,5kg dâu cần x kg đường K? Khi làm mứt thì m dâu và m đường là hai đại lượng quan hệ với nhau như thế nào? Hs Khối lượng dâu và đường là hai đại lượng tỷ lệ thuận. K? Hãy lập tỷ lệ thức rồi tìm x? Tb? Vậy bạn nào nói đúng? Hs Bạn Hạnh nói đúng Gv Chốt lại: đây là bài toán thực tế vận dụng kiến thức về đại lượng tỉ lệ thuận để giải khi làm các em cần: - Xét xem hai đại lượng nào tỉ lệ thuận với nhau - Đưa về bài toán đại số Hs Đọc và nghiên cứu nội dung bài tập 9 (Sgk – 56) K? Bài toán này có thể phát biểu đơn giản như thế nào? Hs Chia 150 thành 3 phần tỷ lệ với 3 ; 4 và 13.. 2 kg dâu cần 3 kg đường 2,5 kg dâu cần x kg đường Giải Gọi x(kg) đường là số lượng cần làm mứt có từ 2,5 kg dâu. Vì khối lượng dâu và khối lượng đường là 2 đại lượng tỷ lệ thuận 2 3 2,5.3 x 3, 75 2,5 x 2 Ta có:. Vậy 2,5kg dâu cần 3,75kg đường. Do đó bạn Hạnh nói đúng. * Bài 9 (Sgk – 56) (9') Giải Gọi khối lượng (kg) của Niken, Kẽm, Đồng lần lượt là x, y,z. Theo đề bài ta có: x y z 3 4 13 và x+ y + z =150.. K? Em hãy áp dụng tính chất của dãy tỷ Theo tính chất mở rộng của dãy tỷ số bằng nhau và các điều kiện đã biết số bằng nhau có: x y z x y z 150 ở đề bài để giải bài tập này. 7,5 3 4 13 3 4 13 20 Hs Hoạt động cá nhân trong vòng 6 phút Vậy: Hs Một em lên bảng trình bày Hs Nhận xét bài làm của bạn. Gv Nhận xét và chữa bài hoàn chỉnh.. x 7,5 x 7,5.3 22,5 3 y 7,5 y 7,5.4 30 4 z 7,5 z 7,5.13 97,5 13. Trả lời: khối lượng của Niken, Kẽm, Đồng theo thứ tự là 22,5kg, 30 kg và 97,5 kg. Đáp số: 22,5kg ;30kg ; 97,5kg *Bài 10 (Sgk – 56) (9') Hs Đọc và nghiên cứu nội dung bài tập 10 Giải.
<span class='text_page_counter'>(63)</span> (Sgk – 56) Gv Cho học sinh hoạt động nhóm Bài 10 (Sgk – 56). Biết các cạnh của một tam giác tỷ lệ với 2, 3, 4 và chu vi của nó là 45cm. Tính các cạnh của tam giác đó Gv Giáo viên kiểm tra việc hoạt động nhóm của một vài nhóm, vài học sinh. Gọi độ dài 3 cạnh của tam giác lần lượt là x(cm), y(cm), z(cm). Biết cạnh của tam giác tỷ lệ với 2, 3, 4 và chu vi của nó là 45cm có: x y z 2 3 4 và x + y + z = 45. Áp dụng tính chất mở rộng của dãy tỷ số bằng nhau có:. x y z x y z 45 5 2 3 4 2 34 9 Hs Đại diện nhóm lên trình bày lời giải x 5 x 10 Hs Các nhóm khác nhận xét bài của nhóm Vậy 2 bạn. y 5 y 15 Gv Kiểm tra bài làm của 1 đến 2 nhóm 3 z đánh giá và cho điểm. 5 z 20 x y z x y z 45 4 Tb? 5 Trả lời: Ba cạnh của tam giác lần Bạn viết: 2 3 4 2 3 4 9 x = 2.5 =10 (cm) lượt là: 10cm ; 15cm ; 20cm.. y = 3.5 = 15 (cm) z = 4.5 = 20 (cm) Đã chính xác chưa? Hs Chưa được chính xác sửa lại là: x y z x y z 45 5 2 3 4 2 3 4 9. Từ đó tìm được x ; y ; z. c) Củng cố luyện tập (9') Gv Treo bảng phụ ( 2 bảng) Gọi x, y, z theo thứ tự là số vòng quay của kim giờ, kim phút, kim giây trong vòng 1 thời gian. a, Điền số thích hợp vào ô trống x 1 2 3 4 y b, Biểu diễn y theo x c, Điền số thích hợp vào ô trống y 1 6 12 18 z d, Biểu diễn z theo y e, Biểu diễn z theo x Luật chơi: Mỗi đội có 5 người chỉ có một chiếc bút. Mỗi người làm một câu, người làm xong chuyển bút cho tiếp. * Thi làm toán nhanh (9'). a, x 1 y 12 b, y = 12x c, y 1 z 60 d, z = 60y e, z = 720x. 2 24. 3 36. 4 48. 6 360. 12 720. 18 1080.
<span class='text_page_counter'>(64)</span> theo. Người sau có thể sửa bài của người trước. Đội nào làm đúng, nhanh là thắng. Gv Công bố “ Trò chơi bắt đầu ” và “ kết thúc trò chơi ” tuyên bố đội thắng. Hs Cả lớp làm ra nháp. d) Hướng dẫn HS tự học ở nhà (2') - Ôn lại các dạng toán đã làm về đại lượng tỷ lệ thuận - Bài tập về nhà: 13 ; 14 ; 15 ; 17 ; ( SBT 44 ; 45 ) - Ôn tập: Đại lượng tỷ lệ nghịch ( Tiểu Học) - Đọc trước bài: Đại lượng tỷ lệ nghịch. * Rút kinh nghiệm sau giờ dạy. ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. TIẾT 26: ĐẠI LƯỢNG TỈ LỆ NGHỊCH 1. Mục tiêu: a) Về kiến thức: - Biết được công thức biểu diễn mối liên hệ giữa hai đai lượng tỷ lệ nghịch - Nhận biết được hai đại lượng có tỷ lệ nghịch hay không. - Hiểu được các tính chất của hai đại lượng tỷ lệ nghịch b) Về kỹ năng: - Biết cách tìm hệ số tỷ lệ tìm giá trị của một đại lượng khi biết hệ số tỷ lệ và giá trị tương ứng của đại lượng kia. c) Về thái độ : - Học tập tích cực hợp.
<span class='text_page_counter'>(65)</span> 2. Chuẩn bị của GV và HS : a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Học bài cũ, đọc trước bài mới 3. Tiến trình bài dạy: * ổn định tổ chức: 7B:……………7D....................7Q................. a) Kiểm tra bài cũ: (6') *Câu hỏi: HS1(Tby). Nêu định nghĩa và tính chất của hai đại lượng tỷ lệ thuận HS2. Chữa bài 13 ( SBT – 44 ) *Đáp án: 1. Định nghĩa: Nếu đại lượng y liên hệ với đại lượng x theo công thức y = kx (k là hằng số khác 0) thì ta nói y tỷ lệ thuận với x theo hệ số tỷ lệ k. (5đ) * Tính chất: Nếu hai đại lượng tỷ lệ thuận với nhau thì: + Tỷ số hai giá trị tương ứng của chúng luôn không đổi + Tỷ số hai giá trị bất kỳ của đại lượng này bằng tỷ số hai giá trị tương ứng của đại lượng kia. (5đ) 2. Bài tập 13: Gọi số tiền lãi của 3 đơn vị lần lượt là a, b, c ( Triệu đồng ) a b c Theo bài ra ta có 3 5 7 và a + b + c = 150. (1đ) Áp dụng tính chất mở rộng của dãy tỷ số bằng nhau có. a b c a b c 150 3 5 7 3 5 7 15 10 a Vậy b 10 a = 3.10 = 30 ( triệu đồng ) b 10 5 b = 5.10 = 50 ( triệu đồng ) c 10 7 c = 7.10 = 70 ( triệu đồng ). (2đ) (2đ) (2đ). (2đ) Trả lời: Tiền lãi của các đơn vị lần lượt là 30 triệu đồng, 50 triệu đồng, 70 triệu đồng. (1đ) * Đặt vấn đề vào bài mới: ( 3') ? Thế nào là hai đại lượng tỷ lệ nghịch? HS: Hai đại lượng tỷ lệ nghịch là hai đại lượng liên hệ với nhau sao cho khi đại lượng này tăng (hoặc giảm) bao nhiêu lần thì đại lượng kia giảm (hay tăng bấy nhiêu lần). GV: Như vậy chúng ta đã biết được thế nào là 2 đại lượng tỷ lệ nghịch. Vậy có cách nào để mô tả ngắn gọn hai đại lượng tỷ lệ nghịch bằng công thức không? Chúng ta cùng nghiên cứu bài hôm nay. b) Dạy nội dung bài mới:.
<span class='text_page_counter'>(66)</span> Hoạt động của GV và HS. Học sinh ghi 1. Định nghĩa.( 14'). GV Chúng ta đã biết hai đại lượng TLN là hai đại lượng liên hệ với nhau sao cho khi đại lượng này tăng (hay giảm) bao nhiêu lần thì đại lượng kia giảm (hay tăng bấy nhiêu lần) VD. Hai cạnh của hình chữ nhật, vận tốc và thời gian của vật chuyển động trên một quãng đường. Để cụ thể hơn ta xét ?1 HS Đọc nội dung ?1 (Sgk - 56) ? Hãy viết công thức tính cạnh y (cm) theo cạnh x (cm) của hình chữ nhật có kích thước thay đổi nhưng luôn có diện tích bằng 12 cm2 ? Hãy viết công thức tính: Lượng gạo y (kg) trong mỗi bao theo x khi chia đều 500 kg vào x bao. ? Viết công thức tính: Vận tốc (Km/h) theo thời gian t (h) của 1 vật chuyển động đều trên Quãng đường 16 Km. K? Qua bài tập trên em hãy rút ra nhận xét về sự giống nhau giữa các công thức trên Hs Các công thức trên đều có điểm giống nhau là đại lượng này bằng 1 hằng số chia cho đại lượng kia. Gv Giới thiều định nghĩa 2 đại lượng tỉ lệ nghịch (Sgk - 57) Hs Đọc định nghĩa 2 đại lượng tỉ lệ nghịch (Sgk - 57) Gv Nhấn mạnh công thức:. ?1 ( Sgk - 56 ). Giải a. Diện tích hình chữ nhật là: S = x.y = 12 (cm2) 12 y x. b. Lượng gạo trong tất cả các bao là: x.y = 500 (kg) y. 500 x. c. Quãng đường đi được của vật chuyển động đều là: 16 V t V.t = 16 (Km). * Nhận xét (Sgk - 57) * Định nghĩa (Sgk - 57) a y = x hay x.y = a. a y = x hay x.y = a. Lưu ý: Khái niệm tỉ lệ nghịch học ở tiểu học (a > 0) chỉ là một trường hợp riêng của định nghĩa với a 0. ? 2 (Sgk - 57) Gv Yêu cầu học sinh làm ? 2 (Sgk - 57) K? Cho biết y tỉ lệ nghịch với x theo hệ số tỉ Giải.
<span class='text_page_counter'>(67)</span> Gv. K?. Hs K? Hs. lệ - 3,5. Hỏi x tỉ lệ nghịch với y theo hệ số tỉ lệ nào? Như vậy để xét xem x tỉ lệ nghịch với y theo hệ số tỉ lệ nào ta căn cứ vào giả thiết cho y tỉ lệ nghịch với x theo hệ số tỉ lệ -3,5 ta suy ra công thức y =? x =? Em hãy xét xem trong trường hợp tổng quát: Nếu y tỉ lệ nghịch với x theo hệ số tỉ lệ a thì x tỉ lệ nghịch với y theo hệ số tỉ lệ nào? Theo hệ số tỉ lệ a. Điều này khác với 2 đại lượng tỉ lệ thuận như thế nào? Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ a. y tỉ lệ nghịch với x theo hệ số tỉ lệ -3,5 y. 3,5 3,5 x x y. Vậy nếu y tỉ lệ nghịch với x theo hệ số tỉ lệ -3,5 thì x tỉ lệ nghịch với y theo hệ số tỉ lệ -3,5. * Chú ý (Sgk - 57). 1 thì x tỉ lệ thuận với y theo hệ số tỉ lệ a. Hs Đọc chú ý (Sgk - 57) Gv Vậy khi y tỉ lệ nghịch với x thì x cũng tỉ lệ nghịch với y ta nói hai đại lượng đó tỉ lệ nghịch với nhau. Vậy đại lượng tỉ lệ nghịch có tính chất nào ta sang phần 2. 2. Tính chất:(12') ? 3 (Sgk - 57) Gv Treo bảng phụ nội dung ? 3 Cho biết 2 đại lượng y và x tỉ lệ nghịch Giải với nhau: a. x1.y1 = a a = 2.30 = 60 a 60 x x1 = 2 x2 = 3 x3 = 4 x4 = 5 20 x 3 2 b. y2 = y y1 = ? y2 = ? y3 = ? y4 = ?. K? Tb? K? Hs. a 60 a. Tìm hệ số tỉ lệ 15 x3 4 y = 3 b. Thay mỗi dấu "?" trong bảng trên bằng a 60 một số thích hợp. 12 x 5 4 y4 = c. Có nhận xét gì về tích 2 giá trị tương c. x1y1 = x2y2 = x3y3 = x4y4 = 60 ứng x1y1; x2y2; x3y3; x4y4 của x và y (bằng hệ số tỉ lệ) Tìm hệ số tỉ lệ Thay mỗi dấu " ?"trong bảng trên bằng một số thích hợp. Nhận xét gì về tích 2 giá trị tương ứng x1y1; x2y2; x3y3; x4y4 của x và y x1y1 = 2.30 = 60; x2y2 = 3.20 = 60.
<span class='text_page_counter'>(68)</span> x3y3 = 4.15 = 60; x4y4 = 5.12 = 60 Gv Giả sử y và x tỉ lệ nghịch với nhau có a y = x khi đó với mỗi giá trị x 1, x2, x3 .... khác 0 của x ta có một giá trị tương ứng a a a y1 = x1 ; y2 = x2 ; y3 = x3 .... của y.. ? Hs ? Hs. Do đó x1y1 = x2y2 = x3y3 = x4y4 = a x1y1 = x2y2 tỉ lệ thức nào? x1 y2 x y1 2 x1y1 = x2y2 x1y1 = x3y3 ? x1 y3 x y1 2 xy =xy 1 1. 3 3. Gv Giới thiệu tính chất về đại lượng tỉ lệ nghịch K? So sánh với 2 tính chất của đại lượng tỉ lệ thuận. Hs TLT: + Tỉ số 2 giá trị tương ứng của chúng luôn không đổi + Tỉ số 2 giá trị bất kỳ của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia. TLN: + Tích 2 giá trị tương ứng của chúng luôn không đổi (bằng hệ số tỉ lệ) + Tỉ số 2 giá trị bất kỳ của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia. c)Luyện tập - củng cố (8') Hs Đọc và n/c nội dung bài 12 (Sgk - 58) Gv Biết 2 đại lượng x, y tỉ lệ nghịch với nhau và khi x = 8 thì y = 15 K? Tìm hệ số tỉ lệ. * Tính chất (Sgk - 57). Tb? Hãy biểu diễn y theo x. y. Tb? Tính giá trị của y khi x =6; x = 10. y và x là hai đại lượng tỉ lệ nghịch Với x1; x2; x3; ... của x có một giá trị tương ứng y1; y2; y3; .... của y ta có: 1. y1.x1= y2.x2= .... = a (hệ số tỉ lệ) 2.. x1 x1 y2 y3 x x 2 y 1 ; 3 y 3 ;…. 3. Luyện tập:(8') Bài 12 (Sgk - 58) Giải a. Vì x và y là 2 đại lượng tỉ lệ nghịch a x thay x = 8 và y = 15 có:. a = x.y = 8.15 = 120.
