TTBDKTPT VQ
GV: PHAN VĂN VINH
‹ CÁC BÀI TỐN TÍCH PHÂN LUYỆN THI ĐẠI HỌC‹
1/ Cho hàm số : f(x)= x.sinx+x2 . Tìm nguyên hàm của hàm số g(x)= x.cosx
biết rằng nguyên hàm này triệt tiêu khi x=k π
2/Định m để hàm số: F(x) = mx 3 +(3m+2)x2 -4x+3 là một nguyên hàm của hàm số:
f(x) = 3x2 +10x-4.
3/Tìm họ nguyên hàm của hàm số: f(x)= cos 3 x.sin8x.
3.TÍNH :
π
3
2
4/I = ∫ 3tg x dx
∫ sin x dx
12 / I =
π
2 3
13/I =
∫
2
5/I = ∫ (2cotg x + 5) dx
π
6
π
2 1 − cos x
π
3
0
∫ 1 + cos x dx
3
7/ I = ∫ sin2 x.cos2xdx
1
∫π 2 x 2 x dx
sin cos
4
2
2
15/I =
0
π
π
3
4
∫
2
2
(2cos x-3sin x)dx
16/I =
0
− π
2
π
− x )
4
dx
π
s in (
+ x)
4
cotg2x dx
17/I = ∫ esin
−
2
x
sin 2x dx
π
3
∫π
e tgx+ 2
2
I= ∫
cos
x
0
4
(tgx-cotgx)2 dx
6
18/
π
2
π
4
11/ I = ∫ cos 4 x dx
0
2
∫
4
4
21/I = cos2x(sin x + cos x)dx
π
2
22/ I = ∫ cos3 xdx
0
π
2
4sin 3 x
23/ I = ∫
dx
0 1 + cosx
1
3
2
∫ x 1 − x dx
0
1
25/I = ∫ x 5 1 + x 2 dx
x
dx
2x
+
1
0
1
1
27/I = ∫ x
dx
0e +4
2
1
dx
28/I = ∫
−x
11− e
2
e2x
29/I = ∫ x
dx
e
+
1
0
1
e− x
dx
30/I = ∫ − x
e
+
1
0
e
ln x
dx
31/I = ∫
2
x(ln
x
+
1)
1
26/I = ∫
π
4
π
dx
0
1
π
2
s in (
10 / I =
∫
π
x
π
24/ I =
6
9/ I=
∫
0
π
2
6
0
4
∫ sin x dx
14/I =
π
π
2
sin 3 x − sin x
cot gx dx
sin x
1
∫ cos
20/ I =
π
2
0
8/I =
4
3
0
π
4
π
4
6/I =
π
π
2
1
19/ I = ∫ sin 4 x dx
π
4
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
DĐ: 0905.838.969
1
TTBDKTPT VQ
7
3
0
2
3
0
1
34/I =
1
∫
3
x
2
4−x
1
4
35/I = ∫
2
36*/I =
x 16 − x
6
1
∫
2 3
2
2
dx
dx
2
x x −9
dx
−1
2
38/I = ∫ x (x 2 + 4)3 dx
0
x2 − 4
dx
x
∫
39/I =
4 3
3
− 2
∫
40*/I =
−2
ln 2
41/I =
∫
x2 +1
dx
2
x x +1
e x − 1dx
0
1
1
42/I = ∫
dx
3
−
2x
0
ln x 3 2 + ln 2 x
dx
48/I = ∫
x
1
e
sin(ln x)
dx
49/I = ∫
x
1
e
1
3
4
5
5
43/I = ∫ sin xdx
0
π
3
1
44*/I = ∫
dx
cos
x
0
e−2x
dx
45/I = ∫ − x
e
+
1
0
ln 3
1
dx
46/I = ∫
0
ex + 1
dx
ln 2 e − 1
e 2
x +1
62/I = ∫
.ln xdx
x
1
61/I =
1
51/I = ∫ (1 + 2x)(1 + 3x + 3x 2 )3 dx
