Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (72.66 KB, 1 trang )
Đề số 9 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 1/ Khảo sát hàm số: y =
2 1
1
x
x
−
+
(C)
2/ Gọi d là đường thẳng đi qua I(2; 0) và có hệ số góc m. Định m để d cắt đồ thị (C)
tại 2 điểm phân biệt A và B sao cho I là trung điểm của đoạn AB.
Câu II: (2đ) 1/ Giải phương trình: cosx.cos2x.sin3x =
1
4
sin2x
2/ Giải bất phương trình:
3 7 2x x x− − + ≤ +
Câu III: (2 đ) Trong không gian với hệ tọa độ Đêcac vuông góc Oxyz cho hình lập
phương ABCD.A’B’C’D’ với A’(0;0;0), B’(0;2;0), D’(2;0;0). Gọi M,N, P, Q theo thứ tự
là trung điểm của các đoạn D’C’, C’B’, B’B, AD.
1/ Tìm tọa độ hình chiếu của C lên AN.
2/ CMR hai đường thẳng MQ và NP cùng nằm trong một mặt phẳng và tính diện tích
tứ giác MNPQ.
HD: GT ⇒ C’(2;2;0), A(0;0;2), B(0;2;2), D(2;0;2), C(2;2;2)
Câu IV: (2đ) 1/ Tìm các đường tiệm cận của đồ thị hàm số y =
2
1
2
x
x
+