<span class='text_page_counter'>(69)</span> 120 y x b. 120 y 20 6 c. Khi x = 6 120 y 12 10 Khi x = 10. d) Hướng dẫn HS tự học ở nhà (2') - Nắm vững định nghĩ và t/c của 2 đại lượng tỉ lệ nghịch (so sánh với TLT) - Bài tập 13, 14, 15 (Sgk/58) - HSKG: bài 18, 19, 20, 21, 22 (SBT/45,46) - Hướng dẫn bài 14 (Sgk/58): Xét xem cùng một công việc giữa S công nhan và số ngày là 2 đại lượng quan hệ như thế nào? Dựa vào t/c của 2 đại lượng TLN ta có tỉ lệ thức nào. Từ đó tính x - Đọc trước: "Một số bài toán về đại lượng tỉ lệ nghịch" * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. TIẾT 27:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. MỘT SỐ BÀI TOÁN VỀ ĐẠI LƯỢNG TỈ LỆ NGHỊCH. 1. Mục tiêu: a) Về kiến thức: - Học sinh được làm một số bài toán cơ bản về đại lượng tỉ lệ nghịch - Biết cách làm các bài tập cơ bản về đại lượng tỉ lệ nghịch b)Về kỹ năng: - Rèn cách trình bày, tư duy sáng tạo c) Về thái độ:.
<span class='text_page_counter'>(70)</span> - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a. Chuẩn bị của GV : Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b. Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B:................7D...................7Q............ a) Kiểm tra bài cũ: ( 6' ) *Câu hỏi: Học sinh 1: + Định nghĩa hai đại lượng tỉ lệ nghịch? + So sánh sự khác nhau giữa hai đại lượng tỉ lệ nghịch và tỉ lệ thuận? Học sinh 2: Chữa bài tập 15 *Đáp án: Học sinh 1: a *Định nghĩa: Nếu đại lượng y liên hệ với đại lượng x theo công thức y = x hay. x.y = a (a là một hằng số khác 0) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a. (4đ) So sánh: - Nếu y tỉ lệ nghịch với x theo hệ số tỉ lệ là a thì x cũng tỉ lệ nghịch với y theo hệ số tỉ lệ a (3đ) 1. - Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ a thì x tỉ lệ thuận với y theo hệ số tỉ lệ a (3đ) Học sinh 2: Bài 15 (Sgk - 58) a. x và y là hai đại lượng tỉ lệ nghịch b. x và y là hai đại lượng tỉ lệ nghịch c. a và b là hai đại lượng tỉ lệ nghịch (10đ) * Đặt vấn đề vào bài mới(1') : Trong tiết học trước chúng ta đã được học về hai đại lượng tỉ lệ nghịch: định nghĩa, tính chất. Trong tiết học hôm nay chúng ta sẽ vận dụng kiến thức đó vào giải bài tập của dạng toán này. b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi 1. Bài toán 1 (Sgk - 59) (10') Gv Yêu cầu học sinh đọc và nghiên cứu nội dung Giải (Sgk - 59) bài toán 1(Sgk - 59) ? Bài cho biết những gì? Yêu cầu điều gì? Hs Cho biết: Ôtô đi từ A B: 6 giờ.
<span class='text_page_counter'>(71)</span> Gv. K? Hs. K?. Hs Tb? Hs. Hỏi: Ôtô đi A B hết bao nhiêu giờ nếu vận tốc mới bằng 1,2 lần vận tốc cũ. Ta gọi: Vận tốc cũ của Ôtô là v1 (Km/h) Vận tốc mới của Ôtô là v2 (Km/h) Thời gian tương ứng với các vận tốc là t 1 và t2 (giờ) Hãy tóm tắt đề bài rồi lập tỉ lệ thức của bài toán Ôtô đi từ A B Với vận tốc v1(Km/h) thì thời gian là t1 (h) Với vận tốc v2(Km/h) thì thời gian là t2 (h) Vận tốc và thời gian của một vật chuyển động đều trên cùng 1 quãng đường. Nên vận tốc và thời gian là hai đại lượng quan hệ như thế nào? Vận tốc và thời gian là hai đại lượng tỉ lệ nghịch với nhau. Từ đó ta có tỉ lệ thức như thế nào? v2 t 1 v1 t2. K? Mà t1 = ? ; v2 ? v1 ; t2 = ?. Hs. ? Hs. v2 1, 2 v 1 t1 = 6 ; v2 = 1,2v1 ; t2 là đại lượng. phải tìm. Thay các giá trị tìm t2=? t1 v1 6 1, 2 t2 6.1, 2 5 t2 v2 t2. Tb? Trả lời bài toán Gv Nhấn mạnh: Vì v và t là 2 đại lượng tỉ lệ nghịch nên tỉ số giữa 2 giá trị tương ứng bất kì của đại lượng này bằng nghịch đảo tỉ số 2 giá trị tương ứng của đại lượng kia. K? Nếu ta thay đổi nội dung bài toán v 2 = 0,8 v1 thì t2 là bao nhiêu? Hs v = 0,8 v thì t 1 v 2 0,8 2. 1. t2. v1.
<span class='text_page_counter'>(72)</span> 6 6 0,8 t2 7,5 0,8 Hay t2. Hs Đọc lại lời giải trong (Sgk - 59) Hs Đọc và nghiên cứu bài toán 2 ? Hãy tóm tắt đề bài Hs Bốn đội có 36 máy cày (cùng năng xuất, công việc bằng nhau) Đội 1: hoàn thành công việc trong 4 ngày Đội 2: hoàn thành công việc trong 6 ngày Đội 3: hoàn thành công việc trong 10 ngày Đội 4: hoàn thành công việc trong 12 ngày Hỏi mỗi đội có bao nhiêu máy ? Gọi số máy của mỗi đội lần lượt là x1, x2, x3, x4 (máy) ta có điều gì? Hs x1+ x2 + x3 + x4 = 36. 2. Bài toán 2 (Sgk - 59)(15') Giải Gọi số máy của mỗi đội lần lượt là x1, x2, x3, x4 Ta có: x1+ x2 + x3 + x4 = 36 Vì Số máy và số ngày hoàn thành công việc tỉ lệ nghịch nên ta có: 4x1= 6x2 = 10x3 = 12x4 x1 1 4. . x2 1 6. . x3 1 10. . x4 1. 12 Hay Theo tính chất mở rộng của dãy tỉ số bằng nhau ta có:. x1 x2 x3 x4 K? Cùng 1 công việc như nhau giữa số máy cày 1 1 1 1 4 6 10 12 và số ngày hoàn thành công việc quan hệ x x x x 36 như thế nào? 11 12 1 3 1 4 36 60 4 6 10 12 60 Hs Số máy cày và số ngày tỉ lệ nghịch với nhau K? Áp dụng tính chất 1 của hai đại lượng tỉ lệ Vậy 1 1 nghịch ta có các tích nào bằng nhau? x1 60 15; x2 60 10; 4 6 Hs 4x1= 6x2 = 10x3 = 12x4 1 1 x3 60 6; x4 60 5 K? Biến đổi các tích này thành dãy tỉ số bằng 10 12 nhau x Gv 4 x1 11 4 Gợi ý: Hs 4 x1 6 x2 10 x3 12 x4 x1 x2 x3 x4 Trả lời: Số máy của bốn đội lần 1 1 1 1 4 6 10 12 lượt là 15, 10, 6, 5 K? Áp dụng tính chất mở rộng của dãy tỉ số bằng nhau để tìm các giá trị x1, x2, x3, x4 Hs Theo tính chất mở rộng của dãy tỉ số bằng nhau có: x1 1 4. . Vậy. x2 1 6. . x3 1 10. . x4 1 12. . x1 x2 x3 x4 36 36 60 1 1 1 1 4 6 10 12 60.
<span class='text_page_counter'>(73)</span> 1 1 x1 60 15; x2 60 10; 4 6 1 1 x3 60 6; x4 60 5 10 12. Tb? Trả lời bài toán Gv Qua bài toán 2 ta thấy được mối quan hệ giữa bài toán tỉ lệ thuận và bài toán tỉ lệ nghịch: 1 Nếu y tỉ lệ nghịch với x thì y tỉ lệ thuận với x a 1 a x . Vậy nếu x1, x2, x3, x4 TLN với vì y x. các số 4, 6, 10, 12 thì x1, x2, x3, x4 TLT với các 1 1 1 1 ; ; ; số 4 6 10 12. ?. c)Luyện tập - củng cố (12') Định nghĩa hai đại lượng tỉ lệ nghịch? Phát biểu tính chất của hai đại lượng tỉ lệ nghịch?. Gv Yêu cầu học sinh làm ? (Sgk - 60). ?. (Sgk - 60) Giải. Gv Cho 3 đại lượng x, y, z. Hãy cho biết mối liên hệ giữa 2 đại lượng x và z biết: x và y tỉ lệ nghịch, y và z cũng tỉ lệ nghịch a. Vì x, y tỉ lệ nghịch ta có: a x và y tỉ lệ nghịch, y và z tỉ lệ thuận x (1) y. K? Muốn biết mối quan hệ giữa x và z ta làm Vì y, z tỉ lệ nghịch ta có: b như thế nào? y z (2) x và y tỉ lệ nghịch ? Thay (2) vào (1) ta có: y và z tỉ lệh nghịch ? a a Hs x a (1) ; y b (2) a y z x y b b z có dạng x z. = k.z ? Thay (2) vào (1) ta có biểu thức nào? Khi đó Vậy x tỉ lệ thuận với z có dạng như thế nào? a Hs b. b a x z có dạng x = k.z x y (3) x và y tỉ lệ nghịch ? Cho biết mối quan hệ giữa x và z y và z tỉ lệ thuận y b.z (4) Hs x và tỉ lệ thuận với z Thay (4) vào (3) ta có: a K? Hãy chỉ ra mối quan hệ giữa x và z nếu x và y x a hay x.z a x b b.z b hoặc z TLN; y và z TLT.
<span class='text_page_counter'>(74)</span> Hs x và y tỉ lệ nghịch. x. a y. Vậy x tỉ lệ nghịch với z x. a b.z. y và z tỉ lệ thuận y b.z Vậy x tỉ lệ nghịch với z d) Hướng dẫn HS tự học ở nhà (2') - Học thuộc định nghĩa, tính chất của đại lượng tỉ lệ nghịch - Ôn lại các bài tập đã chữa, làm bài tập 16, 17, 18, 19, 20, 21 (Sgk - 60, 61) - HSKG: 25,26,27,28 (SBT-46) - Hướng dẫn bài 20: V và t là hai đại lượng tỉ lệ nghịch nên điều kiện và tính chất của hai đại lượng tỉ lệ nghịch có: t ST VVoi 1 1 tST 12 8 tVoi VST 1,5 1,5 (giây). Tương tự như vậy ta tìm được tchó săn và tngựa. Sau đó ta tìm thành tích của đội. - Chuẩn bị tiết sau luyện tập * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy: TIẾT 28: LUYỆN TẬP. 1. Mục tiêu: a) Về kiến thức:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q.
<span class='text_page_counter'>(75)</span> -Học sinh làm thành thạo các bài toán cơ bản về đại lượng tỉ lệ nghịch b) Về kỹ năng: - Có kĩ năng sử dụng thành thạo định nghĩa, tính chất của đại lượng tỉ lệ nghịch, sử dụng tính chất của dãy tỉ số bằng nhau để giải toán. - Thông qua giờ luyện tập học sinh thấy được toán học có vận dụng nhiều trong đời sống hành ngày. c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định: 7B................7D..................7Q............... a) Kiểm tra bài cũ: (6') *Câu hỏi: Học sinh1: Làm bài tập 17 (Sgk - 61) Học sinh 2: Làm bài tập 18 (Sgk - 61) * Đáp án: Học sinh 1: Bài 17 (Sgk - 61) (10đ) x. 1. 2. -4. 6. -8. 10. y. 16. 8. -4. 2. -2. 1,6. 2 3. Học sinh 2: Bài tập 18 (Sgk - 61) Gọi thời gian mà 12 người làm cỏ hết cánh đồng là x (giờ) Vì số người và số ngày làm xong cánh đồng là hai đại lượng tỉ lệ nghịch nên ta có:. 3 12. . x 6. ⇒ x. 3.6 1,5 giờ 12. b) Dạy nội dung bài mới: Hoạt động của GV và HS Gv Yêu cầu học sinh làm bài 19 (Sgk - 61) Tb? Tóm tắt đề bài. ?. (10đ). Học sinh ghi *Bài 19 (Sgk - 61) (8') Cùng số tiền mua: 51 m vải loại I, giá a đ/m. Số tiền một m vải và số mét vải x m vải loại II, giá 85%.a đ/m mua được (cùng 1 số tiền) của loại I và II là hai đại lượng như.
<span class='text_page_counter'>(76)</span> thế nào? Hs Là hai đại lượng tỉ lệ nghịch. Bài giải. K? Lập tỉ lệ thức ứng với 2 đại Với cùng 1 số tiền thì số m vải mua được lượng tỉ lệ nghịch. và giá tiền 1 m vải là hai đại lượng tỉ lệ nghịch. Tb? Hãy tìm x trong tỉ lệ thức Gọi x là số mét vải loại II mua được và a 51 85 là giá tiền 1 mét vải loại I và 1 m vải loại x 100 II giá 85%a đ/m Áp dụng tính chất 2 đại lượng tỉ lệ nghịch ta có: 51 85%a 51 85 51.100 Tb? Trả lời bài toán x 60(m) x. Gv Hs Hs. K?. Hs. ? Hs. x. 100. 85. Trả lời: Với cùng 1 số tiền có thể mua được 60 m vải loại II Yêu cầu học sinh làm bài 21 (Sgk *Bài 21 (Sgk - 61) (7') - 61) Tóm tắt đề bài Giải Cùng khối lượng công việc như Gọi số máy của 3 đội lần lượt là x 1, x2, x3 nhau: (máy). Đội I HTCV trong 4 ngày Vì các máy có cùng năng xuất nên số Đội II HTCV trong 6 ngày máy và số ngày là 2 đại lượng tỉ lệ Đội III HTCV trong 8 ngày nghịch nên ta có: Biết đội I nhiều hơn đội II là 2 4x1 = 6x2 = 8x3 máy Hỏi mỗi đội có bao nhiêu máy. x1 x2 x3 Nếu gọi số máy của 3 đội lần 1 1 1 4 6 8 và x - x = 2 lượt là x1, x2, x3 (máy). Hay 1 2 Thì số máy và số ngày là hai đại áp dụng tính chất của dãy tỉ số bằng nhau lượng như thế nào? (năng suất ta có: các máy như nhau) x1 x2 x3 x1 x2 2 Số máy và số ngày là hai đại 1 1 1 1 1 24 1 4 6 8 4 6 12 lượng tỉ lệ nghịch hay x1, x2, x3 tỉ Vậy lệ nghịc với các số 4, 6, 8. Vậy x1, x2, x3 tỉ lệ thuận với các x 1 24 6; x 1 24 4; x 1 24 3 1 2 3 4 6 8 số nào? x1, x2, x3 tỉ lệ thuận với các số Vậy số máy của ba đội lần lượt là 6; 4; 3 1 1 1 máy , , 4 6 8. ?. a. Sử dụng tính chất của dãy tỉ số.