1
52/I = ∫
1x
π
3
1+ x
3
π
2
64/I = ∫ sin x.sin 2x.sin 3xdx
0
π
2
65/I = ∫ cos 2x(sin 4 x + cos 4 x)dx
0
π
2
dx
66*/I = ∫ ( 3 cos x − 3 sin x )dx
0
2
2
53/I = ∫ tg x + cot g x − 2dx
π
6
1
x7
67/I = ∫
dx
8
4
1
+
x
−
2x
2
3
π
2
68*/I = ∫ 4cos x − 3sin x + 1 dx
54/I = ∫ (1 − x 2 )3 dx
0
0
1
55*/I = ∫ 2x
dx
e
+
3
0
ln 3
ex
∫
x
(e + 1)
0
3
69/I = ∫ x. 3 1 − xdx
1
2
dx
0
57/I = ∫ x(e2x + 3 x + 1)dx
π
2
58/I = ∫ 6 1 − cos3 x sin x.cos5 xdx
0
2 3
59*/I =
∫
5
1
x x2 + 4
π
4
x
dx
1
+
cos
2x
0
60/I = ∫
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
4sin x + 3cos x + 5
9
1
56/I =
x
x2
dx
63/I = ∫
(x
+
1)
x
+
1
0
0
2
∫
1
0
−1
π
2
1
dx
50/I = ∫ x (x − 1) dx
2
2
∫ x 4 − x dx
4
sin 2 x cot gx
π
6
2
37/I =
1
47/I = ∫
33/I = ∫ (x − 3) x 2 − 6x + 8 dx
e2x
ln 5
π
4
x +1
dx
3
3x + 1
32/I = ∫
GV: PHAN VĂN VINH
x +1
dx
3
0 3x + 2
π
x
71*/I = ∫ sin 6 dx
2
0
2
x
72*/I = ∫
dx
2
+
x
+
2
−
x
0
70/I = ∫
3
73/I =
dx
3
2
∫ x . 1 + x dx
0
1
ln(1 + x)
dx
2
x
+
1
0
74**/I = ∫
π
2
sin x
dx
sin
x
+
cos
x
0
75/I = ∫
DĐ: 0905.838.969
2
TTBDKTPT VQ
2
eπ
76/I = ∫ cos(ln x)dx
1
2
77*/I = ∫ 4 + x 2 dx
0
2
x
dx
1
+
x
−
1
1
78/I = ∫
e
79/I = ∫
1
3
GV: PHAN VĂN VINH
1 + 3ln x ln x
dx
x
90*/I = ∫ ln( 1 + x − x)dx
0
3
x −1
x +1
dx
92/I = ∫
x
1
3
x3
93/I = ∫ 2
dx
x
−
16
1
82/I = ∫
e
e2
83/I = ∫
1
2
cos x
dx
2
6
−
5sin
x
+
sin
x
0
94/I = ∫
85/I =
ln x
dx
x
ln x
dx
ln x
86/I = ∫
0
87/I =
1
∫ x 2 + 3 dx
3
1
1
4 − x2
dx
π2
4
∫ sin xdx
0
π
3 ln(sin x)
88/I = ∫
π
6
2
cos 2 x
e2
dx
89/I = ∫ cos(ln x)dx
96/I =
1
1
−
)dx
ln 2 x ln x
∫
x 2ex
dx
110*/I = ∫
2
(x
+
2)
0
1
π
111/I = ∫ e2x sin 2 xdx
0
2
cos 2x + 1dx
99/I = ∫ cos x
1
e
ln x
dx
2
(x
+
1)
1
sin xdx
113/I = ∫
0
2π
e
1
2
∫ 1 + sin xdx
0
3π
4
114/I = ∫ x.ln
0
∫ sin 2x dx
t
102/I = ∫ 1 − sin xdx
2
π
3
0
3
103/I = ∫ ln(x + x 2 + 1) dx
−1
1
1+ x
dx
1− x
ln x
115/I = ∫
dx ⇒ I < 2
x
1
π
4
π
1
1
x
112/I = ∫ x 2 ln(1 + )dx
π
4
π
