ớ t tổ tọ ỏ t ỡ s s tợ ừ ỵ
t ổ tr ở ổ t t t ụ t ũ ữớ
ữợ ự ữợ ụ ữ ở tổ õ t ỹ t õ
tổ ỷ ớ ỡ tợ t t ợ P õ
ỳ ỵ õ õ ú ù ở t t ủ tổ t õ
ổ tr t ỡ
ỡ t
tỹ
▼ö❝ ❧ö❝
▼ð ✤➛✉
✶ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚
✶✳✶ ❑❤→✐ ♥✐➺♠ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✸ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ✈î✐ ♥❤➙♥ t→❝❤ ❜✐➳♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸
✹
✹
✺
✽
✷ P❍×❒◆● ❚❘➐◆❍ ❚➑❈❍ P❍❹◆ ❋❘❊❉❍❖▲▼ ▲❖❸■ ❍❆■ ❱❰■ ◆❍❹◆
❚✃◆● ◗❯⑩❚
✶✷
✷✳✶
✷✳✷
✷✳✸
✷✳✹
P❤÷ì♥❣ ♣❤→♣ t❤➳ ❧✐➯♥ ❤ñ♣ ✳ ✳
P❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ ❧✐➯♥ t✐➳♣
❈→❝ ✤à♥❤ ❧þ ❋r❡❞❤♦❧♠ ✳ ✳ ✳ ✳
❈➜✉ tró❝ ❝õ❛ ♥❤➙♥ ❣✐↔✐ ✳ ✳ ✳ ✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✶✷
✶✺
✶✽
✷✺
✸ P❍×❒◆● ❚❘➐◆❍ ❚➑❈❍ P❍❹◆ ❋❘❊❉❍❖▲▼ ▲❖❸■ ❍❆■ ❱❰■ ◆❍❹◆
❍❊❘▼■❚■❆◆
✸✵
✸✳✶
✸✳✷
✸✳✸
✸✳✹
▼ët sè t➼♥❤ ❝❤➜t ❝õ❛ ♥❤➙♥ ❍❡r♠✐t✐❛♥
❈→❝ ❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ ❍❡r♠✐t✐❛♥
❈→❝ ❤➔♠ r✐➯♥❣ ❝õ❛ ♥❤➙♥ ❍❡r♠✐t✐❛♥ ✳
✣à♥❤ ❧þ ❍✐❧❜❡rt✲❙❝❤♠✐❞t ✳ ✳ ✳ ✳ ✳ ✳ ✳
❑➳t ❧✉➟♥
❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦
✷
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✳
✸✵
✸✷
✸✽
✹✺
✺✼
✺✽
ị
é
t ồ ữỡ tr ợ
ỡ ồ t ỵ ự ữợ t ỳ
ữỡ tr õ ữủ ồ ữỡ tr t Pữỡ tr t ữủ
ữ ởt ổ ử t ồ ỳ tr ỹ ữủ q t
ự t õ õ ự ử rở r ổ tr t ồ
ỏ tr ồ ử ữ ự ữỡ tr t
ợ qt ởt số t ỵ ữỡ tr
ổ t ổ t ữủ ữ tữủ t tữủ tr
ự ữỡ tr t õ trỏ q trồ tr ỵ tt t ồ
ợ ố ự t s ỡ ữỡ tr t ỗ
tớ õ õ t ởt số ớ t q tổ ỹ ồ
t Pữỡ tr t r tờ qt õ tốt
ồ
ệ
õ t tr ự s
ự ởt số ữỡ tr t õ t ữủ
ử ởt số ữỡ ữỡ tr t ởt số t
q
ìẹ
ự ởt số ữỡ tr t õ t ữủ
ệ
qt ỡ ừ t ữỡ tr t
õ t ữủ
ró ữỡ ữỡ tr t õ t ữủ
Pì PP
ữ t ồ ự t t tờ ủ tự
r ờ t ợ ữợ tr ụ ữ sr ợ tờ ở
ổ
ì P ế
ợ ừ õ
ởt ợ ố ợ t tr t ỗ tớ ụ ởt
ỏ ữ ữủ t ố ợ s P
ữợ t tr ừ õ
ự tờ ủ tố ữỡ tr t õ t ữủ
P ế
õ r ữủ ữỡ ởt số ữỡ tr t
t q
ể
ợ ử ữ õ ữủ t ữỡ ợ ỳ ở
s
ữỡ r ởt số tự ữỡ tr t ổ
ổ rt Pữỡ tr t t ũ
tr t q ữỡ s
ữỡ r ởt số ữỡ tr t r
ợ tờ qt
ữỡ r ởt số ữỡ tr t r
ợ rt
❈❤÷ì♥❣ ✶
❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚
❚r♦♥❣ ❝❤÷ì♥❣ ♥➔②✱ ❝❤ó♥❣ tæ✐ tr➻♥❤ ❜➔② ♠ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à ❝➛♥ t❤✐➳t ❝❤♦ ❦❤â❛