<span class='text_page_counter'>(77)</span> bằng nhau để tìm x1, x2, x3. Gv Yêu cầu học sinh làm bài 34 (SBT - 47) Hs Nghiên cứu đề bài ? Bài cho biết gì và yêu cầu tìm gì? Gv Lưu ý học sinh đơn vị các đại lượng trong bài: Vì trung bình 1 phút xe thứ nhất đi hơn xe thứ 2 là 100 m tức là: V1 - V2 = 100 (m/p') Nên thời gian cần đổi ra phút K? Theo điều kiện đầu bài ta có điều gì? ? Áp dụng tính chất cơ bản của tỉ lệ thức để làm bài tập này.. *Bài 34 (SBT - 47) (7') Giải 1h 20' = 80 phút 1h 30' = 90 phút Gọi vận tốc của hai xe máy là V1 (m/p) và V2 (m/p) Theo điều kiện đầu bài ta có: 80.V1 = 90.V2 và V1 - V2 = 100 V1 V2 Hay 90 80 và V1 - V2 = 100. Áp dụng tính chất cơ bản của dãy tỉ số bằng nhau có: V1 V2 V1 V2 100 10 90 80 90 80 10. Gv c) Củng cố :Chốt lại: Để giải các Vậy bài toán về đại lượng tỉ lệ thuận, V1 10 V 90.10 900(m / p) 54( Km / h) 1 90 đại lượng tỉ lệ nghịch ta phải: - Xác định đúng quan hệ giữa 2 V2 10 V2 80.10 800(m / p) 48( Km / h) 80 đại lượng . - Lập được dãy tỉ số bằng nhau (hoặc tích bằng nhau) tương ứng. - Áp dụng tính chất của dãy tỉ số bằng nhau để giải. * Kiểm tra 15 phút Câu 1: (4 điểm) Nêu tính chất của hai đại lượng tỉ lệ nghịch? Câu 2: (6 điểm) Hai đội máy san đất cùng làm công việc như nhau. Đội thứ nhất làm trong 30 ngày thì xong. Đội thứ 2 làm trong 6 ngày thì xong biết rằng 2 đội có 60 máy. Hỏi số máy của mỗi đội? * Đáp án và biểu điểm: Câu 1: (4 điểm) Tính chất: Nếu hai đại lượng tỉ lệ nghịch với nhau thì:.
<span class='text_page_counter'>(78)</span> + Tích hai giá trị tương ứng của chúng luôn không đổi (bằng hệ số tỉ lệ) + Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia. (4 điểm) Câu 2: (6 điểm) Gọi số máy của mỗi đội là x, y (x, y > 0) (1 điểm) Vì số máy và số ngày là hai đại lượng tỉ lệ nghịch nên ta có: x 1 30. y 1 6. và x + y= 60 (2 điểm) x 1 30. Vậy. y 1 6. x+ y 1 5. 1 x 300 10 1 300 ⇒ x 30 30 1 y 300 50 1 300 ⇒ y 6 6. 60 1 5. 300. (1 điểm) (1 điểm). Trả lời: Số máy của đội 1 là 10 máy, số máy của đội 2 là 50 máy (1 điểm) d) Hướng dẫn HS tự học ở nhà( 2') - Học thuộc định nghĩa, tính chất của đại lượng tỉ lệ thuận, tỉ lệ nghịch - Ôn lại các bài tập đã chữa - Làm bài 20, 22, 23 (Sgk - 61, 62) - HSKG:30,31,32,34( SBT-46) - Đọc trước bài: "Hàm số" * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy: TIẾT 29: HÀM SỐ. 1. Mục tiêu: a) Về kiến thức :. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q.
<span class='text_page_counter'>(79)</span> - Học sinh biết được khái niệm hàm số - Nhận biết được đại lượng này có phải là hàm số của đại lượng kia hay không trong những các cho cụ thể và đơn giản. b) Về kỹ năng: - Tìm được giá trị tương ứng của hàm số khi biết giá trị kia c)Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của giáo viên : a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ b) Chuẩn bị của HS: Học sinh: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến tình bài dạy: * Ổn định tổ chức: 7B....................7D....................7Q............ a) Kiểm tra bài cũ: ( Không kiểm tra ) * Đặt vấn đề vào bài mới:(1') Trong thực tiễn và trong toán học ta thường gặp các đại lượng thay đổi phụ thuộc vào sự thay đổi của các đại lượng khác. Mối liên quan đó cho ta biết điều gì? b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi 1. Một số ví dụ về hàm số (17') Gv Trong thực tiễn và trong toán học ta thường gặp các đại lượng thay đổi phụ thuộc vào sự thay đổi của các đại lượng khác cụ thể ta xét 1 số ví dụ sau. Ví dụ 1 nhiệt độ T (0C) phụ thuộc vào thời điểm t (giờ) trong một ngày Gv Treo bảng phụ nội dung ví dụ 1 (Sgk - * Ví dụ 1 (Sgk - 62) 62) Hs Đọc và nghiên cứu ví dụ 1 K? Theo bảng này nhiệt độ trong ngày cao nhất khi nào? thấp nhất khi nào? Hs Theo bảng này nhiệt độ trong ngày cao nhất lúc 12 giờ trưa (260C) và thấp nhất lúc 4 giờ sáng (180C) Gv Yêu cầu học sinh đọc và nghiên cứu ví * Ví dụ 2 (Sgk - 63) dụ 2 trong (Sgk - 63) K? Một thanh kim loại đồng chất có khối m = 7,8.V 3 lượng riêng là 7,8 (g/cm ) có thể tích là V (cm3). Hãy lập công thức tính.
<span class='text_page_counter'>(80)</span> Hs K? Hs. Gv Tb? Hs. Gv K? Hs Hs Hs Gv ? Hs. K? ?. Hs. khối lượng m của thanh kim loại đó. m = 7,8.V Công thức này cho ta biết m và V là 2 đại lượng quan hệ như thế nào? m và V là hai đại lượng tỉ lệ thuận vì công thức tính có dạng y = k.x và k = 7,8 Yêu cầu học sinh đọc và nghiên cứu ? ? 1 (Sgk - 63) 1 (Sgk - 63) Qua nghiên cứu hãy cho biết ? 1 yêu cầu gì? Hãy tính các giá trị tương ứng của m V(Cm3) 1 2 3 4 khi: m (g) 7,8 15,6 23,4 31,2 V = 1; 2; 3; 4 Hướng dẫn học sinh kẻ bảng Để làm ? 1 ta làm như thế nào? Thay vào công thức để tìm m Tự thực hiện cá nhân trong vòng 2 phút để tìm m Một em lên trình bày Yêu cầu học sinh nghiên cứu ví dụ 3 * Ví dụ 3 (Sgk - 63) Ví dụ 3 cho biết gì và yêu cầu gì? Cho biết: Một vật chuyển động đều trên t 50 V quãng đường dài 50 Km với vận tốc V (Km/h). Yêu cầu: Hãy tính thời gian t (h) của vật đó. Hãy tính thời gian t (h) của vật đó Công thức này cho ta biết với quãng đường không đổi thì thời gian và vận tốc là 2 đại lượng quan hệ như thế nào? Quãng đường không đổi thì thời gian và vận tốc là hai đại lượng tỉ lệ nghịch vì y. a x. công thức có dạng K? Hãy lập bảng các giá trị tương ứng ? 2 (Sgk - 63) của t khi biết V = 5; 10; 25; 50 Gv Hướng dẫn học sinh kẻ bảng.
<span class='text_page_counter'>(81)</span> K? Để làm ? 2 ta làm như thế nào? Hs Thay vào công thức để tìm t Hs Tự thực hiện cá nhân trong vòng 2 phút V(Km/h) 5 10 25 để tìm t t (h) 10 5 2 Hs Một em lên trình bày K? Nhìn vào bảng ở ví dụ 1 em có nhận xét gì? Hs Nhiệt độ T phụ thuộc vào sự thay đổi * Nhận xét (Sgk - 63) của thời điểm t ? Với mỗi thời điểm t ta xác định được mấy giá trị nhiệt độ tương T tương ứng? Lấy ví dụ minh hoạ. Hs Với mỗi giá trị của thời điểm t ta xác định được một giá tương ứng của nhiệt độ T. Ví dụ: t = 0 (giờ) thì T = 200C t = 12 (giờ) thì T = 260C K? Tương tự ở ví dụ 2 em có nhận xét gì? Hs Khối lượng m của thanh đồng chất phụ thuộc vào thể tích V của nó. Với mỗi thời điểm của V ta chỉ xác định được một giá trị tương ứng của m Gv Ta nói nhiệt độ T là hàm số của thời điểm t, khối lượng m là một hàm số của thể tích V. G? Tương tự ở ví dụ 3: Thời gian t là hàm số của đại lượng nào? Hs Thời gian t là hàm số của vận tốc V Gv Vậy hàm số là gì ta sang phần 2 2. Khái niệm hàm số:(18') K? Qua các ví dụ trên hãy cho biết đại lượng y là hàm số của đại lượng x khi nào? Hs Mỗi giá trị x cho tương ứng với 1 giá trị của y Gv Chốt lại: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được. 50 1.
<span class='text_page_counter'>(82)</span> Hs Gv. Gv. Gv Gv. chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x. Đọc lại khái niệm (Sgk - 63) Lưu ý học sinh: Để y là hàm số của x cần có các điều kiện sau: - x và y đều nhận các giá trị số. - Đại lượng y phụ thuộc vào đại lượng x - Với mỗi giá trị của x không thể tìm được nhiều hơn một giá trị tương ứng của y. Giới thiệu phần chú ý (Sgk - 63) Khi x thay đổi mà y luôn nhận 1 giá trị thì y được gọi là hàm hằng. - Hàm số có thể cho bằng bảng, bằng công thức. - Khi y là hàm số ta có thể viết: y = f(x), y = g(x) .... Chẳng hạn: Với hàm số được cho bởi công thức y = 2x + 3 ta còn có thể viết: y = f(x) = 2x + 3 và khi đó thay cho câu "Khi x bằng 3 thì giá trị tương ứng của y là 9" hoặc câu "Khi x bằng 3 thì y bằng 9". Ta viết f(3) = 9 Treo bảng phụ nội dung bài 24 (Sgk 63) Hãy xét sự tương ứng các giá trị của x và y. Hs Học sinh hoạt động cá nhân trong 3 phút Trình bày, giải thích trong 2 phút Gv y là một hàm số của x vì nhìn vào bảng ta thấy 3 điều kiện của hàm số đều thoả mãn. Đây là trường hợp hàm số được cho bằng bảng. K? Lấy ví dụ về hàm số được cho bởi công thức Hs y = f(x) = 3x. * Khái niệm (Sgk - 63). * Chú ý (Sgk - 63). *Bài 24 (Sgk - 63) Đại lượng y là hàm số của đại lượng x. Vì mỗi giá trị của x tương ứng cho duy nhất 1 giá trị của y. * Ví dụ: Xét hàm số y = f(x) = 3x Hãy tính f(1) ; f(- 5) ; f(0).
<span class='text_page_counter'>(83)</span> 12 y = g(x) x. ?. Xét hàm số y = f(x) = 3x. Hãy tính f(1) ; f(- 5) ; f(0). ?. 12 Tương tự xét hàm số y = g(x) x. Giải f(1) = 3.1 = 3 f(- 5) = 3. (-5) = - 15 f(0) = 3.0 = 0. Hãy tính g(2) ; g(- 4) Hs. 12 12 6 3 g(2) 2 ; g(- 4) 4. c) Luyện tập - củng cố (7') Gv Yêu cầu học sinh làm bài 25 (Sgk - 64) Tb? Bài 25 cho biết gì và yêu gì? Hs Cho hàm số y = f(x) = 3x2 + 2. K?. 1 f ; f (1); f (3) Tính 2 1 f ; f (1); f (3) Để tính 2 ta làm như thế. 3. Luyện tập: (7') *Bài 25 (Sgk - 64) Giải 2. 1 3 3 1 1 f 3 1 3 1 1 1 4 4 4 2 2 f (1) 3.12 1 3 1 4 f (3) 3.32 1 27 1 28. nào? 1 Thay x 2 ; x=1; x=3 vào hàm số rồi Hs thực hiện phép tính để tìm y. Gv. 1 f ; f (1); f (3) Tính 2 chính là tính y khi 1 cho x 2 ; x=1; x=3. d) Hướng dẫn HS tự học ở nhà (2') - Học thuộckhái niệm hàm số, chú ý, lấy ví dụ về hàm số - Làm bài tập 26, 27, 28, 29, 30 (Sgk - 64) - Hướng dẫn bài 27: a, y là hàm số của đại lượng x b, y là hàm số của đại lượng x. Đây là hàm hằng. - Chuẩn bị tiết sau luyện tập * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... .................................................................................................................................. ................................................................................................. ...... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q.
<span class='text_page_counter'>(84)</span> TIẾT 30: LUYỆN TẬP 1. Mục tiêu: a) Về kiến thức: - Học sinh được làm các bài tập về hàm số b) Về kỹ năng: - Có kĩ năng nhận biết đại lượng này có là hàm số của đại lượng kia hay không? - Biết tìm giá trị của hàm số theo biến số và ngược lại c) Về thái độ: - Học sinh yêu thích môn học 2 . Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến tình bài dạy: * Ổn định tổ chức: 7B................7D..............7Q................ a) Kiểm tra bài cũ: ( 14' ) * Câu hỏi: Học sinh 1: Khi nào thì đại lượng y được gọi là hàm số của đại lượng x? Bài tập 26 (Sgk - 64): Cho hàm số y= 5x - 1. Lập bảng giá trị tương ứng của 1. y khi: x = -5; - 4; -3; -2; 0; 5 Học sinh 2: Làm Bài tập 27/64 a. Đại lượng y có phải là hàm số của đại lượng x hay không, nếu bảng các giá trị tương ứng của chúng là: x. -3. -2. -1. 1 2. 1. 2. y. -5. -7.5. -15. 30. 15. 7.5. b. Đại lượng y có phải là hàm số của đại lượng x hay không, nếu bảng các giá trị tương ứng của chúng là: x 0 1 2 3 4 y 2 2 2 2 2 Học sinh 3: Làm bài 29 (Sgk - 64) * Đáp án: Học sinh 1: Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x. (3đ) Bài 26 (Sgk - 64) (7đ) x. -5. -4. -3. -2. 0. 1 5. y. - 26. - 21. - 16. - 11. -1. 0.
<span class='text_page_counter'>(85)</span> Học sinh 2: Bài 27 (Sgk - 64) a. Đại lượng y là hàm số của đại lượng x vì mỗi giá trị của x tương ứng cho duy nhất một giá trị của y (5đ) b. Đại lượng y là hàm số của đại lượng x vì mỗi giá trị của x tương ứng cho duy nhất một giá trị của y (5đ) Học sinh 3: Bài 29 (Sgk - 64) Vì hàm số y = f(x) = x2 - 2 Nên f(2) = 22 - 2 = 2 (2đ) 2 f(1) = 1 - 2 = - 1 (2đ) 2 f(0) = 0 - 2 = - 2 (2đ) 2 f(-1) = (- 1) - 2 = - 1 (2đ) f(- 2) = (-2)2 - 2 = 2 (2đ) b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi Gv Yêu cầu học sinh làm bài 28 (Sgk *Bài 28 (Sgk - 64) (8') - 64) 12 Tb? Bài cho biết gì và yêu cầu gì? a. Ta có: f(5) 5 2,4 Hs. K? Hs Gv K?. Hs Gv. 12 Cho hàm số y = f(x) x. Yêu cầu tính: b. a. f (5) = ? và f(- 3) = ? x 12 b. Hãy điền các giá trị tương ứng f(x) x của hàm số vào bảng sau: Để tính f(5) ta làm như thế nào? Thay giá trị x = 5 vào hàm số để tìm y Yêu cầu học sinh lên bảng thực hiện câu a Để điền được giá trị tương ứng của hàm số vào bảng ta làm như thế nào Ta thay giá trị của x vào hàm số tính giá trị y tương ứng Chốt: Các yêu cầu của bài toán ở câu a và b có khác nhau nhưng thực chất chỉ cùng một dạng toán. 12 f(-3) − 3 - 4. -6 -4 -3. 2. 5. 6. 12. -2. 6. 2,4. 2. 1. -3. -4.