101/I =
∫ x cos xdx
0
97/I = ∫ x 3 − 2x 2 − x + 2 dx
−1
3π
4
108/I =
π2
4
109/I = ∫ x.sin x cos 2 xdx
2
∫ x − 4 dx
100/I =
∫ x sin xdx
0
π
6
−4
2
98/I =
π2
4
0
e
84/I = ∫ x ln(x 2 + 1)dx
1
3
107/I =
3
1
e2
dx
104*/I = ∫
π
6
95*/I = ∫ (
81/I = ∫ (ln x) 2 dx
2
2
8 3
80/I = ∫ ln(x 2 − x)dx
2
e
1
∫
91*/I =
x sin x
dx
2
0 1 + cos x
1
1
105*/I = ∫ 2
dx
x
(x
+
1)(4
+
1)
−1
1
x4
106*/I = ∫
dx
x
1
+
2
−1
π
2
116/I = ∫ sin x.ln(cos x)dx
0
π
e2
117/I =
2
∫ cos (ln x)dx
1
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
DĐ: 0905.838.969
3
TTBDKTPT VQ
π
4
1
dx
cos
x
0
118/I = ∫
GV: PHAN VĂN VINH
1
dx
3
cos
x
0
1
2
120/I = ∫ x 3e x dx
0
π
2
2
121/I = ∫ esin x .sin x cos3 xdx
0
π
2
sin 2x
122/I = ∫
dx
4
0 1 + cos x
1
3
123/I = ∫ 2
dx
x
−
4x
−
5
0
2
5
dx
124/I = ∫ 2
x
−
6x
+
9
1
1
1
dx
125/I = ∫
2
2x
+
8x
+
26
−5
1
2x + 9
126/I = ∫
dx
x
+
3
0
4
1
dx
127/I = ∫ 2
x
(x
+
1)
1
0
sin 2x
128*/I = ∫
dx
2
−π (2 + sin x)
2
1
x −3
129/I = ∫
dx
2
0 (x + 1)(x + 3x + 2)
1
4x
dx
3
(x
+
1)
0
1
1
131/I = ∫ 4
dx
2
(x
+
4x
+
3)
0
130/I = ∫
π
3
3
sin x
dx
2
(sin
x
+
3)
0
132/I = ∫
4sin x
dx
π 1 − cos x
145/I = ∫ x 1 − xdx
6
π
3
146/I = ∫
3
133/I = ∫
π
4
119*/I = ∫
1
π
3
0
6
4
1
134/I = ∫
dx
2
cos
x.sin
x
π
0
−1
3
6
π
3
148/I = ∫
135/I = ∫ sin x.tgxdx
1
2
0
π
3
−1
2
139/I =
π
3
140/I =
152/I =
1
dx
2
2
π sin x + 9cos x
∫
153/I =
cos x − 1
1 + sin x
cos x
dx
0 sin x + cos x + 1
4
1
dx
142/I = ∫ 2
x
(x
+
1)
1
141/I = ∫
−3
1
x + 4 + (x + 4)3
π
3
sin 3 x
dx
144/I = ∫
0 cos x
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
∫
1 + e2x
1
2
7 x 9+x
dx
dx
0
π
2
0
π
2
1
∫
0
4
3e4x + e2x
154/I = ∫ e x sin 2 xdx
∫ 1 + 3cos x dx
143/I = ∫
1
2
dx
π
2
∫ cos x + 2 dx
π
−
2
π
2
2
x + 4x + 13
1
151/I = ∫
dx
x
0 3+ e
−2
1
sin3 x
dx
137/I = ∫ 2
2
5
(tg
x
+
1)
.cos
x
0
3
π
2
2x − 5
∫
150/I =
4
π
4
−
4x − x 2 + 5 dx
149/I = ∫
1
dx
136/I = ∫
sin
2x
π
138/I =
∫
147/I =
x−4 1
.
