PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2011-2012
TỊNH BIÊN Môn thi: GIẢI TOÁN BẰNG MÁY TÍNH CẦM TAY
Lớp: 9
Thời gian làm bài: 150 phút (không kể thời gian phát đề)
ĐIỂM
(bằng số)
ĐIỂM
(bằng chữ)
CHỮ KÝ
giám khảo 1
CHỮ KÝ
giám khảo 2
SỐ MẬT MÃ
do chủ khảo ghi
* Chú ý:
- Đề thi gồm 2 trang, thí sinh làm bài trực tiếp vào bản đề thi này và ghi đáp số vào ô kết quả.
- Các kết quả tính toán gần đúng, nếu không có chỉ định cụ thể, được ngầm hiểu là chính xác tới 5
chữ số thập phân.
- Thí sinh được sử dụng các loại máy CASIO Fx-500MS, Fx-570MS, Fx-500ES, Fx-570ES, …. Thí
sinh sử dụng loại máy nào thì điền ký hiệu loại máy đó vào ô sau:
Bài 1: (2 điểm)
Tính giá trị các biểu thức sau:
a) A
19051890.30041975
b) B
9990.9991.9992.9994.9995.9996 36
Kết quả:
a) A =
b) B =
Bài 2: (2 điểm)
a) Cho biểu thức
2012 2008 2004 4
2014 2012 2010 2008 4 2
1
1
x x x x
C
x x x x x x
,
với
2011x
. Tính C (ghi kết quả dưới dạng phân số tối giản).
b) Cho biểu thức: D
2011
M
N
, với
2 3 19
3 3 3 3M
;
2 3 19
1 1 1 1
3 3 3 3
N
. Tính D.
Kết quả:
a)
C
b) D =
Bài 3: (2 điểm)
a) Tìm
x
biết:
3
3
3
13 30 2 9 4 2
3 2 2 20 2 3 4 2. 44 16 6
5 3 29 12 5
x
b) Tìm
y
biết:
2 1 2 3 3 2 2 3
3 2 3 5 1 5 2 3 7 2
yy
Kết quả:
a)
x
b)
y
Bài 4: (2 điểm)
Cho u
1
= 2, u
2
= 20 và u
n
= 2u
n – 1
+ u
n – 2
( n 3).
Tính
11 25
;uu
.
Kết quả:
11
u
25
u
ĐỀ CHÍNH THỨC
Bài 5: (2 điểm)
a) Tìm các số tự nhiên
n
1300 2011n
sao cho
37126 55
n
an
cũng là số tự nhiên.
b) Tìm cặp số tự nhiên x, y thỏa mãn
32
( ) ( ) 7450x x y x y
Kết quả:
a)
n
b) x = ; y=
Bài 6: (2 điểm)
Một người gửi tiết kiệm 35000000 đồng loại kỳ hạn
3 tháng vào ngân hàng với lãi suất 14% một năm. Hỏi
sau 2 năm 9 tháng người đó nhận được bao nhiêu tiền cả
vốn lẫn lãi. Biết rằng người đó không rút lãi ở các định
kỳ trước đó.
Kết quả:
Số tiền người đó nhận được sau 2
năm 9 tháng là:
Bài 7: (2 điểm)
a) a) Tính
m
biết:
4 3 2
2 5 10 2011x x x x m
chia hết
cho
7x
b) (x) =
32
ax bx c
2
x1
Kết quả:
a)
m
b) a= ; b= ; c=
Bài 8: (2 điểm)
a) Tính E (viết kết quả dưới dạng phân số tối giản):
1
2
1
3
1
4
1
5
6
E
b) Tìm
y
(viết dưới dạng phân số tối giản) biết:
11
2
1
41
32
61
53
81
74
10 1
95
11 6
y
y
a)
E
b)
y
Bài 9: (2 điểm)
a) Cho tam giác ABC vuông ở A với AB=3,51 cm;
AC = 4,63 cm. Tính đường cao AH.
b) Trong tam giác ở câu a kẻ phân giác trong của góc A
cắt BC tại I. Tính BI
Kết quả:
a) AH
b) BI
Bài 10: (2 điểm)
Cho tam giác ABC vuông tại A, đường cao AH, cạnh
BC có độ dài bằng
11
cm và
7
CH =
5
BH. Tính
gần đúng chu vi tam giác ABC.
Kết quả:
Chu vi
Hết
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI CẤP HUYỆN NĂM HỌC 2011 - 2012
TỊNH BIÊN HƯỚNG DẪN CHẤM
Môn: GIẢI TOÁN BẰNG MÁY TÍNH CẦM TAY
Lớp 9
A) ĐÁP SỐ VÀ BIỂU ĐIỂM:
Bài 1: (2 điểm)
a) A = 572 356 403 082 750
b) B= 997 901 399 706
1 điểm
1 điểm
Bài 2: (2 điểm)
a) C =
1
4044122
b) D = 3 486 786 412
1 điểm
1 điểm
Bài 3: (2 điểm)
a)
x
2,5
b)
y
-1,37671
1 điểm
1 điểm
Bài 4: (2 điểm)
11
u
49 530
25
u
11 316 911 762
1 điểm
1 điểm
Bài 5: (2 điểm)
a)
n
1317; 1565; 1734; 2006
b) x = 65 ; y= 5
1 điểm
1 điểm
Bài 6: (2 điểm)
Số tiền người đó nhận được sau 2 năm 9 tháng là:
51 098 940,1 (đồng)
2 điểm
Bài 7: (2 điểm)
a)
m
-3551
b)
a
1;
b
1;
c
4
1 điểm
1 điểm
Bài 8: (2 điểm)
a)
972
421
E
b)
8080236
25256483
y
1 điểm
1 điểm
Bài 9: (2 điểm)
a) AH 2,79709 (cm)
b) BI 2,50533 (cm)
1 điểm
1 điểm
Bài 10: (2 điểm)
Chu vi 8,00290 (cm)
2 điểm
B) HƯỚNG DẪN CHẤM:
- Các bài toán tính gần đúng, nếu học sinh làm tròn số sai thì trừ
1
2
số điểm của câu đó.
- Nếu thiếu đơn vị (bài 6, bài 9, bài 10) thì trừ
0,25
đ mỗi bài.
- Điểm số có thể chia nhỏ cho từng ý, do tổ chấm thảo luận. Tổng điểm toàn bài không làm tròn.