<span class='text_page_counter'>(86)</span> tìm giá trị của hàm số tại những giá trị cho trước của biến x. Gv Yêu cầu học sinh nghiên cứu bài *Bài 30 (Sgk - 64) (8') 30 (Sgk - 64) ? Bài 30 cho biết gì và yêu cầu gì? K? Để trả lời bài này ta phải làm thế nào? 1 Hs Giải 2 Ta phải tính f(- 1); f ; f(3) rồi Vì hàm số y = f(x) = 1 - 8x nên đối chiếu với các giá trị cho ở đề f(- 1) = 1 - 8.(- 1) = 9 bài. 1 1 Hs Hoạt động cá nhân trong 4 phút 3 Đứng tại chỗ trình bày kết quả f 2 = 1 - 8 2 ; f(3) = 1 - 8.3 = - 23 trong 3 phút Vậy câu a, b là các khẳng định đúng Gv Treo bảng phụ nội dung bài 31 *Bài 31 (Sgk - 65) (8') (Sgk - 65) Giải ? Biết x ta tính y như thế nào? Hs Thay giá trị x vào công thức y 2 x 3. ? Biết y tính x như thế nào? 2 3y Hs x 3 y 2 x x 2 Từ y 3 Gv Cả lớp hoạt động nhóm trong x - 0,5 - 3 0 4,5 9 1 vòng 4 phút để tính giá trị của x y -2 0 3 6 3 và giá trị của y. Hs Lên bảng điền Gv Giới thiệu cho học sinh cách cho tương ứng bằng sơ đồ ven *Bài tập nhận biết hàm số cho bởi sơ đồ ven ( 5') Gv Ngoài cho bởi công thức, cho bởi bảng hàm số còn có thể cho bởi Trong các sơ đồ sau đây sơ đồ nào biểu sơ đồ ven diễn hàm số VD: Cho a, b, c, d, m, n, p, q R a b c d. m n p q. K? Bài tập: Trong các sơ đồ sau đây.
<span class='text_page_counter'>(87)</span> sơ đồ nào biểu diễn hàm số. Hs Sơ đồ thứ nhất biểu diễn hàm số c) Củng cố, luyện tập ( Kết hợp trong bài dạy) d) Hướng dẫn học sinh tự học ở nhà ( 2') - Ôn lại khái niệm về hàm số - Ôn lại các bài tập đã chữa - Làm bài 36, 37, 38, 39(SBT - 48, 49) - HSKG: 40,42, 43 (SBT - 48, 49) - Hướng dẫn bài 43: Để y nhận giá trị dương thì x < 0 Để y nhận giá trị âm thì x > 0 - Đọc trước bài : “ Mặt phẳng toạ độ” * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q.
<span class='text_page_counter'>(88)</span> TIẾT 31: MẶT PHẲNG TOẠ ĐỘ 1. Mục tiêu: a) Về kiến thức :- Thấy được sự cần thiết phải dùng một cặp số để xác định vị trí của một điểm trên mặt phẳng b) Về kỹ năng: - Biết vẽ hệ trục toạ độ - Biết xác định toạ độ của một điểm trên mặt phẳng toạ độ - Thấy được mối quan hệ giữa toán học trong thực tiễn c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định tổ chức: 7B...............7D...............7Q.............. a) Kiểm tra bài cũ: ( 5' ) 15. *Câu hỏi: Hãy điền các giá trị tương ứng của hàm số y = f(x) x. vào. bảng x. -5. -3. -1. 1. 3. 5. 15. y *Đáp án: (10đ) x -5. -3. -1. 1. 3. 5. 15. -5. -15. 15. 5. 3. 1. y -3 b) Dạy nội dung bài mới:. Hoạt động của GV và HS. Hs Gv. Gv K?. Học sinh ghi 1. Đặt vấn đề (7') Nghiên cứu ví dụ 1 trong (Sgk - 65) * Ví dụ 1: (Sgk - 65) Treo bản đồ địa lí VN lên bảng và giới Toạ độ địa lí của mũi Cà Mau là: thiệu: lớp 6 ta đã biết mỗi địa điểm trên 1040 40' Đ (Kinh độ) bản đồ địa lí được xác định bởi 2 số (toạ 8030' B (Vĩ độ) độ địa lí) là kinh độ và vĩ độ chẳng hạn: Toạ độ địa lí của mũi Cà Mau là: 1040 40' Đ (Kinh độ) 8030' B (Vĩ độ) Mũi Cà mau là 1 điểm trên bản đồ địa lí Cho học sinh quan sát chiếc vé xem phim * Ví dụ 2 (Sgk - 65) H.15 (Sgk - 65) Hãy cho biết trên chiếc vẽ số ghế H1 cho ta biết điều gì?.
<span class='text_page_counter'>(89)</span> Hs Chữ H chỉ số thứ tự của dãy ghế (dãy H) số 1 chỉ số thứ tự của ghế trong dãy (ghế số 1) Gv Cặp gồm 1 chữ và 1 số như vậy xác định vị trí chỗ ngồi trong rạp của người có tấm vé này. K? Nếu vào rạp chiếu phim em nhận được số vé có ghi: B12, em hiểu ý nghĩa như thế nào ? Hs Chữ in hoa B chỉ số thứ tự của dãy ghế (dãy B), số 12 bên cạnh chỉ số thứ tự của ghế trong dãy (ghế số 12) ? Hãy tìm thêm ví dụ trong thực tế Hs Vị trí hai quân cờ trên bàn cờ, chữ thứ mấy ở dòng bao nhiêu trong trang sách ... Gv Như vậy số vé được coi là một điểm Trong toán học để xác định vị trí của một điểm người ta thường dùng hai số. Làm thế nào để có hai số đó . Ta vào phần 2 2. Mặt phẳng toạ độ (11') Gv Yêu cầu học sinh đọc nội dung (Sgk - 66) * Khái niệm hệ trục toạ độ Oxy y (Sgk - 66) Gv Giới thiệu mặt phẳng toạ độ: 3 I II 2 Trên mặt phẳng vẽ 2 trục số Ox và Oy 1 vuông góc và cắt nhau tại gốc của mỗi -3 -2 -1 1 2 trục số. Khi đó ta có hệ trục toạ độ Oxy. 0 x -1 - Hướng dẫn học sinh vẽ trục toạ độ. III -2 IV -3 K? Hệ trục toạ độ là gì? được biểu diễn như Hệ trục Oxy thế nào? Ox, Oy gọi là các trục toạ độ. Ox là trục hoành, Oy là trục tung Gv Các trục Ox, Oy gọi là các trục toạ độ. - Giao điểm O biểu diễn số 0 của Ox là trục hoành (Thường vẽ nằm ngang) cả hai trục toạ độ Oy là trục tung (Thường vẽ thẳng đứng) - Mặt phẳng có hệ trục toạ độ là - Giao điểm O biểu diễn số 0 của cả hai hệ trục toạ độ gọi là mặt phẳng trục toạ độ gọi là gốc toạ độ toạ độ - Mặt phẳng có hệ trục toạ độ Oxy gọi là mặt phẳng toạ độ Oxy (chú ý viết gốc toạ.
<span class='text_page_counter'>(90)</span> Gv. Gv Hs Gv. độ trước) - Hai trục toạ độ chia mặt phẳng thành 4 góc: Góc phần thứ I, II, II, IV theo thứ tự ngược chiều quay của kim đồng hồ. Lưu ý: Các đơn vị dài trên hai trục toạ độ được chọn bằng nhau (nếu không nói gì thêm) Đó là nội dung phần chú ý (Sgk - 66) Đọc chú ý (Sgk - 66) Treo bảng phụ có hình vẽ sau: x 3 I IV 2 1 -2 -1 2 1 0 y -1 III -2 II. K? Nhận xét hệ trục toạ độ Oxy của bạn vẽ đúng hay sai? Hs - Ghi sai các trục toạ độ Ox và Oy. - Đơn vị dài trên hai trục toạ độ không bằng nhau cần sửa lại cho bằng nhau. - Ví trí góc phần tư I đúng. Nhưng vị trí các góc phần tư còn lại sai từ góc phần tư I phải quay ngực chiều kim đồng hồ được lần lượt các góc phần tư II, III, IV. K? Em hãy sửa lại Hệ trục toạ độ đó cho đúng 3. Toạ độ của một điểm trong mặt phẳng toạ độ. (14') ? Vẽ một hệ trục toạ độ Oxy Hs Lên bảng vẽ, cả lớp vẽ hệ trục toạ độ Oxy vào vở. Gv Lấy 1 điểm P bất kì trong mặt phẳng toạ độ Oxy. Từ P vẽ các đường thẳng vuông góc với các trục toạ độ. Tb? Các đường vuông góc này cắt trục hoành tại điểm nào? cắt trục hoành tại. y 3. P(1,5; 3) 2 1. -2 -1 0. 1. -1 -2. 2 x.
<span class='text_page_counter'>(91)</span> Hs Gv. Gv. Gv ? Tb? Hs Gv. K? Hs ? Hs Gv. Gv K? Hs. điểm nào? Cắt trục hoành tại điểm 1,5 và cắt trục tung tại điểm 3. Khi đó cặp số (1,5 ; 3) gọi là toạ độ của điểm P và kí hiệu P(1,5; 3) - Số 1,5 gọi là hoành độ của P - Số 3 gọi là tung độ của P Nhấn mạnh: Khi kí hiệu toạ độ của một điểm bao giờ hoành độ cũng được viết trước, tung độ viết sau. Cho học sinh làm ? 1 (Sgk - 66) Bài ? 1 cho biết gì và yêu cầu gì? Hãy cho biết hoành độ và tung độ của điểm P? Số 2 là hoành độ của điểm P, số 3 là tung đôh của điểm P. Hướng dẫn học sinh vẽ. Từ điểm 2 trên trục hoành vẽ đường thẳng vuông góc với trục hoành (vẽ nét đứt) - Từ điểm 3 trên trục tung vẽ đường thẳng vuông góc với trục tung. Hai đường thẳng này cắt nhau tại điểm P. Tương tự như vậy hãy xác định điểm Q Lên bảng xác định điểm Q Hãy cho biết cặp số (2;3) xác định được mấy điểm. Cặp số (2; 3) chỉ xác định được một cặp điểm. Nhấn mạnh: Trên mặt phẳng toạ độ mỗi điểm xác định một cặp số và ngược lại mỗi cặp số xác định được một điểm. Cho học sinh quan sát H.18 và đọc nhận xét (Sgk - 67) Hình 18 cho ta biết điều gì? Muốn nhắc ta điều gì? H.18 cho ta biết điểm M trên mp toạ độ Oxy có hoành độ là x0, có tung độ là y0. - Muốn nhắc ta: Hoành độ của một điểm bao giờ cũng đứng trước tung độ của nó.. - Cặp số (1,5; 3) gọi là toạ độ của điểm P Kí hiệu: P (1,5; 3) - Số 1,5 gọi là hoành độ của P - Số 3 gọi là tung độ của P. ? 1 (Sgk - 66). y 3. P(2; 3) 2 1. -2 0. Q(3; 2) 1. -1 -2. 2. x.
<span class='text_page_counter'>(92)</span> Hs Gv Tb? Hs Tb?. Đọc nhận xét trong (Sgk - 67) Yêu cầu học sinh làm ? 2 (Sgk - 67) ? 2 (Sgk - 67) ? 2 Yêu cầu gì? Giải Viết toạ độ của gốc O Toạ độ của gốc O là (0; 0) Lên bảng thực hiện c) Luyện tập - củng cố (6') 4. Luyện tập (6') ? Hệ trục toạ độ được biểu diễn như thế nào? ? Cách biểu diễn một điểm trên mặt phẳng Bài 32 (Sgk - 67) toạ độ như thế nào? Giải ? Cách xác định toạ độ của một điểm như a. M (-3; 2); N(2;-3); thế nào? P (0; -2); Q (-2; 0) Gv Treo bảng phụ bài 32 (Sgk - 67) b. Trong mỗi cặp điểm M và N, ? Viết toạ độ các điểm M, N, P, Q trong P và Q giá trị hoành độ của điểm này bằng giá trị tung độ H.19 K? Em có nhận xét gì về toạ độ của các cặp của điểm kia và ngược lại điểm M và N, P và Q? d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết: Các khái niệm và quy định của mp toạ độ, toạ độ của một điểm - Làm bài tập: 34, 35, 36, 37, 38 (Sgk - 67, 68) - HSKG : 44,45,46,47 48(SBT-50) - Chuẩn bị tiết sau luyện tập - Hướng dẫn bài 35: Từ mỗi đỉnh kẻ đường thẳng song song với hai trục toạ độ cắt hai trục toạ độ tại hai điểm đó là hoành độ và tung độ của điểm cần tìm. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy:. Dạy lớp 7B.
<span class='text_page_counter'>(93)</span> Ngày dạy: Ngày dạy:. Dạy lớp 7D Dạy lớp 7Q. TIẾT 32: LUYỆN TẬP 1. Mục tiêu: a) Về kiến thức : - Học sinh được vận dụng kiến thức lí thuyết về mặt phẳng toạ độ vào làm bài tập. b) Về kỹ năng: - Rèn kĩ năng vẽ hệ trục toạ độ, xác định vị trí của một điểm trong mặt phẳng toạ độ khi biết toạ độ của nó và ngược lại xác định toạ độ khi cho biết điểm trên mặt phẳng toạ độ c) Về thái độ : - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định tổ chức: 7B...................7D...................7Q.................. a) Kiểm tra bài cũ: ( 6') * Câu hỏi: Học sinh 1: Vẽ hệ trục toạ độ 0xy, đánh dấu vị trí các điểm: A(2; 1,5); B(-3; 3 ); C(0; 1); D( 3; 0) 2. Học sinh 2: Làm bài tập 35 (Sgk- 68) *Đáp án: Học sinh 1: - Vẽ đúng hệ trục toạ độ (2đ) - Đánh dấu đúng (8đ) Học sinh 2: * Toạ độ các đỉnh của hình chữ nhật ABCD: A(0,5; 2); B(2;2); C(2;0); D(0,5; 0) (4đ) * Toạ độ các đỉnh của hình tam giác PQR: P(-3; 3); Q(-1;1); R(- 3;1) (3đ) * Giải thích cách làm: Từ các điểm trong mặt phẳng toạ độ vẽ các đường vuông góc với các trục toạ độ (3đ) * Đặt vấn đề vào bài mới( 1'): Trong tiết học trước chúng ta đã được nghiên cứu về mặt phẳng toạ độ: Vẽ hệ trục toạ độ, xác định điểm trên hệ trục toạ độ, biểu diễn điểm trên mặt phẳng toạ độ. Trong tiết học hôm nay chúng ta sẽ sử dụng các kiến thức đó vào giải bài tập. b) Dạy nội dung bài mới: Hoạt động của thầy trò Học sinh ghi Gv Yêu cầu HS nghiên cứu bài 34 (Sgk - 68) *Bài 34 (Sgk - 68) (6') Hs Hoạt động cá nhận trong vòng 3 phút Giải ? Một điểm bất kỳ trên trục hoành có a. Một điểm bất kì trên trục.
