Tải bản đầy đủ (.pdf) (10 trang)

369 BT TICH PHAN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (198.21 KB, 10 trang )

TTBDKTPT VQ

GV: PHAN VĂN VINH

‹ CÁC BÀI TỐN TÍCH PHÂN LUYỆN THI ĐẠI HỌC‹
1/ Cho hàm số : f(x)= x.sinx+x2 . Tìm nguyên hàm của hàm số g(x)= x.cosx
biết rằng nguyên hàm này triệt tiêu khi x=k π
2/Định m để hàm số: F(x) = mx 3 +(3m+2)x2 -4x+3 là một nguyên hàm của hàm số:
f(x) = 3x2 +10x-4.
3/Tìm họ nguyên hàm của hàm số: f(x)= cos 3 x.sin8x.
3.TÍNH :
π
3

2

4/I = ∫ 3tg x dx

∫ sin x dx

12 / I =

π
2 3

13/I =



2


5/I = ∫ (2cotg x + 5) dx
π
6
π
2 1 − cos x

π
3

0

∫ 1 + cos x dx

3

7/ I = ∫ sin2 x.cos2xdx

1
∫π 2 x 2 x dx
sin cos
4
2
2

15/I =

0

π


π

3

4



2

2

(2cos x-3sin x)dx

16/I =

0

− π
2

π
− x )
4
dx
π
s in (
+ x)
4


cotg2x dx

17/I = ∫ esin



2

x

sin 2x dx

π

3

∫π

e tgx+ 2
2
I= ∫
cos
x
0
4

(tgx-cotgx)2 dx

6


18/

π
2

π
4

11/ I = ∫ cos 4 x dx
0

2



4
4
21/I = cos2x(sin x + cos x)dx

π
2

22/ I = ∫ cos3 xdx
0
π
2

4sin 3 x
23/ I = ∫
dx

0 1 + cosx
1

3
2
∫ x 1 − x dx

0
1

25/I = ∫ x 5 1 + x 2 dx

x
dx
2x
+
1
0
1
1
27/I = ∫ x
dx
0e +4
2
1
dx
28/I = ∫
−x
11− e
2

e2x
29/I = ∫ x
dx
e
+
1
0
1
e− x
dx
30/I = ∫ − x
e
+
1
0
e
ln x
dx
31/I = ∫
2
x(ln
x
+
1)
1
26/I = ∫

