Tải bản đầy đủ (.doc) (14 trang)

lượng giác đây

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (420.69 KB, 14 trang )

Các hàm lượng giác cơ bản
Ngày nay, chúng ta thường làm việc với sáu hàm lượng giác cơ bản, được liệt kê trong
bảng dưới, kèm theo liên hệ toán học giữa các hàm.
Hàm Viết tắt Liên hệ
Sin sin
Cos cos
Tang tan
Cotang cot
Sec sec
Cosec
csc
(hay cosec)
Trong lịch sử, một số hàm lượng giác khác đã được nhắc đến, nhưng nay ít dùng là:
• versed sine (versin = 1 − cos)
• exsecant (exsec = sec − 1).
Xem thêm bài đẳng thức lượng giác để biết thêm rất nhiều liên hệ khác nữa giữa các hàm
lượng giác.
[sửa] Lịch sử
Những nghiên cứu một cách hệ thống và việc lập bảng tính các hàm lượng giác được cho
là thực hiện lần đầu bởi Hipparchus ở Nicaea (180-125 TCN), người đã lập bảng tính độ
dài của các cung tròn (có giá trị bằng góc, A, nhân với bán kính, r) và chiều dài của dây
cung tương ứng (2r sin(A/2)). Sau đó, Ptolemy (thế kỷ 2) tiếp tục phát triển công trình trên
trong quyển Almagest, tìm ra công thức cộng và trừ cho sin(A + B) và cos(A + B). Ptolemy
cũng đã suy diễn ra được công thức nửa-góc sin(A/2)
2
= (1 − cos(A))/2, cho phép ông lập
bảng tính với bất cứ độ chính xác cần thiết nào. Những bảng tính của Hipparchus và
Ptolemy nay đã bị thất truyền.
Các phát triển về lượng giác tiếp theo diễn ra ở Ấn Độ, trong công trình Siddhantas
(khoảng thế kỷ 4–5), định nghĩa hàm sin theo nửa góc và nửa dây cung. Quyển Siddhantas
cũng chứa bảng tính hàm sin cổ nhất còn tồn tại đến nay (cùng với các giá trị 1 − cos), cho


các góc có giá trị từ 0 đến 90 độ cách nhau 3.75 độ.
Công trình Ấn giáo này sau đó được dịch và phát triển thêm bởi người Ả Rập. Đến thế kỷ
10, người Ả Rập đã dùng cả 6 hàm lượng giác cơ bản (trong tác phẩm Abu'l-Wefa), với các
bảng tính hàm sin cho các góc cách nhau 0.25 độ, với độ chính xác đến 8 chữ số thập phân
sau dấu phẩy, và bảng tính hàm tan.
Từ sin mà ngày nay ta dùng xuất phát từ chữ La tinh sinus ("vịnh" hay "gập"), dịch nhầm
từ chữ Phạn jiva (hay jya). Jiva (vốn được đọc đầy đủ là ardha-jiva, "nửa-dây cung", trong
quyển Aryabhatiya thế kỷ 6) được chuyển tự sang tiếng Ả Rập là jiba (بج), nhưng bị nhầm
thành từ khác, jaib (بج) ("vịnh"), bởi các dịch giả ở châu Âu như Robert ở Chester và
Gherardo ở Cremona trong quyển Toledo (thế kỷ 12). Sự nhầm lẫn này có thể là do jiba (
بج) và jaib (بج) được viết giống nhau trong tiếng Ả Rập (nhiều nguyên âm bị thiếu trong
bảng chữ cái Ả Rập).
Các công trình đầu tiên này về các hàm lượng giác đều được phát triển trong nghiên cứu
thiên văn. Có lẽ quyển sách đầu tiên chỉ tập trung nghiên cứu về lượng giác là De
triangulis omnimodus (1464) và Tabulae directionum của Regiomontanus (1436–1476).
Quyển Tabulae directionum nói về hàm tang.
Quyển Opus palatinum de triangulis của Rheticus, một học trò của Copernicus, là quyển
sách đầu tiên định nghĩa các hàm lượng giác bằng tam giác vuông thay vì dùng vòng tròn
đơn vị, kèm theo bảng tính 6 hàm lượng giác cơ bản. Công trình này được hoàn thiện bởi
học trò của Rheticus là Valentin Otho năm 1596.
Quyển Introductio in analysin infinitorum (1748) của Euler tập trung miêu tả cách tiếp cận
giải tích đến các hàm lượng giác, định nghĩa chúng theo các chuỗi vô tận và giới thiệu
"Công thức Euler" e
ix
= cos(x) + i sin(x). Euler đã dùng các ký hiệu viết tắt sin., cos., tang.,
cot., sec., và cosec. giống ngày nay.
[sửa] Định nghĩa bằng tam giác vuông
Một tam giác vuông luôn chứa một góc 90° (π/2 radian), được ký hiệu là C trong hình này.
Góc A và B có thể thay đổi. Các hàm lượng giác thể hiện mối liên hệ chiều dài các cạnh và
độ lớn các góc của tam giác vuông.