<span class='text_page_counter'>(94)</span> ?. tung độ bằng bao nhiêu? hoành có tung độ bằng 0 Một điểm bất kì trên trục tung có hoàng độ bằng bao nhiêu? b. Một điểm bất kì trên trục tung có hoành độ bằng 0 y 3 2 1. -4 -3 -2 -1 A D. 0 B C. 1. -1 -2 -3. 2 x. Gv Yêu cầu học sinh đọc và nghiên cứu bài 36 (Sgk - 68) *Bài 36 (Sgk - 68) (10') K? Để đánh dấu được các điểm trên mp toạ độ khi biết toạ độ của mỗi điểm ta làm như thế nào? Hs Để biểu diễn mỗi điểm M(x, y) trên mặt phẳng toạ độ ta làm như sau: - Từ điểm x trên trục hoành kẻ đường thẳng song song với trục tung - Từ điểm y trên trục tung kẻ đường thẳng song song với trục hoành - Giao điểm của hai đường thẳng này chính là điểm M K? Để xác định chính xác điểm trên mp toạ Tứ giác ABCD là hình vuông độ ta cần có kĩ năng nào? Hs - Xác định vị trí các điểm chia trên mp toạ độ chính xác - Vẽ các đường thẳng song song chính xác. Tb? Tứ giác ABCD là hình gì? Hs Hình vuông vì có cạnh bằng 2 đơn vị. Có *Bài 37 (Sgk - 68) (10') 4 góc vuông Gv Treo bảng phụ nội dung bài 37 (Sgk - 68) Giải a. (0;0); (1;2); (2;4); (3;6); (4;8) Tb? Hàm số y được cho trong bảng sau: b..
<span class='text_page_counter'>(95)</span> x y. Hs K?. Hs Tb? Hs Gv Hs. 0 0. 1 2. 2 4. 3 6. 4 8. a. Viết tất cả các cặp giá trị tương ứng (x;y) của hàm số trên. Lên bảng viết Vẽ một hệ trục toạ độ Oxy và xác định các điểm biểu diễn các cặp giá trị tương ứng của x ở câu a. O(0;0); A(1;2); B(2;4); C(3;6); D(4;8) Lên bảng vẽ hệ trục toạ độ Oxy và xác định các điểm O, A, B, C, D Hãy nối các điểm A, B, C, D, O có nhận xét gì về 5 điểm này? 5 điểm này thẳng hàng Treo bảng phụ nội dung bài 38 (Sgk - 68) Nghiên cứu bài 38 (Sgk - 68). Tb? Bài toán cho biết gì? Yêu cầu gì? K? Muốn biết chiều cao của từng bạn em là như thế nào? Hs Từ các điểm Hồng, Đào, Hoa, Liên kẻ các đường vuông góc xuống trục trung (Chiều cao) ? Tương tự muốn biết số tuổi mỗi bạn em làm như thế nào? Hs Kẻ các đường vuông góc xuống trục hoành (Tuổi) Tb? Ai là người cao nhất và cao bao nhiêu? Tb? Ai là người ít tuổi nhất và bao biêu tuổi? K? Hồng và Liên ai cao hơn, ai nhiều tuổi hơn? Nêu cụ thể hơn bao nhiêu? Gv c) Củng cố:Chốt lại toàn bài: - Vẽ hệ trục toạ độ Oxy. - Biểu diễn điểm trên mặt phẳng toạ độ. - Tìm toạ độ của một điểm cho trước. Gv Cho học sinh đọc mục: "Có thể em chưa biết" (Sgk - 69). 8 7 6 5 4 3 2 1 0. D C B A 1. 2 3. 4. *Bài 38 (Sgk- 68) (7') Giải. a. Đào là ngườu cao nhất và cao 15dm hay 1,5m b. Hồng là người ít tuổi nhất là 11 tuổi c. Hồng cao hơn Liên (1dm) và Liên nhiều tuổi hơn Hồng (3 tuổi). * Có thể em chưa biết: (4'). x.
<span class='text_page_counter'>(96)</span> K? Như vậy để chỉ một quân cờ đang ở vị trí nào ta phải dùng những kí hiệu nào? Hs Để chỉ một quân cờ ở vị trí nào ta phải dùng 2 kí hiệu một chữ và một số. Tb? Hỏi cả bàn cờ có bao nhiêu ô? Hs Cả bàn cờ có 8.8 = 64 (ô) d) Hướng dẫn HS tự học nhà (2') - Ôn lại lí thuyết về mặt phẳng toạ độ - Ôn tập các bài tập đã chữa và làm các bài tập sau: bài 48, 49 (SBT - 50,51) - HSKG: 50,51,52(SBT - 50,51) - Đọc trước bài : Đồ thị hàm số y = a x( a o) * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................
<span class='text_page_counter'>(97)</span> Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy: TIẾT 33: ĐỒ THỊ HÀM SỐ y = ax (a 0). Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. 1. Mục tiêu: a) Về kiến thức: - Hiểu được khái niệm đồ thị của hàm số, đồ thị của hàm số y = a x. - Biết được ý nghĩa của đồ thị trong thực tiễn và trong nghiên cứu hàm số b) Về kỹ năng: - Biết cách vẽ đồ thị hàm số y = a x. c) Về thái độ : - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS a)Chuẩn bị của GV : Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ b)Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định tổ chức: 7B...........7D............7Q.............. a) Kiểm tra bài cũ: ( Kết hợp trong bài) * Đặt vấn đề vào bài mới: Chúng ta đã biết nhờ có mặt phẳng toạ độ chúng ta biểu diễn được tất cả các điểm. Hàm số là sự phụ thuộc của hai đại lượng. Vậy ta có thể sử dụng mặt phẳng toạ độ để biểu diễn được trực quan mối quan hệ giữa hai đại lượng của đồ thị hay không? Ta vào bài học hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi 1. Đồ thị hàm số là gì? (10') ? 1 (Sgk - 69) Gv Yêu cầu học sinh làm ? 1 (Sgk - 69) ?Tb Đứng tại chỗ thực hiện câu a Giải ?Tb Để đánh dấu các điểm trên mặt phẳng toạ a. { (-2;3); (-1;2); (0;-1); độ ta làm như thế nào? (0,5;1); (1,5;-2)} Hs Để đánh dấu các điểm A(x; y) trên mặt b. y phẳng toạ độ ta làm như sau: M 3 + Từ điểm x trên trục hoành kẻ đường N 2 thẳng song song với trục tung. 1 Q + Từ điểm y trên trục tung kẻ đường thẳng 2 song song với trục hoành. 0 -2 x 1 P -1 + Giao điểm của 2 đường thẳng này chính -2 là điểm A. R Gv Các điểm M, N, P, Q, R biểu diễn các cặp số của hàm số y = f(x). Tập hợp các điểm đó gọi là đồ thị của hàm số y = f(x) đã cho..
<span class='text_page_counter'>(98)</span> K?. Vậy thế nào là đồ thị của hàm số y = f(x) đã cho? Hs Đồ thị của hàm số y = f(x) đã cho là tập hợp các điểm {M, N, P, Q, R} Tb? Vậy đồ thị hàm số y = f(x) là gì? Hs Đọc lại định nghĩa (Sgk - 69) ? Xét ví dụ 1: Vẽ đồ thị của hàm số y = f(x) đã cho trong ? 1 Gv Cho học sinh nghiên cứu đọc ví dụ 1, quan sát hình 23 ?G Qua nghiên cứu hãy cho biết để vẽ đồ thị hàm số y = f(x) ta phải làm những bước nào? Hs + Vẽ hệ trục toạ độ Oxy + Xác định trên mp toạ độ các điểm biểu diễn các cặp giá trị tương ứng (x; y) của hàm số. Gv Vậy đồ thị hàm số y = f(x) có dạng như thế nào ta sang phần 2.. * Định nghĩa (Sgk - 69) * Ví dụ 1 (Sgk - 69) Giải + Cách vẽ: - Vẽ hệ trục toạ độ Oxy - Xác định trên mp toạ độ các điểm biểu diễn các cặp giá trị tương ứng (x; y) của hàm số. + Vẽ đồ thị (Sgk - 70 - H.23). 2. Đồ thị hàm số y = ax (a 0) (25') Gv ?K Hs Gv. Gv Gv Hs Gv. Gv. Xét hàm số y = 2x, có dạng y = ax với a = 2 Hàm số này có bao nhiêu cặp số (x; y) Hàm số này có vô số cặp số (x; y) Chính vì hàm số y = 2x có vô số cặp số (x;y) nên ta không thể liệt kê hết được các cặp số của hàm số. Ta thử vẽ 1 điểm thuộc đồ thị hàm số của nó và qua đó xét xem đồ thị có hình dạng như thế nào? Ta làm ? 2 Yêu cầu học sinh làm ? 2 ? 2 (Sgk - 70) Cho học sinh hoạt động nhóm làm ? 2 vào Giải a. Năm cặp số là: (-2;-4); giấy kẻ ô vuông (trong 6') Đại diện các nhóm trình bày: Nhóm 1: Câu (-1;-2); (0;0); (1;2); (2;4) y a; Nhóm 2: Câu b; Nhóm 3: Câu c b. 4 Chốt lại: Các điểm biểu diễn các cặp số của hàm số y = 2x ta nhận thấy cùng nằm 2 trên một đường thẳng qua gốc toạ độ. 1 -2 Treo bảng phụ mp toạ độ biểu diễn các 0 điểm thuộc đồ thị hàm số y = 2x (số điểm 1 2 x tăng lên). Người ta đã chứng minh được -2 rằng đồ thị của hàm số y = ax (a 0) là một.
<span class='text_page_counter'>(99)</span> K? K?. Hs Gv Hs Hs. Hs. K? Hs. HS. đường thẳng đi qua gốc toạ độ. Nhắc lại kết luận về đồ thị hàm số y = ax (a 0) Từ khẳng định trên để vẽ được đồ thị h/s y=ax (a 0) ta cần biết mấy điểm của đồ thị. Để vẽ được đồ thị của hàm số y = ax (a 0) ta cần biết 2 điểm phân biệt của đồ thị. Yêu cầu làm ? 4 Hoạt động nhóm làm ? 4 (Sgk - 70) Tự chọn điểm A A(4;2) hoặc A(2;1) .... * Kết luận: ? 3 (Sgk - 70) Giải ? 4 (Sgk - 70) Cho hàm số y = 0,5x Giải a. A(2;1) y b. 2 A 1 -2 0 1 2. Đọc nhận xét (Sgk - 71). Đường thẳng OA là đồ thị hàm số y = 0,5x. * Nhận xét (Sgk - 71) Hãy nêu các bước vẽ đồ thị hàm số * Ví dụ 2 (Sgk - 71) Vẽ đồ thị hàm số y = -1,5 x + Vẽ hệ trục toạ độ Oxy Giải + Xác định thêm 1 điểm thuộc đồ thị hàm Với x = -2 thì y = 3 số khác điểm O. Chẳng hạn A(2; -3) Có A(-2;3) thuộc đồ thị của + Vẽ đường thẳng OA, đường thẳng đó là hàm số y = -1,5x. đồ thị hàm số y = - 1,5x Vậy đường thẳng OA là đò thị của hàm số đã cho. y Lên bảng vẽ đồ thị hàm số y = - 1,5x 2 1 -2. ?. x. c) Củng cố luyện tập (8') + Đồ thị hàm số là gì? + Vẽ đồ thị hàm số là làm những công việc gì? + Đồ thị hàm số y = ax (a 0) là gì? + Để vẽ đồ thị hàm số y = ax (a 0) ta làm như thế nào? Có cách nào vẽ nhanh nhất.. 0. 1. 2. x. 3. Luyện tập (8'). *Bài tập: + Đồ thị hàm số y = x là đường thẳng đi qua điểm O(0;0) và điểm A(1;1). + Đồ thị hàm số y = - 2x là đường thẳng đi qua điểm O(0;0) và B(1;-2).
<span class='text_page_counter'>(100)</span> Gv. Hs. Cho học sinh làm bài tập sau: Vẽ đồ thị hàm số y = x và y = - 2x trên cùng 1 mặt phẳng toạ độ. Lên bảng trình bày. y 1. A 1. 0 -2. 2 x. B. d) Hướng dẫn học sinh tự học ở nhà (2') - Nắm vứng các kết luận và cách vẽ đồ thị hàm số y = ax (a 0) - Bài tập về nhà: Bài 40, 41, 42, 43 (Sgk - 72, 73) - HSKG:53,54,55(SBT-53 ) - Hướng dẫn bài 42: Xác định hệ số a ta phải xác định được (x;y) trên mặt phẳng tọa độ. Thay x, y vào công thức y = ax để tính a. - Chuẩn bị tiết sau luyện tập. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................
<span class='text_page_counter'>(101)</span> Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy: TIẾT 34: LUYỆN TẬP. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. 1. Mục tiêu: a) Về kiến thức : - Củng cố khái niệm đồ thị của hàm số, đồ thị của hàm số y = a x.( a 0) b) Về kỹ năng: - Rèn kĩ năng vẽ đồ thị của hàm số y = a x.( a 0) . Biết kiểm tra điểm thuộc đồ thị hay không thuộc đồ thị hàm số. Biết cách xác định hệ số a khi biết đồ thị hàm số. - Thấy được ứng dụng của đồ thị hàm số trong thực tế. c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B...........7D...........7Q.......... a) Kiểm tra bài cũ: (7' ) * Câu hỏi: Nêu khái niệm đồ thị hàm số? Vẽ đồ thị hàm số y = 3x * Đáp án: Đồ thị hàm số y = f(x) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng (x;y) trên mặt phẳng toạ độ. (3đ) Đồ thị hàm số y = 3x đi qua điểm O(0;0) và A(1; 3) (3đ) y 3 2 1. A. 0 -2 -1. 1. 2. x. (4đ). b)Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi Cho học sinh làm bài 41 (Sgk - 72) *Bài 41 (Sgk - 72) (10') ? K? Muốn xét xem điểm nào thuộc đồ Giải thị hàm số, điểm nào không thuộc.
<span class='text_page_counter'>(102)</span> đồ thị hàm số ta làm như thế nào?. 1 ;1 * Xét điểm A 3 1 Thay x 3 vào y = - 3x có: 1 y = (-3). 3 . Hs Xét từng điểm thay giá trị của x vào hàm số y = -3x tính giá trị của y. Nếu toạ độ điểm A, B, C có cùng tung độ thì điểm đó thuộc đồ thị hàm số. Nếu khác tung độ thì điểm đó y =1 bằng tung độ điểm A. Vậy điểm A thuộc đồ thị hàm số y = -3x không thuộc đồ thị hàm số. 1 Gv Điểm M(x0; y0) thuộc đồ thị hàm số ; 1 y =f(x) nếu y0 = f(x0) * Xét điểm B 3 1 1 ;1 Ví dụ: Xét điểm A 3 . Ta thay x Thay x 3 vào y = - 3x có: 1 1 3 vào hàm số y = -3x có y = (-3). y = (-3). 3 y =1 khác tung độ điểm 1 B. Vậy điểm B không thuộc đồ thị hàm 3 y =1 bằng tung độ điểm A. số y = -3x. Vậy điểm A thuộc đồ thị hàm số y = -3x ? Tương tự như vậy hãy xét xem điểm B và điểm C có thuộc đồ thị hàm số y = -3x không? Hs Hai em lên bảng làm bài Gv Nhận xét, chữa hoàn chỉnh và minh hoạ các điểm A, B, C trên hệ trục toạ độ Oxy Gv Yêu cầu h/s làm bài 42 (Sgk - 72) ? Cho biết yêu cầu của bài Tb Xác định hệ số a ?. * Xét điểm C(0;0) Thay x = 0 vào y = - 3x có: y = (-3).0 = 0 bằng tung độ điểm C Vậy điểm C thuộc đồ thị hàm số: y = - 3x. *Bài 42 (Sgk - 72) (9') Giải: a. Ta có A(2;10 thuộc đồ thì hàm số trên nên thay x = 2; y = 1 vào hàm số y = ax ta được:. 1 Gv Gợi ý: Hãy đọc toạ độ điểm A. Thay a 2 1 = a.2 giá trị x, y vào công thức tính a. Hs Lên bảng làm - Cả lớp làm vào vở K? Để tìm điểm có hoành độ 1 trên b. Từ điểm có hoành độ bằng 1 . 2 2. đồ thị ta làm như thế nào? Hs Từ điểm. 1 2. kẻ đường thẳng song Vẽ đường thẳng vuông góc với Ox cắt đồ 1 1. ; song với trục tung, đường thẳng này thị tại điểm B 2 4 cắt đường thẳng OA tại 1 điểm giao c, Từ điểm có tung độ bằng - 1. Vẽ.