π
4


π

dx

0
1

π
2

s in (

10 / I =


π

x

π

24/ I =

6

9/ I=



0


π

2

6

0

4
∫ sin x dx

14/I =

π

π
2

sin 3 x − sin x
cot gx dx
sin x

1

∫ cos

20/ I =

π

2

0

8/I =

4

3

0

π
4
π
4

6/I =

π

π
2

1
19/ I = ∫ sin 4 x dx
π
4

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ


DĐ: 0905.838.969

1


TTBDKTPT VQ

7
3

0
2

3

0
1

34/I =

1


3

x

2


4−x
1

4

35/I = ∫

2

36*/I =

x 16 − x
6
1



2 3

2

2

dx

dx

2

x x −9


dx

−1
2

38/I = ∫ x (x 2 + 4)3 dx
0

x2 − 4
dx
x



39/I =

4 3
3

− 2



40*/I =

−2
ln 2

41/I =




x2 +1

dx
2
x x +1
e x − 1dx

0
1

1
42/I = ∫
dx
3

2x
0

ln x 3 2 + ln 2 x
dx
48/I = ∫
x
1
e
sin(ln x)
dx
49/I = ∫

x
1
e

1

3

4

5

5

43/I = ∫ sin xdx
0
π
3

1
44*/I = ∫
dx
cos
x
0
e−2x
dx
45/I = ∫ − x
e
+

1
0
ln 3
1
dx
46/I = ∫
0
ex + 1

dx
ln 2 e − 1
e 2
x +1
62/I = ∫
.ln xdx
x
1

61/I =

1

51/I = ∫ (1 + 2x)(1 + 3x + 3x 2 )3 dx

1

52/I = ∫

1x
π

3

1+ x

3

π
2

64/I = ∫ sin x.sin 2x.sin 3xdx
0
π
2

65/I = ∫ cos 2x(sin 4 x + cos 4 x)dx
0

π
2

dx

66*/I = ∫ ( 3 cos x − 3 sin x )dx
0

2

2

53/I = ∫ tg x + cot g x − 2dx

π
6
1

x7
67/I = ∫
dx
8
4
1
+
x

2x
2
3

π
2

68*/I = ∫ 4cos x − 3sin x + 1 dx

54/I = ∫ (1 − x 2 )3 dx

0

0

1
55*/I = ∫ 2x

dx
e
+
3
0
ln 3
ex



x

(e + 1)

0

3

69/I = ∫ x. 3 1 − xdx
1
2

dx

0

57/I = ∫ x(e2x + 3 x + 1)dx
π
2


58/I = ∫ 6 1 − cos3 x sin x.cos5 xdx
0

2 3

59*/I =



5

1
x x2 + 4

π
4

x
dx
1
+
cos
2x
0

60/I = ∫

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

4sin x + 3cos x + 5


9

1

56/I =

x

x2
dx
63/I = ∫
(x
+
1)
x
+
1
0

0

2



1

0


−1

π
2

1

dx

50/I = ∫ x (x − 1) dx

2
2
∫ x 4 − x dx

4

sin 2 x cot gx

π
6

2

37/I =

1

47/I = ∫


33/I = ∫ (x − 3) x 2 − 6x + 8 dx

e2x

ln 5

π
4

x +1
dx
3
3x + 1

32/I = ∫

GV: PHAN VĂN VINH

x +1
dx
3
0 3x + 2
π
x
71*/I = ∫ sin 6 dx
2
0
2
x
72*/I = ∫

dx
2
+
x
+
2

x
0

70/I = ∫

3

73/I =

dx

3
2
∫ x . 1 + x dx
0
1

ln(1 + x)
dx
2
x
+
1

0

74**/I = ∫
π
2

sin x
dx
sin
x
+
cos
x
0

75/I = ∫

DĐ: 0905.838.969

2


TTBDKTPT VQ

2



76/I = ∫ cos(ln x)dx
1

2

77*/I = ∫ 4 + x 2 dx
0
2

x
dx
1
+
x

1
1

78/I = ∫
e

79/I = ∫
1
3

GV: PHAN VĂN VINH

1 + 3ln x ln x
dx
x

90*/I = ∫ ln( 1 + x − x)dx
0

3

x −1
x +1
dx
92/I = ∫
x
1
3
x3
93/I = ∫ 2
dx
x

16
1

82/I = ∫
e
e2

83/I = ∫
1
2

cos x
dx
2
6


5sin
x
+
sin
x
0

94/I = ∫

85/I =

ln x
dx
x
ln x
dx
ln x

86/I = ∫
0

87/I =

1

∫ x 2 + 3 dx
3

1


1
4 − x2

dx

π2
4

∫ sin xdx

0
π
3 ln(sin x)