dx
x+2 x+2
1
dx
x 2 + 2x + 9
1
dx
4x − x 2
dx
cos 4 x
155/I = ∫
dx
4
4
cos
x
+
sin
x
0
1
3
dx
156/I = ∫
0 x+9 − x
π
157/I = ∫ x sin xdx
0
π
158/I = ∫ x 2 cos 2 xdx
0
1
159/I = ∫ cos x dx
0
DĐ: 0905.838.969
4
TTBDKTPT VQ
1
160/I = ∫ sin x dx
GV: PHAN VĂN VINH
2
0
161/I =
1
2
π2
4
∫ x sin x dx
0
2
162/I =
π
4
ln x
176/I = ∫ 5 dx
1 x
e
ln x
dx
177/I = ∫
2
(x
+
1)
1
∫ x cos x dx
0
π
2
163/I = ∫ x cos x sin x dx
164/I =
0
π
6
2
∫ x cos x sin x dx
0
4
x
165/I = ∫ e
e
1
2
0
π
2
π
3
180/ ∫ esin
0
π
181/I=
2x
0
1
2
sin x dx
2 x
x e
168/I = ∫
dx
2
(x
+
2)
0
e
169/I = ∫ (1 + x) ln x dx
1
e
2
170/I = ∫ x ln x dx
1
1
e
2
171/I = ∫ ln x dx
1
e
172/I = ∫ x(2 − ln x) dx
1
173/I = ∫ (
e
2
189/I = ∫
1
1
−
)dx
2
ln x ln x
174/I = ∫ (x 2 + x) ln x dx
x
e +e
0
e
190/I=
dx
∫ ln x dx
π
2
191/I = ∫ (esin x + cos x) cos x dx
2
x
sin x cos3 x dx
π
2
sin 2x.cos x
dx
0 1 + cos x
192/I = ∫
π
2
sin 2x + sin x
dx
1 + 3cos x
0
193/I = ∫
π
4 1 − 2sin 2
x
dx
1 + sin 2x
194/I = ∫
0
π
2
−x
1
e
0
166/I = ∫ e3x sin 4x dx
e2
1+ x
dx
1− x
179/I = ∫ cos x.ln(1 − cos x) dx
π
2
dx
ex
1
0
178/I = ∫ x ln
1
π
4
167/I = ∫ e
1
x
175/I = ∫ x 2 ln(1 + ) dx
sin 2x
∫ 1 + sin 4 x dx
0
π
2
sin 2x
dx
182/I = ∫
4
0 1 + cos x
2
5
183/I = ∫ 2
dx
x
−
6x
+
9
1
1 2
x + 3x + 2
dx
184/I = ∫
x
+
3
0
4
1
185/I = ∫ 2
dx
x
(x
+
1)
1
1
ln(1 + x)
dx
186/I = ∫ 2
x
+
1
0
1
1+ x4
187/I ∫
dx
6
1
+
x
0
1
188/I = ∫ x15 1 + x 8 dx
3
∫
195/I =
2
x +1
0
π
3
196/I = ∫
π
4
x 5 + 2x 3
dx
tgx
2
cos x 1 + cos x
2
197/I = ∫ (
−1
π
4
dx
x −1 2
) dx
x+2
198/I = ∫ x.tg 2 x dx
0
5
199/I = ∫ ( x + 2 − x − 2 ) dx
−3
4
200/I = ∫
−1
2
201/I = ∫
1
2
dx
x +5 +4
x
dx
x+2 + 2−x
0
1
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
DĐ: 0905.838.969
5
TTBDKTPT VQ
GV: PHAN VĂN VINH
2
ln(1 + x)
202/I = ∫
dx
x2
1
π
2
sin 2x
203/I = ∫
dx
0 1 + cos x
π
2
sin 2008 x
dx
2008
x + cos 2008 x
0 sin
204/I = ∫
216/I =
2
2
x
∫
π
2
2
dx
2
1− x
1− x2
dx
217/I = ∫
4
11+ x
0
2
7
218/I =
∫
x
3
1
2
π
4
0
ln 2
3
sin x
dx
2
0 cos x
207/I = ∫
π
2
2
208/I = ∫ cos x.cos 4x dx
0
1
1
dx
2x
x
e
+
e
0
e
ln x
210/I = ∫
dx
2
1 (x + 1)