<span class='text_page_counter'>(103)</span> 1. điểm đó là điểm có hoành độ 2 K? Gv. Gv Gv Hs. Hs K? Hs K? K? Hs. Tương tự hãy đánh dấu điểm có tung độ bằng -1. Chốt lại dạng bài tập này: Để xác định hệ số a ta phải xác định xem điểm đó có toạ độ là bao nhiêu tức là giá trị (x; y) thay vào công thức để tính a. Yêu cầu h/s làm bài 44 (Sgk - 73) Cho h/s hoạt động nhóm bài 44 (Sgk/73) Nhóm 1: Vẽ đồ thị của hàm số y = - 0,5x Nhóm 2: làm ý a, Nhóm 3: làm ý b, c Đại diện các nhóm trình bày Hãy cho biết tìm f(a) là gì? Là tìm giá trị của hàm số (tìm y) tại x=a Hãy cho biết để tìm f(a) bằng đồ thị hàm số ta làm như thế nào? Hãy biểu diễn x theo y x. y 0,5. Từ y = - 0,5x Tb Khi y > 0 thì x mang giá trị gì? ? Khi y < 0 thì x mang giá trị gì? Gv Nhấn mạnh cách sử dụng đồ thị để từ x tìm y và ngược lại. Gv Cho học sinh làm bài 43 (Sgk - 72) Gv Treo bảng phụ H.27 Tb Đọc đồ thị cho biết thời gian ? chuyển động của người đi bộ, của người đi xe đạp. ? Quãng đường của người đi xe đạp và người đi bộ ? Vận tốc của người đi xe đạp và người đi bộ K? c) Củng cố:. đường thẳng vuông góc với Oy cắt đồ thị hàm số tại điểm C (-2; - 1). *Bài 44 (Sgk - 73) (9') Giải Đồ thị hàm số y = - 0,5x đi qua điểm O(0;0) và A(2; -1) y 3 2 1 1 2 0. 4. -5 -4 -3 -2 -1 -1 -2. x. a. Ta có: f(2) = -1; f(-2) = 1; f(4) = -2; f(0) = 0 b. y = - 1 x = 2 y = 2,5 x= -5 y=0 x=0 c. Khi y > 0 thì x< 0 Khi y < 0 thì x > 0. *Bài 43 (Sgk - 72) (8') Giải a. Thời gian chuyển động của người đi bộ là 4(h) Thời gian chuyển động của người đi xe đạp là 2(h) b. Quãng đường đi được của người đi bộ là 20 (Km) Quãng đường đi được của người đi xe.
<span class='text_page_counter'>(104)</span> Đồ thị hàm số y = ax (a 0) là đạp là 30 (km) đường như thế nào? K? Muốn vẽ đồ thị hàm số y = ax (a c. Vận tốc của người đi bộ là: 0) ta tiến hành như thế nào? 20 : 4 = 5 (Km/h) Hs Ta chỉ cần xác định thêm một điểm Vận tốc của người đi xe đạp là: thuộc đồ thị và khác gốc O. Muốn 30 : 2 = 15 (Km/h) vậy ta cho x giá trị khác 0 tìm giá trị tương ứng của y, cặp giá trị đó là toạ độ của điểm thứ hai. d) Hướng dẫn HS tự học ở nhà (2') - Ôn lại lí thuyết của chương I, kiến thức trọng tâm của chương II . a a 0 x (Sgk - 74, 75, 76). - Đọc bài đọc thêm: Đồ thị hàm số y - Làm bài 45, 47 (Sgk - 73, 74), bài 48, 49, 50 (Sgk - 76, 77) - Hướng dẫn bài 48: Để tính 250g nước biển đó chứa bao nhiêu gam muối. + Đổi 25Kg muối ra cùng đơn vị gam + Áp dụng tính chất của đại lượng tỉ lệ thuận để giải.Ôn tập học kì. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................
<span class='text_page_counter'>(105)</span> Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy: TIẾT 35: ÔN TẬP CHƯƠNG II. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. 1. Mục tiêu: a) Về kiến thức: - Học sinh được ôn lại các kiến thức lí thuyết trọng tâm của chương II (đại lượng tỉ lệ thuận, tỉ lệ nghịch, khái niệm về hàm số, mặt phẳng tọa độ, đồ thị hàm số, đồ thị hàm số y = ax). Được làm các bài tập cơ bản của chương - Giúp học sinh củng cố khắc sâu kiến thức lí thuyết của chương làm tiền đề cho các để học hàm số và đồ thị tiếp theo. b) Về kỹ năng: - Rèn kĩ năng tổng hợp kiến thức. c) Về thái độ: - Học sinh yêu thích môn học 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B...........7D............7Q............ a) Kiểm tra bài cũ: ( Kết hợp trong lúc ôn tập ) * Đặt vấn đề vào bài mới(1'): Trong chương II chúng ta đã được học về hàm số và đồ thị. Đây là một chương quan trọng. Để hiểu rõ hơn về kiến thức của chương chúng ta vào tiết ôn tập hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS * Hoạt động 1: Ôn tập lí thuyết của chương (20') Tb Phát biểu khái niệm về hai đại lượng ? tỉ lệ thuận( viết công thức liên hệ)? Tb Phát biểu tính chất của hai đại lượng ? tỉ lệ thuận? Hs Nếu hai đại lượng tỉ lệ thuận với nhau thì: - Tỷ số hai giá trị tương ứng của chúng. Học sinh ghi I. Lý Thuyết 1. Đại lượng tỉ lệ thuận: - Công thức liên hệ: y= a x(a a là hệ số tỉ lệ - Tính chất. 0);. Nếu y và x là hai đại lượng tỉ lệ thuận thì:.
<span class='text_page_counter'>(106)</span> luôn không đổi + - Tỉ số hai giá trị bất kì bằng tỉ số hai giá trị tương ứng của đại lượng kia. + ? ?. y1 ; x1 y1 x1. y2 y3 ; ;… không đổi x2 x3 y2 y 3 … x2 x3. Phát biểu khái niệm về hai đại lượng 2. Đại lượng tỉ lệ nghịch tỉ lệ nghịch( viết công thức liên hệ)? Phát biểu tính chất của hai đại lượng - Công thức liên hệ: a tỉ lệ nghịch? y hoặc (x.y = a) x. Hs Nếu hai đại lượng tỉ lệ nghịch với nhau thì: - Tích hai giá trị tương ứng của chúng luôn không đổi - Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại kượng kia. K? Hàm số là gì? Hs Nếu đại lượng y phụ thuộc vào đại lượng x thay đổi sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x là biến số. - Tính chất: Nếu y và x là hai đại lượng tỉ lệ nghịch thì: + x1. y1, x2.y2, không đổi x. y. x. y. 1 2 1 3 + x y , x y , .... 2 1 3 1. 3. Hàm số- mặt phẳng tọa độ a. Khái niệm hàm số: y b. Hệ trục tọa độ 0x x - Ox là trục hoành 0 - Oy là trục tung. c. Tọa độ của một điểm trong mặt phẳng tọa độ. Trong mặt phẳng tọa độ mỗi cặp số (x, y) được biểu diễn bởi một điểm. ? Đồ thị hàm số là gì? 4. Đồ thị hàm số y= a x( a 0) Hs Là tập hợp tất cả các điểm biểu diễn cặp a. K/n đồ thị hàm số giá trị x, y trên mặt phẳng tọa độ b. Đồ thị h/số y = a x( a 0) là đường thẳng đi qua gốc tọa độ c. Vẽ đồ thị hàm số y = a x( a 0) + Xác định thêm một điểm A(x; y) + Nối O với A ta được đồ thị hàm số y = a x Hoạt động 2: Ôn tập bài tập ( 21') II. Bài tập ? Nước biển và muối có mối quan hệ gì? *Bài 48 (Sgk - 76) Đổi: 25 kg = 25000gam Hs Tỉ lệ thuận Gọi lượng muối trong 250 gam nước biển là x.
<span class='text_page_counter'>(107)</span> Hs Hoạt động cá nhân trong 3 phút, lên bảng trình bày Gv Chú ý cho học sinh khi giải bài tập dạng này cần : - Xác định xem thuộc bài toán tỉ lệ thuận hay tỉ lệ nghịch. - Đưa về cùng đơn vị đo. Gv Bài toán về đại lượng tỉ lệ nghịch Ba đội lao động làm việc như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 6 ngày, đội thứ 3 trong 8 ngày. Hỏi mỗi đội có bao nhiêu máy làm việc (có cùng năng suất), biết rằng đội thứ nhất có nhiều hơn đội thứ hai 2 máy. Gv Treo bảng phụ đề bài toán. Vì lượng nước và lượng muối là hai đại lượng tỉ lệ thuận nên ta có: 250 x. 1000000 25000. 40. ⇒. x =. 6,25g. *Bài tập: Giải Gọi số máy của ba đội theo thứ tự là x, y, z. Vì năng suất của mỗi máy là như nhau nên số máy và số ngày sản xuất là hai đại lượng tỉ lệ nghịch, ta có: 4x = 6y = 8z hay:. x 1 4. y 1 6. z 1 8. x− y 1 1 − 4 6. 24. K? Hs. x 1 24 x 6 1 4 Vậy 4 1 y z Đây là bài toán tỉ lệ nghịch vì Số máy 24 y 4 1 1 6 ; (năng suất) tỉ lệ nghịch với thời gian. 6 8 1 24 z 3 8. Hãy xác định dạng của bài toán. Gv Cho học sinh hoạt động nhóm trong 5 Vậy số máy của ba đội là : 6, 4, 3 phút máy c) Củng cố (2') Qua bài ôn tập các em cần chú ý đến 2 dạng bài toán : đại lượng tỉ lệ thuận, đại lượng tỉ lệ nghịch. Công thức biểu diễn đại lượng tỉ lệ thuận, tỉ lệ nghịch. Mặt phẳng toạ độ, đồ thị hàm số. d)Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết như phần ôn tập - Làm bài tập: 51, 52, 54, 55 (Sgk - 77) -HSKG:65,66,69,70(SBT-58) - Chuẩn bị bài sau: ôn tập về mặt phẳng toạ độ, đồ thị hàm số..
<span class='text_page_counter'>(108)</span> - Hướng dẫn bài tập 55: Để biết một điểm có thuộc đồ thị hàm số hay không ta thay toạ độ (x; y) vào hàm số nếu thoả mãn (hai vế bằng nhau) thì thuộc đồ thị hàm số nếu không thoả mãn thì không thuộc đồ thị hàm số. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. TIẾT 36: ÔN TẬP HỌC KÌ I (Tiết 1) 1. Mục tiêu: a) Về kiến thức: - Học sinh được hệ thống hoá kiến thức của chương I: Các phép tính về số hữu tỉ, các tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, khái niệm số vô tỉ, số thực, căn bậc hai - Thông qua giải các bài tập, củng cố khắc sâu các kiến thức trọng tâm của chương. b) Về kỹ năng: - Rèn kĩ năng thực hiện các phép tính về số hữu tỉ, kĩ năng vận dụng tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, tạo điều kiện cho học sinh làm tốt bài kiểm tra cuối chương. c) Về thái độ : -Thấy được sự cần thiết phải ôn tập sau một chương của môn học. 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Phiếu học tập b)Chuẩn bị của HS : Đọc trước bài mới + ôn tập các kiến thức liên quan. 3.Tiến trình bài dạy: * Ổn định tổ chức: 7B..............7D..................7Q............. a) Kiểm tra bài cũ: ( Kết hợp trong lúc ôn tập ) * Đặt vấn đề vào bài mới(1') : Trong chương I đại số 7. Chúng ta được nghiên cứu về số hữu tỉ. Số thực. Trong tiết học này chúng ta sẽ ôn tập lại các kiến thức trọng tâm của chương..
<span class='text_page_counter'>(109)</span> b) Dạy nội dung bài mới: Hoạt động của GV và HS * Ôn tập lí thuyết (20'). Học sinh ghi I. Lý thuyết: 1. Với a, b, c, d, m. Z, m > 0. Ta có:. Hs Yêu cầu HS hoàn thiện các - Phép cộng: a b a+b m m m bài tập sau: a b a− b - Phép trừ: m m m Phiếu học tập số1: Hãy viết dạng tổng quát các - Phép nhân: a c a . c b d b. d quy tắc sau: a : c a d a. d - Phép chia: b 1. Cộng trừ hai số hữu tỉ. d b c b.c 2. Nhân chia hai số hữu tỉ - Giá trị tuyệt đối của một số hữu tỉ: x neu x 0 x x neu x 0. 3. Giá trị tuỵệt đối của một số hữu tỉ. Hs Gv Gv. Hs. - Luỹ thừa: với x, y Q, m, n N + am. an= am+n 4. Phép toán luỹ thừa: + am: an= am-n (m n x 0) - Tích và thương của hai luỹ + (am)n= am.n thừa cùng cơ số + (x.y)n= xn.yn - Luỹ thừa của luỹ thừa - Luỹ thừa của một tích - Luỹ thừa của một thương n Thảo luận nhóm trong 3 phút x xn y 0 Nhận xét đánh giá trong 2 + y y n phút Phiếu học tập số2: 2. Tính chất của tỉ lệ thức: Hãy viết dạng tổng quát các + Nếu a c thì a.d = b.c b d quy tắc sau: + Nếu a.d = b.c và a, b, c, d khác 0 thì ta có 1. Tính chất của tỉ lệ thức các tỉ lệ thức: 2. Tính chất của dãy tỉ số a c ; a b ; d c ; d bằng nhau b d c d b a c 3. Khi nào một phân số tối b giản được viết dưới dạng số a thập phân hữu hạn, khi nào thì - Tính chất của dãy tỉ số bằng nhau: viết được dưới dạng số thập Từ tỉ lệ thức a c a c a+ c phân vô hạn tuần hoàn? ⇒ b d b d b+d 4. Quy ước làm tròn số a−c 5. Biểu diễn mối quan hệ giữa b− d các tập hợp số N, Z, Q, R Từ dãy tỉ số bằng nhau Thảo luận nhóm trong 4 phút a c e a c e . b. . d. f. ⇒. . b. . d. . f.