88/I = ∫

π
6
2

cos 2 x

e2

dx

89/I = ∫ cos(ln x)dx

96/I =


1
1

)dx
ln 2 x ln x



x 2ex
dx
110*/I = ∫
2
(x
+
2)
0
1

π

111/I = ∫ e2x sin 2 xdx
0
2

cos 2x + 1dx

99/I = ∫ cos x

1
e


ln x
dx
2
(x
+
1)
1

sin xdx

113/I = ∫

0


e
1
2

∫ 1 + sin xdx

0

4

114/I = ∫ x.ln
0

∫ sin 2x dx


t

102/I = ∫ 1 − sin xdx

2

π
3

0
3

103/I = ∫  ln(x + x 2 + 1)  dx


−1

1

1+ x
dx
1− x

 ln x 
115/I = ∫ 
 dx ⇒ I < 2
x



1

π
4
π

1

1
x

112/I = ∫ x 2 ln(1 + )dx

π
4
π

101/I =

∫ x cos xdx

0

97/I = ∫ x 3 − 2x 2 − x + 2 dx
−1

4

108/I =


π2
4

109/I = ∫ x.sin x cos 2 xdx

2
∫ x − 4 dx

100/I =

∫ x sin xdx

0
π
6

−4
2

98/I =

π2
4
0

e

84/I = ∫ x ln(x 2 + 1)dx
1
3


107/I =

3

1
e2

dx

104*/I = ∫

π
6

95*/I = ∫ (

81/I = ∫ (ln x) 2 dx

2

2
8 3

80/I = ∫ ln(x 2 − x)dx
2
e

1




91*/I =

x sin x
dx
2
0 1 + cos x
1
1
105*/I = ∫ 2
dx
x
(x
+
1)(4
+
1)
−1
1
x4
106*/I = ∫
dx
x
1
+
2
−1
π


2

116/I = ∫ sin x.ln(cos x)dx
0
π
e2

117/I =

2
∫ cos (ln x)dx

1
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

DĐ: 0905.838.969

3


TTBDKTPT VQ

π
4

1
dx
cos
x
0


118/I = ∫

GV: PHAN VĂN VINH

1
dx
3
cos
x
0

1

2

120/I = ∫ x 3e x dx
0
π
2

2

121/I = ∫ esin x .sin x cos3 xdx
0
π
2

sin 2x
122/I = ∫

dx
4
0 1 + cos x
1
3
123/I = ∫ 2
dx
x

4x

5
0
2
5
dx
124/I = ∫ 2
x

6x
+
9
1
1
1
dx
125/I = ∫
2
2x
+

8x
+
26
−5
1
2x + 9
126/I = ∫
dx
x
+
3
0
4
1
dx
127/I = ∫ 2
x
(x
+
1)
1
0
sin 2x
128*/I = ∫
dx
2
−π (2 + sin x)
2
1