209/I = ∫
e
1
1
211/I = ∫
dx
x
+
1
+
x
0
1
x2
dx
212/I = ∫
2
4
−
x
0
1
x
213/I = ∫
dx
2
0 4−x
1
2
x4
dx
214/I = ∫ 2
0 x −1
π
2
sin 3x
215/I = ∫
dx
0 cos x + 1
1
2
0 x − 3x + 2
232*/I = ∫ x sin x.cos 2 xdx
2
dx
0
π
2
cos x
dx
0 cos 2x + 7
4
1
234/I = ∫ 2
dx
x
(x
+
1)
1
233/I = ∫
π
2
221/I = ∫ x + 1dx
2
3
235/I = ∫ sin 2x(1 + sin x) dx
0
π
2
222/I = ∫ (cos3 x + sin 3 x) dx
0
3
x2 +1
223/I = ∫
dx
+
x
1
0
∫
2
x x +9
dx
π
238/I = ∫ x sin 3 x cos 4 xdx
0
cos x
cos 2 x + 1
dx
x +1
226/I = ∫ 3
dx
3x
+
1
0
π
2 1 + sin 2x
+ cos 2x
dx
cos x + sin x
227/I = ∫
π
6
x 2
1
(1 + e )
dx
2x
1
e
+
0
228/I = ∫
3
x +1
dx
3
3x
+
2
0
4
1
236/I = ∫
7
224/I = ∫ (1 + x) 2 .e2x dx
0
7
3
0
2
237/I =
1
225/I = ∫
dx
π
3
2
0
π
2
4x − 1
231/I = ∫
1+ x
1 − ex
205/I = ∫ sin x.ln(1 + cos x) dx
219/I = ∫
dx
x
0
+
1
e
0
2
3
1
x +1
206/I = ∫
dx
220/I = ∫ x 1 − x dx
2
x
1
0
π
2
sin x.cos3 x
dx
230/I = ∫
2
cos
x
+
1
0
2
3
229/I = ∫ x (1 − x) dx
0
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
π
2
239/I = ∫ cosx cosx − cos3 xdx
−
π
2
1
240*/I = ∫ ln( x 2 + a + x)dx
−1
π
2
1 − sin x
dx
x
(1
cos
x)e
+
0
241/I = ∫
π
2
sin 2x + sin x
dx
+
cos3x
1
0
242/I = ∫
π
4
sin 2x
dx
2
2
sin
x
+
2cos
x
0
243/I = ∫
DĐ: 0905.838.969
6
TTBDKTPT VQ
244/I =
2
2
∫
0
245/I =
2
2
∫
0
1
246/I =
∫
2
2
1
247/I = ∫
0
2
248/I =
∫
2
3
1
x
π
3
3
1− x2
x3
1− x
GV: PHAN VĂN VINH
2
dx
256/I = ∫ tg 4 xdx
dx
π
2 1 + sin x
257*/I = ∫
0 1 + cos x
1− x
dx
x2
2
4 − x2
1
2
dx
x x −1
dx
0
π
2
sin x
dx
1
+
sin
x
0
250/I = ∫
π
2
cos x
dx
7
+
cos
2x
0
4
1
252/I = ∫
dx
2
(1
+
x)x
1
2
x +1
dx
253/I = ∫ 3
0 3x + 2
251/I = ∫
π
3
1
e x dx
2 3
258/I = ∫ (1 − x ) dx
0
π
4
259/I = ∫ x.tg 2 xdx
cos x + sin x
dx
3 + sin 2x
π
1
dx
2 2
(4
+
x
)
0
1
3x 2
261/I = ∫
dx
3
0 x +2
2
1 − x5
262*/I = ∫
dx
5
1 x(1 + x )
260/I= ∫
π
3
cos x
dx
2
0 1 − sin x
263/I = ∫
π
3
sin 2 x
264/I = ∫
dx
6
0 cos x
π
6
sin x + sin 3 x
265/I = ∫
dx
cos 2x
0
π
2
1
dx
π sin x 1 + cos x
254*/I = ∫
266/I = ∫
4
3
π
2
255/I = ∫ cosx cosx − cos3 xdx
−
0
π
4
sin 4 x − cos 4 x
270/I = ∫
dx
sin
x
+
cos
x
+
1
0
π
4
sin 4 x − cos 4 x