<span class='text_page_counter'>(110)</span> a+ c+ e a − c+ e b+d + f b− d + f. - Ta có N Z Q R Ôn tập bài tập (21') II. Bài tập: Hs Làm Bài tập 98. a,b *Bài 98 (a, b Sgk - 49) Hs Hoạt động cá nhân trong 3 Giải 21 − 3 1 phút a. y 10 : 5 -3 2 Gv Thảo luận nhóm trong 2 phút Nhận xét đánh giá trong 2 phút 64. Gv K?. K? Tb? Hs. 3. −8. b. y = - 33 8 11 Làm Bài tập 103(Sgk/50) *Bài 103 (Sgk - 50) Gọi lãi xuất của hai tổ 1 và 2 Giải lần lượt là a, b thì ta có điều Gọi lãi xuất của hai tổ 1 và 2 lần lượt là a, b a b gì? Ta có: 3 5 và a + b = 12 800 000 Chia lãi theo tỉ lệ 3: 5 điều đó Theo tính chất của dãy tỉ số bằng nhau ta có: có nghĩa gì? a b a+b 12800000 1 600 Hãy vận dụng tính chất của tỉ 3 5 3+5 8 lệ thức để tìm a, b? 000 a b 3 5. và a + b = 12 800 Vậy a = 1 600 000.3 = 4 800 000 b = 1 600 000.5 = 8 000 000. 000 Gv Chốt lại: đây là dạng toán thực tế thường gặp trong chương trình đại số 7 c) Củng cố (2') Trong chương I các em cần nắm vững các kiến thức lí thuyết như ở phần ôn tập. Cần vận dụng các kiến thức lí thuyết đó một cách hợp lí trong khi giải bài tập. d) Hướng dẫn HS tự học ở nhà (2') - Học lí thuyết: Như phần ôn tập- Ôn lại các bài tập đã chữa ở phần ôn tập chương I - Làm bài tập: 130,133,135(SBT-22) *Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................ ......................................................................................................................................................................................................................................... ..........................................................................................................................................................................................................................................
<span class='text_page_counter'>(111)</span> ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. TIẾT 37: ÔN TẬP HỌC KÌ I (Tiết 2) 1. Mục tiêu: a) Về kiến thức: - Học sinh được hệ thống hoá kiến thức của chương I: Các phép tính về số hữu tỉ, các tính chất của tỉ lệ thức và dãy tỉ số bằng nhau, khái niệm số vô tỉ, số thực, căn bậc hai - Qua giải các bài tập, củng cố khắc sâu các kiến thức trọng tâm của chương. b) Về kỹ năng: -Tiếp tục rèn kỹ năng về giải các bài toán về đại lượng TLT, tỉ lệ nghịch, vẽ đồ thị hàm số y = ax (a 0). Xét điểm thuộc, không thuộc đồ thị hàm số. c) Về thái độ: Học sinh thấy được ứng dụng của toán học vào đời sống. 2. Chuẩn bị của GV và HS: a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Đồ dùng dạy học + Bảng phụ + Phấn mầu. b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan theo yêu cầu của giáo viên. 3.Tiến trình bài dạy: * Ổn định tổ chức7B:…………7D...............7Q................ a) Kiểm tra bài cũ: ( Kết hợp trong lúc ôn tập) b) Dạy nội dung bài mới: Hoạt động của GV và HS Học sinh ghi *Bài tập 1: (15') Gv Chia số 310 thành 3 phần a. Tỷ lệ thuận với 2, 3, 5 Chia số 310 thành 3 phần.
<span class='text_page_counter'>(112)</span> b. Tỷ lệ nghịch với 2, 3, 5 ?K Hai em lên bảng làm bài Mỗi dãy làm một câu.. a. Tỷ lệ thuận với 2, 3, 5 Giải Gọi 3 số cần tìm lần lượt là a, b, c, mà a, b, c tỉ lệ thuận với 2, 3, 5 và tổng 3 số là 310 nên ta có: a b c 2 3 5 và a + b +c = 310. áp dụng tính chất của dãy tỉ số bằng nhau ta có: a b c a b c 310 31 2 3 5 2 3 5 10 vậy: a b 31 a 31.2 62; 31 b 31.3 93 2 3 c 31 c 31.5 155 5. Hs Nhận xét bài của 2 bạn. Do đó 3 số cần tìm lần lượt là 62; 93 và 155 b. Tỉ lệ nghịch với các số 2, 3, 5 Gv Chữa bài hoàn chỉnh Gọi 3 số cần tìm lần lượy là x, y, z * Lưu ý: Chia 1 số thành 3 Chia số 310 thành 3 phần tỉ lệ nghịch với 2, 3, phần tỉ lệ như vậy ta đưa về 5 ta phải chia 310 thành 3 phần tỉ lệ thuận với x y z bài toán tỉ lệ thuận và áp dụng 1 1 1 ; ; tính chất của dãy tỉ số bằng 2 3 5 . Ta có 12 13 15 và x + y +z = 310 nhau để tìm 3 số áp dụng tính chất của dãy tỉ số bằng nhau ta có: x 1 2. y z x y z 310 1 1 1 1 1 31 300 3 5 2 35 30. Gv Đưa đề bài lên bảng phụ: Hai xe ôtô cùng đi từ A đến B. Vận tốc xe I là 60 Km/h. Vận tốc xe II là 40 Km/h. Thời gian xe I đi ít hơn xe II là 30 phút.. x. Tính thời gian mỗi xe đi từ A đến B và chiều dài quãng đường AB. Tb Bài toán cho biết gì? Yêu ? cầu tìm gì? Hs VI = 60 Km/h VII = 40 Km/h tII - tI = 30 phút Tính tI = ? tII = ? SAB = ? Gv Cho học sinh hoạt động nhóm. Do đó 3 số cần tìm là 150; 100 và 60. 1 2. y 1 3. z 1 5. 1 300 x 300 150 2 1 300 y 300 100 3 1 300 z 300 60 5. *Bài tập 2: (13') Ôtô đi A đến B: VI = 60 Km/h VII = 40 Km/h tII - tI = 30 phút Tính tI = ? tII = ? SAB = ? Giải.
<span class='text_page_counter'>(113)</span> - gọi đại diện 1 nhóm lên Gọi thời gian xe I đi là x (h) và thời gian xe II bảng trình bày đi là y (h) Hs Nhận xét - Bổ xung Xe I đi với vận tốc 60km/h hết x (h) Xe II đi với vận tốc 40km/h hết y (h) Hai xe cùng đi một quãng đường do đó vận tốc và thời gian là hai đại lượng tỉ lệ nghịch. áp dụng tính chất đại lượng tỉ lệ nghịch ta có: 60 y 1 ( h) 40 x và y - x 2 3 y x y 1 ( h) 2 x 2 3 và y - x 2. áp dụng tính chất của dãy tỉ số bằng nhau ta có: x y y x 12 1 2 3 3 2 1 2 x 1 y 1 3 x 1(h); y (h) 3 2 2 Vậy 2 2. Quãng đường AB dài 60.1 = 60 (Km) Thời gian xe I đi hết 1 giờ, thời gian xe II đi 3 là 2 h = 1h30'. K?. Hàm số y = ax (a 0) cho ta biết y và x là 2 đại lượng tỉ lệ thuận. Đồ thị của hàm số y = ax (a 0) có dạng ntn? Hs Đồ thị hàm số y = ax (a 0) là một đường thẳng đi qua gốc toạ độ Gv Yêu cầu học sinh làm bài tập sau: K? Muốn tính y0 ta làm như thế nào? Hs Ta thay x = 3 và y = y0 vào hàm số y = - 2x. *Bài tập 3: (15') Cho hàm số y = - 2x a. Biết điểm A (3; y0) thuộc đồ thị hàm số: y = - 2x. Tính y0. Giải a. A(3; y0) thuộc đồ thị hàm số y = - 2x Ta thay x = 3 và y = y0 vào hàm số y = - 2x Có: y0 = -2.3 y = - 6. b. Điểm B (1,5; 3) có thuộc đồ thị của hàm số: y = - 2x hay không? Tại sao? Xét điểm B(1,5; 3) Ta thay x = 1,5 vào hàm số y = - 2x có: y = -2.1,5 y = - 3 khác tung độ của điểm B Hs Lên bảng trình bày - Cả lớp Vậy điểm B không thuộc đồ thị hàm số y = làm vào vở. -2x K? Điểm B (1,5; 3) có thuộc đồ c. Vẽ đồ thị hàm số y = - 2x thị của hàm số y = - 2x hay Với x = 1 ta được y = - 2.1 = - 2 có A(1; - 2) không? Tại sao? thuộc đồ thị hàm số y = - 2x ?. Muốn vẽ đồ thị hàm số: Vậy đường thẳng OA là đồ thị hàm số y = y = - 2x ta làm như thế nào? 2x y Hs Ta vẽ hệ trục toạ độ Oxy và 2 1 1 -2 -1 0 2 x.
<span class='text_page_counter'>(114)</span> A. xác định thêm 1 điểm khác điểm O Hs Lên bảng vẽ - Cả lớp vẽ vào vở. Gv Nhận xét - Chữa hoàn chỉnh. c) Củng cố, luyện tập(Kết hợp trong bài dạy) d) Hướng dẫn HS tự học ở nhà (2') - Ôn tập theo các câu hỏi ôn tập chương I và chương II - Làm lại các dạng bài tập đã chữa trong các tiết ôn tập và chữa bài tập - Tiết sau kiểm tra theo lịch của nhà trường *Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... Ngày soạn:. Ngày kiểm tra: Ngày kiểm tra: Ngày kiểm tra: TIẾT 38,39:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. KIỂM TRA HỌC KÌ I. (Cả đại số và hình học) 1. Mục tiêu a. Kiến thức: Kiểm tra được học sinh một số kiến thức trọng tâm của chương trình học kì I: các phép toán số hữu tỉ, tỉ lệ thức, tính chất dãy tỉ số bằng nhau; đường thẳng vuông góc, đường thẳng song song. Các trường hợp bằng nhau của hai tam giác. b. Kĩ năng: Rèn kĩ năng vẽ hình, suy luận Rèn tính cẩn thận chính xác khi giải toán c. Thái độ: Thấy được sự cần thiết, tầm quan trọng của bài kiểm ra; Có tính tự giác, tích cực làm bài 2. Nội dung đề a. Ma trận đề Cấp độ Chủ đề. 1. Tập hợp Q các số hữu tỉ Số câu Số điểm. Nhận biết. Thông hiểu. Thực hiện các phép tính về số hữu tỉ 2 (2a;b) 1,5. Vận dụng Cấp độ thấp cấp độ cao. Tìm giá trị x trong biểu thức 1 (3a) 1. Tổng. số câu: 3 số điểm:2,5.
<span class='text_page_counter'>(115)</span> tỉ lệ % 2. Tỉ lệ thức Số câu Số điểm tỉ lệ % 3. Hàm số. Số câu Số điểmtỉ lệ % 4. Đường thẳng vuông góc. Đường thẳng song song Số câu Số điểmtỉ lệ % 5. Tam giác. Số câu Số điểmtỉ lệ % Tổng số câu Tổng số điểm. tỉ lệ %. 15%. 10%. tỉ lệ : 25%. tìm x trong tỉ lệ thức 1 (3b) 0,5 5% Nêu khái niệm Giải bài toán tỉ lệ thuận tỉ lệ vận dụng tính chất dãy tỉ số 1 (1b) 1 (c4) 1 2 Nêu được dấu hiệu nhận biết hai đường thẳng song song 1 (1a) 1. số câu:1 số điểm:0,5 tỉ lệ : 5%. số câu : 2 số điểm: 3 tỉ lệ: 30% chứng minh được đường thẳng song song 1 (5c) 0,5. Vẽ được hình theo đề bài, ghi GT; KL. chứng minh được đường thẳng song song 2 (5d) số câu: 3 1 số điểm:2,5 tỉ lệ: 25%. 1 (c5) 0.5. Chứng minh được hai tam giác bằng nhau, hai góc bằng nhau 2 (5a,b) 1. 3. 4. 3. 1. 2,5=25%. 4,0=40%. 2,0=20%. 1,5=15%. b. Nội dung đề Câu 1 (2 điểm): a) Nêu định nghĩa đại lượng tỉ lệ thuận? b) Nêu dấu hiệu nhận biết hai đường thẳng song song? Câu 2 (1,5 điểm): Thực hiện các phép tính sau (tính nhanh nếu có thể) 2 1 1 1 : 2. a) 2 4 2 ;. 8,75 8,75 3,8 0,8 b) Câu 3 (1,5 điểm) Tìm x biết. . số câu: 3 số điểm:1,5 tỉ lệ : 15% tổng số câu 11 số điểm:10 tỉ lệ:100%.
<span class='text_page_counter'>(116)</span> x 2,5 4 0,4 a). 1 3 1 x 2 b) 6 2 Câu 4 (2 điểm): Để thực hiện kế hoạch xây dựng trường chuẩn quốc gia, nhà trường giao cho ba lớp 7A, 7B, 7C trồng và chăm sóc 45 cây xanh. Tính số cây mỗi lớp đã trồng và chăm sóc, biết rằng số cây của ba lớp tỉ lệ với 3;5;7. Câu 5 ( 3 điểm) : Cho tam giác ABC. M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM= MD. Chứng minh rằng: a) Hai tam giác ABM và DCM bằng nhau; b) Hai góc BAM , CDM bằng nhau; c) AB song song với DC; d) BD song song với AC . 3. Đáp án- biểu điểm Câu 1: (2 điểm) a) Nếu đại lượng y liên hệ với đại lượng x theo công thức y = kx (với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k (1 điểm) b) Nếu đường thẳng c cắt hai đường thẳng a, b và trong các góc tạo thành có một cặp góc so le trong bằng nhau (hoặc một cặp góc đồng vị bằng nhau) thì a và b song song với nhau. (1điểm) Câu 2 : (1,5điểm) Thực hiện phép tính (tính nhanh nếu có thể) 2 1 1 1 1 1 1 : 2. 2 : 4 2. 2 = 4 4 2 a) (0,5 đ) = 1+1 = 2 (0,25 đ) 8, 75 8, 75 3,8 0,8 b) 8,75 8,75 3,8 0,8 = (0,5 đ) = 0 + 3 = 3 (0,25 đ) Câu3: (1,5 điểm) x 2,5 4.2,5 x 25 4 0,4 0,4 a) vậy x = 25 (0,5 đ). b). 1 3 1 3 1 1 x x 6 2 2 2 2 6. 3 1 x 2 3. (0,25 đ). (0,25 đ).
<span class='text_page_counter'>(117)</span> 1 3 x : 3 2 2 x 9 2 x 9 Vậy:. (0,25 đ) (0,25 đ). Câu 4 : (2 điểm) Gọi số cây đã trông và chăm sóc của 3 lớp 7A; 7B; 7C lần lượt là a, b, c (0,25 đ) Vì số cây tỉ lệ với 3; 5;7 a b c 3 5 7 ; a+b+c 45 Theo đầu bài ta có : (0,25 đ) Áp dụng tính chất mở rộng của dãy tỉ số bằng nhau, ta có:. a b c a b c a + b + c 45 + + + + 3 3 5 7 3 5 7 3 + 5 + 7 15. (0,5. a b c 3 a 3.3 9 3 b 5.3 15 3 c 7.3 21 3 5 7 ; ;. Từ: (0,75đ ) Vậy số cây của lớp 7A là: 9 cây; lớp 7B là 15cây; lớp 7C là 21cây (0,25đ ) Câu 5 : (3 điểm). (0,25 đ) GT ABC M BC, MB=MC ; Trên tia đối AM lấy D/ AM=MD KL a) ABM= DCM b) BAM = CDM c) AB // DC d) BD// AC (0,25 đ) Chứng minh: a, Xét ABM và DCM có: MB=MC (theo gt) AMB = DMC (hai góc đối đỉnh). AM=MD (theo gt) Do đó ABM= DCM (c.g.c). (0,5 đ) (0,25 đ). b, Do ABM= DCM (kết quả câu a) BAM = CDM (hai góc tương ứng) (0,25đ) c, Vì BAM = CDM AB//DC (Dấu hiệu nhận biết hai đường thẳng song song) (0,5 đ).