x −3
129/I = ∫
dx
2
0 (x + 1)(x + 3x + 2)
1

4x
dx
3
(x
+
1)
0
1
1
131/I = ∫ 4
dx
2
(x
+
4x
+
3)
0

130/I = ∫

π
3


3

sin x
dx
2
(sin
x
+
3)
0

132/I = ∫

4sin x
dx
π 1 − cos x

145/I = ∫ x 1 − xdx

6
π
3

146/I = ∫

3

133/I = ∫


π
4

119*/I = ∫

1

π
3

0
6

4

1
134/I = ∫
dx
2
cos
x.sin
x
π

0

−1
3

6

π
3

148/I = ∫

135/I = ∫ sin x.tgxdx

1
2

0
π
3

−1
2

139/I =

π
3

140/I =

152/I =
1
dx
2
2
π sin x + 9cos x




153/I =

cos x − 1

1 + sin x

cos x
dx
0 sin x + cos x + 1
4
1
dx
142/I = ∫ 2
x
(x
+
1)
1
141/I = ∫

−3

1
x + 4 + (x + 4)3

π
3


sin 3 x
dx
144/I = ∫
0 cos x

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ



1 + e2x
1

2
7 x 9+x

dx

dx

0
π
2

0
π
2

1




0
4

3e4x + e2x

154/I = ∫ e x sin 2 xdx

∫ 1 + 3cos x dx

143/I = ∫

1
2

dx

π
2

∫ cos x + 2 dx
π

2
π
2

2


x + 4x + 13
1
151/I = ∫
dx
x
0 3+ e
−2
1

sin3 x
dx
137/I = ∫ 2
2
5
(tg
x
+
1)
.cos
x
0

3
π
2

2x − 5




150/I =

4
π
4



4x − x 2 + 5 dx

149/I = ∫

1
dx
136/I = ∫
sin
2x
π

138/I =



147/I =

x−4 1
.
dx
x+2 x+2
1

dx
x 2 + 2x + 9
1
dx
4x − x 2

dx

cos 4 x
155/I = ∫
dx
4
4
cos
x
+
sin
x
0
1
3
dx
156/I = ∫
0 x+9 − x
π

157/I = ∫ x sin xdx
0
π


158/I = ∫ x 2 cos 2 xdx
0
1

159/I = ∫ cos x dx
0

DĐ: 0905.838.969

4


TTBDKTPT VQ

1

160/I = ∫ sin x dx

GV: PHAN VĂN VINH

2

0

161/I =

1
2

π2

4

∫ x sin x dx
0

2

162/I =

π
4

ln x
176/I = ∫ 5 dx
1 x
e
ln x
dx
177/I = ∫
2
(x
+
1)
1

∫ x cos x dx

0
π


2

163/I = ∫ x cos x sin x dx

164/I =

0
π
6

2

∫ x cos x sin x dx

0
4

x

165/I = ∫ e

e
1
2

0
π
2
π
3


180/ ∫ esin

0
π

181/I=
2x

0
1

2

sin x dx
2 x

x e
168/I = ∫
dx
2
(x
+
2)
0
e

169/I = ∫ (1 + x) ln x dx
1
e


2

170/I = ∫ x ln x dx
1
1
e

2

171/I = ∫ ln x dx
1
e

172/I = ∫ x(2 − ln x) dx
1

173/I = ∫ (
e
2

189/I = ∫

1
1

)dx
2
ln x ln x


174/I = ∫ (x 2 + x) ln x dx

x

e +e

0
e

190/I=

dx

∫ ln x dx
π
2

191/I = ∫ (esin x + cos x) cos x dx

2

x

sin x cos3 x dx

π
2

sin 2x.cos x
dx

0 1 + cos x

192/I = ∫

π
2

sin 2x + sin x
dx
1 + 3cos x
0

193/I = ∫

π
4 1 − 2sin 2

x
dx
1 + sin 2x

194/I = ∫

0
π
2

−x

1

e

0

166/I = ∫ e3x sin 4x dx

e2

1+ x
dx
1− x

179/I = ∫ cos x.ln(1 − cos x) dx
π
2

dx

ex

1

0

178/I = ∫ x ln

1
π
4


167/I = ∫ e

1
x

175/I = ∫ x 2 ln(1 + ) dx

sin 2x

∫ 1 + sin 4 x dx

0
π
2

sin 2x
dx
182/I = ∫
4
0 1 + cos x
2
5
183/I = ∫ 2
dx
x

6x
+
9
1

1 2
x + 3x + 2
dx
184/I = ∫
x
+
3
0
4
1
185/I = ∫ 2
dx
x
(x
+
1)
1
1
ln(1 + x)
dx
186/I = ∫ 2
x
+
1
0
1
1+ x4
187/I ∫
dx
6

1
+
x
0
1

188/I = ∫ x15 1 + x 8 dx

3



195/I =

2

x +1

0
π
3

196/I = ∫

π
4

x 5 + 2x 3

dx


tgx
2

cos x 1 + cos x

2

197/I = ∫ (
−1
π
4

dx

x −1 2
) dx
x+2

198/I = ∫ x.tg 2 x dx
0
5

199/I = ∫ ( x + 2 − x − 2 ) dx
−3
4

200/I = ∫

−1

2

201/I = ∫
1

2
dx
x +5 +4
x
dx
x+2 + 2−x

0

1
ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

DĐ: 0905.838.969

5


TTBDKTPT VQ

GV: PHAN VĂN VINH

2

ln(1 + x)
202/I = ∫

dx
x2
1
π
2

sin 2x
203/I = ∫
dx
0 1 + cos x
π
2

sin 2008 x
dx
2008
x + cos 2008 x
0 sin

204/I = ∫

216/I =

2
2

x




π
2

2

dx

2

1− x
1− x2
dx
217/I = ∫
4
11+ x
0
2

7

218/I =



x
3

1
2


π
4

0
ln 2

3

sin x
dx
2
0 cos x

207/I = ∫

π
2

2

208/I = ∫ cos x.cos 4x dx
0
1

1
dx
2x
x
e
+

e
0
e
ln x
210/I = ∫
dx
2
1 (x + 1)