271/I = ∫
dx
sin
x
+
cos
x
+
1
0
π
2
sin x cos x + cos x
dx
sin x + 2
0
272/I = ∫
0
2
249/I = ∫ x 5 (1 − x 3 )6 dx
π
2
269/I = ∫ sinxcosx(1+cosx)2dx
π
4
2
x
π
2
sin x
dx
2
cos
x
+
3
0
267/I = ∫
π
2
π2
268/I =
∫
0
sin x
dx
x
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
1
273/I = ∫
1
ex
3
dx
x
x 3 + 2x 2 + 10x + 1
274/I = ∫
dx
2
x + 2x + 9
0
1
x3
dx
275/I = ∫ 2
3
0 (x + 1)
1
3
276/I = ∫ 3
dx
x
+
1
0
1 4
x +1
dx
277*/I = ∫ 6
+
x
1
0
1
x
278/I = ∫
dx
3
(2x
+
1)
0
7
1
dx
279/I = ∫
2 2 + x +1
a
1
280/I =
3
2
∫
1
2
1
281*/I = ∫
0
1
x 1− x
2
dx
x ln(x + 1 + x 2 )
1+ x
2
dx
4
282/I = ∫ (x − 1)2 ln x dx
1
DĐ: 0905.838.969
7
TTBDKTPT VQ
3
GV: PHAN VĂN VINH
283/I = ∫ x ln(x + 1)dx
296/I =
0
2
3x 3
284/I = ∫ 2
dx
1 x + 2x + 1
1
4x − 1
285/I = ∫ 3
dx
2
+
+
+
x
2x
x
2
0
1
2
1
286/I = ∫
−1 (3+ 2x)
2
1
2
5+12x +4x
1
287/I = ∫
x + 1+ x
0
π
2
dx
dx
cos x
dx
2 + cos 2x
288/I = ∫
0
π
2
cos x + sin x
dx
3
+
sin
2x
π
289/I = ∫
4
π
2
290/I = ∫ (cos3 x + sin 3 x)dx
0
π
2
291/I = ∫ cos5 x sin 4 xdx
0
π
2
292/I = ∫ cos2x(sin4 x+cos4 x)dx
0
π
2
1
dx
2
+
sin
x
0
293/I = ∫
π
2
1
dx
2
−
cos
x
0
294/I = ∫
2
295/I =
∫
2
3
1
2
x x −1
dx
∫
3
0
2
297*/I = ∫
1
1
298/I = ∫
1+ x2
1
3
π
2
sin x
dx
0 cos x + sin x
dx
+ 1+ x2
1
−1 1 +
π
3
1
dx
2x
−1 3 + e
309*/I = ∫
dx
x 1+ x
x3
0x
1
299/I = ∫
1
x3
7
2
310*/I = ∫
π
2
dx
x + 1+ x2
dx
1
300/I = ∫
dx
4
π sin x cos x
6
π
2
cos x
dx
cos
x
+
1
0
π
2
cos x
dx
302/I = ∫
2
−
cos
x
0
π
2
sin x
303/I = ∫
dx
sin
x
+
2
0
π
2
cos3 x
304/I = ∫
dx
cos
x
+
1
0
306/I =
π
2
tgx
312*/I = ∫
1 − ln 2 (cos x)
0
dx
π
2
sin x
dx
cos
x
+
sin
x
0
1
1
dx
314*/I = ∫ x
2
−1 (e + 1)(x + 1)
313*/I = ∫
301/I = ∫
305/I =
sin 4 x
311/I = ∫
dx
4
4
0 cos x + sin x
π
2
1
∫ 2cos x + sin x + 3 dx
0
π
2
cos x
dx
∫
2
(1
−
cos
x)
π
3
π
4
307/I = ∫ tg 3 x dx
0
sin 2 x
dx
308*/I= ∫ x
3
+
1
−π
π
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
1
315*/I = ∫ e
0
1
3x +1
dx
x2
316*/I = ∫
0
π
2
2
x +4
dx
cos3 x
dx
317*/I = ∫ 4
2
0 cos − 3cos x + 3
318*/Tìm x> 0 để
π
3
319*/I = ∫
π
4
1
t 2et
dt = 1
∫
2
(t
+
2)
0
x
tan x
2
cos x cos x + 1
dx