<span class='text_page_counter'>(118)</span> d) Xét ACM và DBM có: MB=MC ( theo gt). (0,25đ). DMB = AMC (hai góc đối đỉnh) ACM= DBM (c.g.c) (0,25đ) AM=MD (theo gt) Do ACM= DBM BDM = CAM. (hai góc tương ứng). (0,25đ). BDM = CAM BD// AC (dấu hiệu nhận biết hai đường thẳng song song. (0,25 đ) Duyệt của BGH. Duyệt của tổ trưởng ...................................................................................................................... ........................................................................................................ ...................................................................................................................... ........................................................................................................ ...................................................................................................................... ........................................................................................................ .......................................................... .................................................... Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. TIẾT 40: TRẢ BÀI KIỂM TRA HỌC KÌ I( Phần đại số). 1. Mục tiêu: - Nhận xét đánh giá khả năng làm bài của học sinh. - Chữa bài kiểm tra phát hiện những ưu nhược điểm của học sinh. - Đánh giá khả năng vận dụng của học sinh. 2. Chuẩn bị của GV và HS a) Chuẩn bị của GV: Bài kiểm tra của HS, đề kiểm tra, đáp án, biểu điểm. b) Chuẩn bị của HS: Đồ dùng học tập 3. Tiến trình bài dạy: Hoạt động của GV và HS Phần ghi bảng Câu 1: GV Cho HS đọc lại đề bài a) Nếu đại lượng y liên hệ với đại Câu 1 : a) Nêu định nghĩa đại lượng x theo công thức y = kx (với k là hằng số khác 0) thì ta nói y tỉ lệ thuận với lượng tỉ lệ thuận? x theo hệ số tỉ lệ k (1 điểm) HS Đứng tại chỗ phát biểu định nghĩa..
<span class='text_page_counter'>(119)</span> Câu 2 : Thực hiện các phép tính sau (tính nhanh nếu có thể) 2 1 1 1 : 2. 2; a) 2 4. 8, 75 8, 75 3,8 0,8 b) Câu 3 (1,5 điểm) Tìm x biết x 2,5 4 0,4 a) ?. . 1 3 1 x 2 b) 6 2. Hãy nêu thứ tự thực hiện phép tính trong biểu thức ? Thực hiện phép tính trong ngoặc GV trước. ? Yêu cầu 1 HS lên bảng. HS Hãy nêu cách để tìm x? GV TL Gọi 1 HS khá lên bảng trình bày. HS. Câu 2 : (1,5điểm) Thực hiện phép tính (tính nhanh nếu có thể) 2 1 1 1 1 1 1 : 2. : 2. 2 a) 2 4 2 = 4 4 = 1+1 = 2 8, 75 8, 75 3,8 0,8 b) 8,75 8,75 3,8 0,8 = = 0 + 3 = 3. Câu3: x 2,5 4.2,5 x 25 4 0,4 0,4 a) vậy x = 25 b). 1 3 1 3 1 1 x x 6 2 2 2 2 6. 3 1 x 2 3. 1 3 x : 3 2 2 x 9 x Vậy:. 2 9. Câu 4: Để thực hiện kế hoạch xây dựng trường chuẩn quốc gia, Câu 4 : (2 điểm) nhà trường giao cho ba lớp 7A, Gọi số cây đã trông và chăm sóc của 3 7B, 7C trồng và chăm sóc 45 cây lớp 7A; 7B; 7C lần lượt là a, b, c xanh. Tính số cây mỗi lớp đã Vì số cây tỉ lệ với 3; 5;7 trồng và chăm sóc, biết rằng số a b c cây của ba lớp tỉ lệ với 3;5;7. 3 5 7; Theo đầu bài ta có :.
<span class='text_page_counter'>(120)</span> Gọi HS đọc lại đề bài GV Hãy nêu cách giải bài toán trên? ? HS Nêu cách làm GV Yêu cầu 1 HS khá lên bảng giải .. a+b+c 45 Áp dụng tính chất mở rộng của dãy tỉ số bằng nhau, ta có:. a b c a b c a + b + c 45 + + + + 3 3 5 7 3 5 7 3 + 5 + 7 15 a 3 a 3.3 9 3 Từ: ; b 3 b 5.3 15 5 ; c 3 c 7.3 21 7 Vậy số cây của lớp 7A là: 9 cây; lớp 7B là 15cây; lớp 7C là 21cây. * Nhận xét bài kiểm tra(5') a) Ưu điểm: Nhìn chung 1 số em đã xác định được yêu cầu của đề và có hướng giải b) Nhược điểm - Đa số các em vận dung kiến thức đã học vào bài kiểm tra còn yếu, kém. - Cách tính toán chưa chính xác. - Bài kiểm tra trình bày không khoa học, chữ viết chưa rõ ràng. * Kết quả tổng hợp điểm: Điểm Giỏi Khá Trung bình Yếu Kém Lớp 7H Lớp 7K 4. Hướng dẫn HS tự học ở nhà ( 1') - TiÕp tôc «n tËp vµ lµm c¸c bµi tËp cha hoµn thµnh. - Chuẩn bị SGK và đồ dùng học tập chuẩn bị cho HKII.
<span class='text_page_counter'>(121)</span> Ngày soạn:. Ngày dạy: Ngày dạy: Ngày dạy:. Dạy lớp 7B Dạy lớp 7D Dạy lớp 7Q. CHƯƠNG 3: THỐNG KÊ TIẾT 41: THU THẬP SỐ LIỆU THỐNG KÊ, TẦN SỐ. 1. Mục tiêu: a) Về kiến thức: - Học sinh được làm quen với các bảng đơn giản về thu thập số liệu thống kê khi điều tra. Biết xác định và diễn tả được dấu hiệu điều tra, hiểu được ý nghĩa của các cụm từ "số các giá trị của dấu hiệu" và "Số các giá trị khác nhau của dấu hiệu"; làm quen với khái niệm tần số của một giá trị. b) Về kỹ năng: - Biết các kí hiệu đối với 1 dấu hiệu. giá trị của nó và tần số của 1 giá trị. Biết lập các bảng đơn giản để ghi lại các số liệu thu thập được qua điều tra. c) Về thái độ: - Học tập tích cực tự giác 2. Chuẩn bị của GV và HS.
<span class='text_page_counter'>(122)</span> a) Chuẩn bị của GV: Giáo án + Tài liệu tham khảo + Bảng phụ + Phiếu học tập b) Chuẩn bị của HS: Đọc trước bài mới + ôn tập các kiến thức liên quan. 3. Tiến trình bài dạy: * Ổn định tổ chức: 7B:……………7D................7Q a) Kiểm tra bài cũ: ( Không kiểm tra ) * Đặt vấn đề vào bài mới(1') : Thống kê là một môn khoa học được sử dụng rộng rãi trong các hoạt động kinh tế, xã hội. Trong chương II chúng ta sẽ được làm quen với Thống kê mô tả, một bộ phận của khoa học thống kê. Các số liệu thu thập được khi điều tra sẽ được ghi lại như thế nào. Để tìm hiểu vấn đề này ta vào bài học hôm nay. b) Dạy nội dung bài mới: Hoạt động của GV và HS. Học sinh ghi 1. Thu thập số liệu, bảng số liệu thống kê ban đầu ( 8') Ví dụ: (Sgk - 4). Gv Cho học sinh quan sát bảng 1 ? Cần điều tra về số cây trồng được của mỗi lớp trong trường em nào có thể nêu cách tiến hành điều tra. Hs Lập danh sách 20 lớp và ghi vào đó số cây trồng được của mỗi lớp Gv Việc làm như trên của người điều tra là thu thập số liệu về vấn đề được quan tâm. Các số liệu trên được ghi lại trong 1 bảng số liệu thống kê lần đầu. ? 1 (Sgk - 5) ? Cho biết yêu cầu của ? 1 (Sgk - 5). Gv Cho học sinh hoạt động theo nhóm lập bảng thống kê ban đầu với chủ đề tự chọn sau đó các nhóm trình bày. Gv Đưa ra chú ý sau khi các nhóm làm xong * Chú ý: Tuỳ theo yêu cầu của trong bài ? 1 cuộc điều tra mà các bảng số liệu thống kê ban đầu có thể khác nhau. Tb? Nội dung điều tra trong bảng 1 là gì? 2. Dấu hiệu (14') a/. Dấu hiệu, đơn vị điều tra ? 2 (Sgk - 5) Hs Số cây trồng của mỗi lớp Số cây trồng của mỗi lớp Gv Trở lại bảng 1 và giới thiệu thuật ngữ: dấu.
<span class='text_page_counter'>(123)</span> hiệu, đơn vị điều tra bằng cách cho học sinh làm ? 2 K? Thế nào là dấu hiệu? Hs Vấn đề hay hiện tượng mà người điều tra * Dấu hiệu: Là vấn đề hay quan tâm cần tìm hiểu được gọi là dấu hiệu hiện tượng mà người điều tra quan tâm tìm hiểu Tb? Dấu hiệu X ở bảng 1 là gì? Hs Là số cây trồng được của mỗi lớp Gv Vấn đề hay hiện tượng mà người điều tra * Kí hiệu: X quan tâm tìm hiểu gọi là dấu hiệu. (Kí hiệu bằng chữ cái in hoa X, Y ...) Dấu hiệu X ở bảng 1 là số cây trồng được của mỗi lớp. Còn mỗi lớp là một đơn vị điều tra. K? Trong bảng 1 có bao nhiêu đơn vị điều ? 3 (Sgk - 5) tra? Hs Có 20 đơn vị điều tra Có 20 đơn vị điều tra Gv Mỗi lớp trồng được 1 số cây: Chẳng hạn lớp b/. Giá trị của dấu hiệu, dãy 7A trồng được 35 cây, lớp 7D trồng được giá trị của dấu hiệu 50 cây (bảng 1) Như vậy ứng với mỗi đơn vị điều tra có một * Giá trị của dấu hiệu: Mỗi số liệu, số liệu đó goi là một giá trị của dấu đơn vị điều tra có 1 số liệu, số hiệu. Số các giá trị của dấu hiệu đúng bằng liệu đó là một giá trị của dấu số các đơn vị điều tra (kí hiệu N) hiệu. Số các giá trị của dấu hiệu bằng số các đơn vị điều tra. * Kí hiệu: N Gv. Trở lại bảng 1: giới thiệu dãy giá trị của dấu hiệu X chính là các giá trị ở cột thứ 3 (kể từ bên trái sang) ? 4 (Sgk - 6) Gv Cho học sinh làm ? 4 ? Dấu hiệu X ở bảng 1 có tất cả bao nhiêu Dấu hiệu X ở bảng 1 có tất cả giá trị. Hãy đọc dãy giá trị của dấu hiệu 20 giá trị (đọc giá trị X ở cột 3 bảng 1) Hs Dấu hiệu X ở bảng 1 có tất cả 20 giá trị (đọc giá trị X ở cột 3 bảng 1) * Củng cố: Bài tập 2 (Sgk - 7) Bài tập 2 (Sgk - 7) K? Dấu hiệu mà bạn An quan tâm là gì? và a. Dấu hiệu mà bạn An quan.
<span class='text_page_counter'>(124)</span> dấu hiệu đó có tất cả bao nhiêu giá trị tâm là: Tb? Có bao nhiêu giá trị khác nhau trong dãy Thời gian cần thiết hàng ngày giá trị của dấu hiệu đó. mà An đi từ nhà đến trường Dấu hiệu đó có 10 giá trị Tb? Lên bảng viết các giá trị khác nhau của b. Có 5 giá trị khác nhau trong dấu hiệu dãy giá trị dấu hiệu đó. c. Các giá trị khác nhau của dấu hiệu là 17, 18, 19, 20, 21 3. Tần số của mỗi giá trị (13') Gv Trở lại bảng 1 và yêu cầu h/s làm ? 5 và ? 6 K? Có bao nhiêu số khác nhau trong cột số ? 5 (Sgk - 6) cây trồng được? Nêu cụ thể các số khác Giải: nhau đó? Có 4 số khác nhau trong cột số cây trồng được ? Có bao nhiêu lớp trồng được 30 cây, 28 Đó là các số 28; 30; 35; 50 cây, 35 cây, 50 cây Hs Có 8 lớp trồng được 30 cây, có 2 lớp trồng ? 6 (Sgk - 6) được 28 cây, có 7 lớp trồng được 35 cây, có Giải 3 lớp trồng được 50 cây Gv Hướng dẫn học sinh định nghĩa tần số: Số Có 8 lớp trồng được 30 cây lần xuất hiện của 1 giá trị trong dãy giá trị Có 2 lớp trồng được 28 cây của dấu hiệu được gọi là tần số của giá trị Có 7 lớp trồng được 35 cây đó. Có 3 lớp trồng được 50 cây + Giá trị của dấu hiệu kí hiệu là x và tần số của dấu hiệu kí hiệu n. * Định nghĩa: (Sgk - 5) K? Trong dãy giá trị của dấu hiệu ở bảng 1 có * Kí hiệu: bao nhiêu giá trị khác nhau x - giá trị của dấu hiệu Hs Trong dãy giá trị của dấu hiệu ở bảng 1 có 4 n - tần số của dấu hiệu giá trị khác nhau Tb? Hãy viết các giá trị đó cùng tần số của ? 7 (Sgk - 6) chúng Hs Các giá trị khác nhau là 28; 30; 35; 50 Các giá trị khác nhau là 28; 30; Tần số tương ứng của các giá trị trên lần 35; 50 lượt là 2; 8; 7; 3 Tần số tương ứng của các giá trị trên lần lượt là 2; 8; 7; 3 Tb? Trong bài tập 2c. Hãy tìm tần số của chúng Hs Tần số tương ứng của các giá trị 17, 18, 19,.
<span class='text_page_counter'>(125)</span> 20, 21 lần lượt là 1, 3, 3, 2, 1 Gv Qua đó ta có thể tìm tần số theo các bước sau: + Quan sát dãy và tìm các số khác nhau trong dãy viết các số đó theo thứ tự từ nhỏ đến lớn + Tìm tần số của từng số bằng cách đánh dấu vào số đó trong dãy rồi đếm và ghi lại. Hs Đọc phần đóng khung trong Sgk - 6 c) Củng cố, luyện tập (5') Gv Treo bảng phụ nội dung bài tập sau: Số học sinh nữ của 12 lớp trong một trường trung học cơ sở được ghi lại trong bảng sau:. *) Tóm lại:(phần đóng khung SGK- 6) * Chú ý (Sgk - 7) 4. Luyện tập (5') Bài tập: a. Dấu hiệu: Số học sinh nữ trong mỗi lớp - Số tất cả các giá trị của dấu hiệu là 12. 18 14 20 17 25 14 b. Các giá trị khác nhau của 19 20 16 18 14 16 dấu hiệu là 14, 16, 17, 18, 19, Cho biết: a. Dấu hiệu là gì? Số tất cả các giá trị của 20, 25 Tần số tương ứng của các giá dấu hiệu. b. Nêu các giá trị khác nhau của dấu hiệu và trị trên lần lượt là: 3, 2, 1, 2, 1, 2, 1 tìm tần số của từng giá trị đó. d. Hướng dẫn HS học ở nhà (2') + Học thuộc bài + Làm bài tập 1 (Sgk - 7); 3 (Sgk - 8) + Bài tập: 1, 2, 3 (SBT - 3, 4) + Mỗi học sinh tự điều tra thu thập số liệu thống kê theo môt chủ đề tự chọn. Sau đó đặt ra các câu hỏi trong tiết học và trình bày lời giải. * Rút kinh nghiệm sau giờ dạy ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... ......................................................................................................................................................................................................................................... .........................................................................................................................................................................................................................................
<span class='text_page_counter'>(126)</span>
<span class='text_page_counter'>(127)</span>