209/I = ∫

e
1

1
211/I = ∫
dx
x
+
1
+
x
0
1
x2
dx
212/I = ∫
2
4


x
0
1
x
213/I = ∫
dx
2
0 4−x
1
2

x4
dx
214/I = ∫ 2
0 x −1
π
2

sin 3x
215/I = ∫
dx
0 cos x + 1

1

2
0 x − 3x + 2

232*/I = ∫ x sin x.cos 2 xdx


2

dx

0
π
2

cos x
dx
0 cos 2x + 7
4
1
234/I = ∫ 2
dx
x
(x
+
1)
1
233/I = ∫

π
2

221/I = ∫ x + 1dx

2
3
235/I = ∫ sin 2x(1 + sin x) dx


0
π
2

222/I = ∫ (cos3 x + sin 3 x) dx
0
3

x2 +1
223/I = ∫
dx
+
x
1
0



2

x x +9

dx

π

238/I = ∫ x sin 3 x cos 4 xdx
0


cos x
cos 2 x + 1

dx

x +1
226/I = ∫ 3
dx
3x
+
1
0
π
2 1 + sin 2x

+ cos 2x
dx
cos x + sin x

227/I = ∫

π
6

x 2

1

(1 + e )
dx

2x
1
e
+
0

228/I = ∫

3

x +1
dx
3
3x
+
2
0
4
1

236/I = ∫

7

224/I = ∫ (1 + x) 2 .e2x dx

0
7
3


0
2

237/I =

1

225/I = ∫

dx

π

3

2

0
π
2

4x − 1

231/I = ∫

1+ x
1 − ex
205/I = ∫ sin x.ln(1 + cos x) dx
219/I = ∫
dx

x
0
+
1
e
0
2
3
1
x +1
206/I = ∫
dx
220/I = ∫ x 1 − x dx
2
x
1
0
π
2

sin x.cos3 x
dx
230/I = ∫
2
cos
x
+
1
0


2

3

229/I = ∫ x (1 − x) dx
0

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

π
2

239/I = ∫ cosx cosx − cos3 xdx


π
2

1

240*/I = ∫ ln( x 2 + a + x)dx
−1
π
2

1 − sin x
dx
x
(1
cos

x)e
+
0

241/I = ∫

π
2

sin 2x + sin x
dx
+
cos3x
1
0

242/I = ∫

π
4

sin 2x
dx
2
2
sin
x
+
2cos
x

0

243/I = ∫

DĐ: 0905.838.969

6


TTBDKTPT VQ

244/I =

2
2



0

245/I =

2
2



0
1


246/I =



2
2
1

247/I = ∫
0

2

248/I =



2
3
1

x

π
3

3

1− x2
x3

1− x

GV: PHAN VĂN VINH

2

dx

256/I = ∫ tg 4 xdx

dx

π
2 1 + sin x

257*/I = ∫

0 1 + cos x

1− x
dx
x2
2

4 − x2
1
2

dx


x x −1

dx

0
π
2

sin x
dx
1
+
sin
x
0

250/I = ∫

π
2

cos x
dx
7
+
cos
2x
0
4
1

252/I = ∫
dx
2
(1
+
x)x
1
2
x +1
dx
253/I = ∫ 3
0 3x + 2
251/I = ∫

π
3

1

e x dx

2 3

258/I = ∫ (1 − x ) dx
0
π
4

259/I = ∫ x.tg 2 xdx


cos x + sin x
dx
3 + sin 2x
π

1
dx
2 2
(4
+
x
)
0
1
3x 2
261/I = ∫
dx
3
0 x +2
2
1 − x5
262*/I = ∫
dx
5
1 x(1 + x )
260/I= ∫

