Tải bản đầy đủ (.pdf) (3 trang)

Bài tập Toán DIFFERENTIATION 20

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (643.68 KB, 3 trang )

Created by T. Madas
Question 22
A curve has equation

y = 6 3 x5 − 15 3 x 4 − 80 x + 16 ,

x∈» ,

x ≥ 0.

Find the coordinates of the stationary point of the curve and determine whether it is a
local maximum, a local minimum or a point of inflexion.
local minimum at (16, −2800 )

Created by T. Madas


Created by T. Madas
Question 23
A curve has equation

y = x2 − 6 x

3

x +2,

x∈» ,

x ≥ 0.


Find the coordinates of the stationary points of the curve and classify them as local
maxima, local minima or a points of inflexion.
local minimum at ( 8, −30 ) , local maximum at ( 0, 2 )

Created by T. Madas


Created by T. Madas
Question 24
A curve has equation

(

)

y = x x 2 − 128 x ,

x∈» ,

x>0.

(

)

The curve has a single stationary point with coordinates 2α , − 2β , where α and β
are positive integers.
Find the value of β and justify that the stationary point is a local minimum.

β = 12


Created by T. Madas



×