Có thể định nghĩa các hàm lượng giác của góc A, bằng việc dựng nên một tam giác vuông
chứa góc A. Trong tam giác vuông này, các cạnh được đặt tên như sau:
• Cạnh huyền là cạnh đối diện với góc vuông, là cạnh dài nhất của tam giác vuông, h
trên hình vẽ.
• Cạnh đối là cạnh đối diện với góc A, a trên hình vẽ.
• Cạnh kề là cạnh nối giữa góc A và góc vuông, b trên hình vẽ.
Dùng hình học Ơclit, tổng các góc trong tam giác là pi radian (hay 180⁰). Khi đó:
Hàm Định nghĩa Biểu thức
Sin Cạnh đối chia cho cạnh huyền
Cos Cạnh kề chia cho cạnh huyền
Tang Cạnh đối chia cho cạnh kề
Cotang Cạnh kề chia cho cạnh đối
Sec Cạnh huyền chia cho cạnh kề
Cosec Cạnh huyền chia cho cạnh đối
[sửa] Định nghĩa bằng vòng tròn đơn vị
Các hàm lượng giác cũng có thể được định nghĩa bằng vòng tròn đơn vị, một vòng tròn có
bán kính bằng 1 và tâm trùng với tâm của hệ tọa độ. Định nghĩa dùng vòng tròn đơn vị
thực ra cũng dựa vào tam giác vuông, nhưng chúng có thể định nghĩa cho các mọi góc là số
thực, chứ không chỉ giới hạn giữa 0 và Pi/2 radian. Các góc lớn hơn 2π hay nhỏ hơn −2π
quay vòng trên đường tròn.
[sửa] Dùng đại số
Vòng tròn đơn vị và một số điểm đặc biệt ứng với một số góc đặc biệt.
Vòng tròn đơn vị là mọi điểm (x, y) trên mặt phẳng của hình học phẳng thỏa mãn:
x
2
+ y
2
= 1
Gọi góc θ là góc giữa đường thẳng nối tâm hệ tọa độ và điểm (x,y) trên vòng tròn và chiều
dương của trục x của hệ tọa độ x-y, các hàm lượng giác có thể được định nghĩa là:

Hàm Định nghĩa
sin(θ) y
cos(θ) x
tan(θ) y/x
cot(θ) x/y
sec(θ) 1/x
csc(θ) 1/y
Khi các góc quay trên vòng tròn, hàm sin, cos, sec và cosec trở nên hàm tuần hoàn với chu
kỳ 2π radian hay 360 độ:
Ở đây θ là góc, một số thực bất kỳ; k là một số nguyên bất kỳ.
Tang và Cotang tuần hoàn với chu kỳ π radian hay 180 độ.
[sửa] Dùng hình học
Mọi hàm lượng giác đều có thể được dựng lên bằng phương pháp hình học trên một vòng
tròn đơn vị có tâm ở O.
Hình vẽ bên cho thấy định nghĩa bằng hình học về các hàm lượng giác cho góc bất kỳ trên
vòng tròn đơn vị tâm O. Với θ là nửa cung AB:
Hàm
Định
nghĩa
Chú thích
sin(θ) AC định nghĩa lần đầu giới thiệu trong lịch sử bởi người Ấn Độ
cos(θ) OC
tan(θ) AE
đường tiếp tuyến với đường tròn tại A, ý nghĩa này đã mang lại cho cái
tên "tan" của hàm, xuất phát từ tiếng La tinh là "tiếp tuyến"
cot(θ) AF
sec(θ) OE
đường cắt vòng tròn, ý nghĩa này đã mang lại cho cái tên "secant" của
hàm, xuất phát từ tiếng La tinh là "đường cắt vòng tròn"
csc(θ) OF

versin(θ) CD versin(θ) = 1 − cos(θ)
exsec(θ) DE exsec(θ) = sec(θ) − 1
Theo hình vẽ, dễ thấy sec và tang sẽ phân kỳ khi θ tiến tới π/2 (90 độ), cosec và cotang
phân kỳ khi θ tiến tới 0. Nhiều cách xây dựng tương tự có thể được thực hiện trên vòng
tròn đơn vị, và các tính chất của các hàm lượng giác có thể được chứng minh bằng hình
học.
[sửa] Định nghĩa bằng chuỗi

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×