π
3


cos x
dx
2
0 1 − sin x

263/I = ∫

π
3

sin 2 x
264/I = ∫
dx
6
0 cos x
π
6

sin x + sin 3 x
265/I = ∫
dx
cos 2x
0
π
2

1
dx
π sin x 1 + cos x


254*/I = ∫

266/I = ∫

4

3
π
2

255/I = ∫ cosx cosx − cos3 xdx


0
π
4

sin 4 x − cos 4 x
270/I = ∫
dx
sin
x
+
cos
x
+
1
0
π
4


sin 4 x − cos 4 x
271/I = ∫
dx
sin
x
+
cos
x
+
1
0
π
2

sin x cos x + cos x
dx
sin x + 2
0

272/I = ∫

0
2

249/I = ∫ x 5 (1 − x 3 )6 dx

π
2


269/I = ∫ sinxcosx(1+cosx)2dx

π
4

2

x

π
2

sin x
dx
2
cos
x
+
3
0

267/I = ∫

π
2

π2

268/I =



0

sin x
dx
x

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

1

273/I = ∫

1
ex
3

dx

x
x 3 + 2x 2 + 10x + 1
274/I = ∫
dx
2
x + 2x + 9
0
1
x3
dx
275/I = ∫ 2

3
0 (x + 1)
1
3
276/I = ∫ 3
dx
x
+
1
0
1 4
x +1
dx
277*/I = ∫ 6
+
x
1
0
1
x
278/I = ∫
dx
3
(2x
+
1)
0
7
1
dx

279/I = ∫
2 2 + x +1
a
1

280/I =

3
2



1
2
1

281*/I = ∫
0

1
x 1− x

2

dx

x ln(x + 1 + x 2 )
1+ x

2


dx

4

282/I = ∫ (x − 1)2 ln x dx
1
DĐ: 0905.838.969

7


TTBDKTPT VQ

3

GV: PHAN VĂN VINH

283/I = ∫ x ln(x + 1)dx

296/I =

0
2

3x 3
284/I = ∫ 2
dx
1 x + 2x + 1
1

4x − 1
285/I = ∫ 3
dx
2
+
+
+
x
2x
x
2
0
1
2

1

286/I = ∫

−1 (3+ 2x)
2

1

2

5+12x +4x

1


287/I = ∫

x + 1+ x

0
π
2

dx

dx

cos x
dx
2 + cos 2x

288/I = ∫

0
π
2

cos x + sin x
dx
3
+
sin
2x
π


289/I = ∫

4
π
2

290/I = ∫ (cos3 x + sin 3 x)dx
0
π
2

291/I = ∫ cos5 x sin 4 xdx
0
π
2

292/I = ∫ cos2x(sin4 x+cos4 x)dx
0
π
2

1
dx
2
+
sin
x
0

293/I = ∫


π
2

1
dx
2

cos
x
0

294/I = ∫

2

295/I =



2
3

1
2

x x −1

dx




3

0
2

297*/I = ∫
1
1

298/I = ∫

1+ x2
1

3

π
2

sin x
dx
0 cos x + sin x

dx

+ 1+ x2
1


−1 1 +
π
3

1
dx
2x
−1 3 + e

309*/I = ∫

dx

x 1+ x
x3

0x
1

299/I = ∫

1

x3

7

2

310*/I = ∫

π
2

dx

x + 1+ x2

dx

1
300/I = ∫
dx
4
π sin x cos x
6
π
2

cos x
dx
cos
x
+
1
0

π
2

cos x

dx
302/I = ∫
2

cos
x
0
π
2

sin x
303/I = ∫
dx
sin
x
+
2
0
π
2

cos3 x
304/I = ∫
dx
cos
x
+
1
0


306/I =

π
2

tgx

312*/I = ∫

1 − ln 2 (cos x)

0

dx

π
2

sin x
dx
cos
x
+
sin
x
0
1
1
dx
314*/I = ∫ x

2
−1 (e + 1)(x + 1)
313*/I = ∫

301/I = ∫

305/I =

sin 4 x
311/I = ∫
dx
4
4
0 cos x + sin x

π
2

1

∫ 2cos x + sin x + 3 dx
0
π
2

cos x
dx

2
(1


cos
x)
π
3

π
4

307/I = ∫ tg 3 x dx
0

sin 2 x
dx
308*/I= ∫ x
3
+
1
−π
π

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

1

315*/I = ∫ e
0
1

3x +1


dx

x2

316*/I = ∫
0
π
2

2

x +4

dx

cos3 x
dx
317*/I = ∫ 4
2
0 cos − 3cos x + 3
318*/Tìm x> 0 để
π
3

319*/I = ∫

π
4
1


t 2et
dt = 1

2
(t
+
2)
0

x

tan x
2

cos x cos x + 1

dx

320*/I = ∫ −3x 2 + 6x + 1dx
0
π
4

321*/I = ∫ tg 5 x dx
0

DĐ: 0905.838.969

8



TTBDKTPT VQ
1

π
4

336,Cmr

322/I = ∫ cotg 3 x dx
π
6
π
3

50

4

1
2

dt

∫ ( 3+ 2cost )