320*/I = ∫ −3x 2 + 6x + 1dx
0
π
4
321*/I = ∫ tg 5 x dx
0
DĐ: 0905.838.969
8
TTBDKTPT VQ
1
π
4
336,Cmr
322/I = ∫ cotg 3 x dx
π
6
π
3
50
4
1
2
dt
∫ ( 3+ 2cost )
2
0
339, Cmr
1
∫ 2 + tgx dx
∫
1
2
2x −1
x −1
dx < ∫
dx
x
x +1
1
2 3
341, I =
∫
5
π
3
x x2 + 4
cos 2x
dx
2
π 1 − cos 2x
342, I = ∫ x3 1 − x2 dx
6
sin 2x + sin x
dx
343, I = ∫
1 + 3cos x
0
0
π
2
π
4
327*/I = ∫ ( t g x − 1 ) 2 d x
tg x + 1
1
328*/I =
1
2
2 3
1
(e x + 1) e x − 1
π
−1
e4
1
e
3
332/I = ∫
1
dx
346, I = ∫ 2
x + x +1
0
1
dx
x cos 2 (ln x + 1)
1
ln 5
348, I =
1 + 3ln x ln x
dx
x
dx
∫ln3 ex + 2e− x − 3
sin 2x cos x
dx
1 + cos x
0
3
350, I = ∫ ln ( x 2 − x ) dx
π
4
2
π
2
333*/I = ∫ ln(1 + tgx)dx
π
2
π
dx
π
≤∫
≤
2
16 0 5 + 3cos x 10
0
1
(
−7
)
3
358, I =
dx
∫ x+x
1
π
4
359, I =
1 − cos 2xdx
∫
π
−
3
2
360, I = ∫
3
5 ( x − 1)
dx
1
x2 − x − 6
1
x ln x + 1 + x 2
361, I = ∫
(
1 + x2
0
e2
ln x + ln ( ln x )
x
π
2
)dx
dx
3
363, J = ∫ cos2 x dx
π
6
sin x
1
x2 dx
x6 − 9
0
364, I = ∫
π
3
dx
365, I = ∫
4
π
4
sin x cos 5 x
3
π
2
sin 2x
dx
sin x + 6 sin 2 x + 5
0
366, I = ∫
4
π
367 I = ∫ sin xex dx
π
2
368, I = ∫ cos 5 x co s 7x d x
0
352, I = ∫ ( x − 2 ) e dx
2x
0
2
54 2 ≤ ∫ x+7+ 11−x dx ≤108
1 − 2sin 2 x
dx
+
1
s
in2x
0
357, I = ∫
0
351, I = ∫ ( esin x + cos x ) cos xdx
0
0
π
4
π
2
349, I = ∫
1
dx
x 6 (1 + x 2 )
11
e
347, I = ∫
356, I = ∫ x sin xdx
e
1
dx
0
π2
362, I = ∫
dx
345, I = ∫
1 + x2
0
ex
ln 3
331/I = ∫
0
1
x − x3
dx
x4
329*/I = ∫
0
344, I = ∫ 1 − x 2 dx
x
dx
3
x +1
∫
330/I = ∫
1
2
355, I = ∫ x3ex dx
dx
1
326/I = ∫
)
2
2
340, I = ∫
5
325/I = ∫ sin x dx
0 cos x + 1
0
(
2 3+ 3
x
dx
1 1+ x −1
0
1
1
≤
2
2
≤ ∫ e x − x dx ≤ 2 4 e
2
e
0
2
π
2
335,Cmr
354, I = ∫
2
338,Cmr
π
4
324*/I =
x
dx
1 + cos 2x
0
1 ≤ ∫ 2 dx ≤ 4
337,Cmr 1 ≤
π
4
π
4
x3
−1
323/I = ∫ tg x dx
334,Cmr
GV: PHAN VĂN VINH
353, I = ∫ x − x dx
2
0
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
369, I =
π
4
sin 4 x + cos4 x
∫π 3x + 1 dx
−
4
DĐ: 0905.838.969
9
TTBDKTPT VQ
GV: PHAN VĂN VINH
AN ACT OF KINDNESS IS NEVER WASTED !
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ
DĐ: 0905.838.969
10