2

0


339, Cmr

1

∫ 2 + tgx dx


1
2

2x −1
x −1
dx < ∫
dx
x
x +1
1

2 3

341, I =



5

π
3


x x2 + 4

cos 2x
dx
2
π 1 − cos 2x

342, I = ∫ x3 1 − x2 dx

6

sin 2x + sin x
dx
343, I = ∫
1 + 3cos x
0

0

π
2

π
4

327*/I = ∫ ( t g x − 1 ) 2 d x
tg x + 1

1


328*/I =

1
2

2 3

1

(e x + 1) e x − 1

π
−1
e4

1
e

3

332/I = ∫
1

dx
346, I = ∫ 2
x + x +1
0

1
dx

x cos 2 (ln x + 1)

1
ln 5

348, I =

1 + 3ln x ln x
dx
x

dx
∫ln3 ex + 2e− x − 3
sin 2x cos x
dx
1 + cos x
0
3

350, I = ∫ ln ( x 2 − x ) dx

π
4

2
π
2

333*/I = ∫ ln(1 + tgx)dx
π

2

π
dx
π
≤∫

2
16 0 5 + 3cos x 10

0
1

(

−7

)

3

358, I =

dx

∫ x+x
1
π
4


359, I =

1 − cos 2xdx


π

3
2

360, I = ∫

3

5 ( x − 1)

dx

1

x2 − x − 6

1

x ln x + 1 + x 2

361, I = ∫

(


1 + x2

0

e2

ln x + ln ( ln x )
x

π
2

)dx

dx

3

363, J = ∫ cos2 x dx
π
6

sin x

1

x2 dx
x6 − 9
0


364, I = ∫
π
3

dx

365, I = ∫

4

π
4

sin x cos 5 x
3

π
2

sin 2x
dx
sin x + 6 sin 2 x + 5
0

366, I = ∫

4

π


367 I = ∫ sin xex dx
π
2

368, I = ∫ cos 5 x co s 7x d x
0

352, I = ∫ ( x − 2 ) e dx
2x

0

2

54 2 ≤ ∫ x+7+ 11−x dx ≤108

1 − 2sin 2 x
dx
+
1
s
in2x
0

357, I = ∫

0

351, I = ∫ ( esin x + cos x ) cos xdx


0

0

π
4

π
2

349, I = ∫

1
dx
x 6 (1 + x 2 )

11

e

347, I = ∫

356, I = ∫ x sin xdx

e

1

dx


0

π2

362, I = ∫

dx
345, I = ∫
1 + x2
0

ex

ln 3

331/I = ∫

0
1

x − x3
dx
x4

329*/I = ∫

0

344, I = ∫ 1 − x 2 dx


x
dx
3
x +1



330/I = ∫

1

2

355, I = ∫ x3ex dx

dx

1

326/I = ∫

)

2

2

340, I = ∫

5

325/I = ∫ sin x dx
0 cos x + 1

0

(

2 3+ 3

x
dx
1 1+ x −1

0

1

1



2
2
≤ ∫ e x − x dx ≤ 2 4 e
2
e
0

2


π
2

335,Cmr

354, I = ∫

2

338,Cmr

π
4

324*/I =

x
dx
1 + cos 2x
0

1 ≤ ∫ 2 dx ≤ 4

337,Cmr 1 ≤

π
4

π
4


x3

−1

323/I = ∫ tg x dx

334,Cmr

GV: PHAN VĂN VINH

353, I = ∫ x − x dx
2

0

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

369, I =

π
4

sin 4 x + cos4 x
∫π 3x + 1 dx



4


DĐ: 0905.838.969

9


TTBDKTPT VQ

GV: PHAN VĂN VINH

AN ACT OF KINDNESS IS NEVER WASTED !

ĐC: KIỆT I, TRUNG ĐÔNG, PHÚ THƯỢNG, PHÚ VANG, HUẾ

DĐ: 0905.838.969

10



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×