❧✉➟♥ ♥❤÷✿ ❈→❝ ❦❤→✐ ♥✐➺♠ ✈➲ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥✱ ✤➦❝ ❜✐➺t ❧➔ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥
❧♦↕✐ ❤❛✐ ❋r❡❞❤♦❧♠ ✈î✐ ♥❤➙♥ t→❝❤ ❜✐➳♥✳
✶✳✶ ❑❤→✐ ♥✐➺♠ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✶✳ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❧➔ ♠ët ♣❤÷ì♥❣ tr➻♥❤ ♠➔ ❤➔♠ ❝➛♥ t➻♠ ①✉➜t
❤✐➺♥ ❞÷î✐ ❞➜✉ t➼❝❤ ♣❤➙♥✳
❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t✉②➳♥ t➼♥❤ ❝â ❞↕♥❣
b
λϕ(x) −
K(x, t)ϕ(t)dt = f (x),
a
tr♦♥❣ ✤â
✭✶✳✶✮
• f (x) ❧➔ ❤➔♠ ❝❤♦ tr÷î❝✱ ❝â ❣✐→ trà ♣❤ù❝ ✈➔ ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ [a, b]❀
• K(x, t) ❧➔ ❤➔♠ ❝❤♦ tr÷î❝✱ ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ [a, b] × [a, b]✱ ❝â ❣✐→ trà ♣❤ù❝ ✈➔ ✤÷ñ❝
❣å✐ ❧➔ ♥❤➙♥;
• λ ❧➔ ❤➡♥❣ sè ♣❤ù❝ ❝❤♦ tr÷î❝❀
• ϕ(x) ❧➔ ❤➔♠ ❝➛♥ t➻♠✱ ❧✉æ♥ ✤÷ñ❝ ❣✐↔ t❤✐➳t ❧➔ ❦❤↔ t➼❝❤ t❤❡♦ ♥❣❤➽❛ ❘✐❡♠❛♥♥✳ ❚❛ ❝â t❤➸
♣❤➙♥ ❧♦↕✐ ♥❤÷ s❛✉✿
✶✳ ◆➳✉ ❤➺ sè λ = 0 t❤➻ t❛ ✤÷ñ❝ ♣❤÷ì♥❣ tr➻♥❤
b
K(x, t)ϕ(t)dt = f (x)
a
P❤÷ì♥❣ tr➻♥❤ tr➯♥ ✤÷ñ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❋r❡❞❤♦❧♠ ❧♦↕✐ ♠ët
✷✳ ◆➳✉ ❤➺ sè λ = 0 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ✤÷ñ❝ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠
❧♦↕✐ ❤❛✐✳
◆➳✉ ♥❤➙♥ K(x, t) ❝â t➼♥❤ ❝❤➜t K(x, t) ≡ 0 ✈î✐ ♠å✐ t > x t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ trð
t❤➔♥❤ ♣❤÷ì♥❣ tr➻♥❤ ❱♦❧t❡rr❛✳
✸✳ ◆➳✉ λ = 0 t❤➻ t❛ ✤÷ñ❝ ♣❤÷ì♥❣ tr➻♥❤
x
λϕ(x) −
K(x, t)ϕ(t)dt = f (x),
a
✈➔ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❱♦❧t❡rr❛ ❧♦↕✐ ❤❛✐✳
✹
✹✳ ◆➳✉ λ = 0 t❤➻ t❛ ✤÷ñ❝ ♣❤÷ì♥❣ tr➻♥❤
x
K(x, t)ϕ(t)dt = f (x),
a
✈➔ ❣å✐ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❧♦↕✐ ♠ët✳
❚r♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ ❝❤ó♥❣ tæ✐ ❝❤➾ ①➨t ✈î✐ ♣❤÷ì♥❣ tr➻♥❤ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐✳ ❇➡♥❣ ♣❤➨♣
❜✐➳♥ ✤ê✐✱ t❛ ❝â t❤➸ ✈✐➳t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ❞÷î✐ ❞↕♥❣
b
ϕ(x) = f (x) + λ
K(x, t)ϕ(t)dt.
a
✭✶✳✷✮
✶✳✷ ▼ët sè ❦✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à
❈❤ó♥❣ t❛ ❞ò♥❣ ❝→❝ ❦➼ ❤✐➺✉
Q [a, b] = [a, b] × [a, b] ,
C [a, b] = {f : [a, b] → C : ❢ ❧✐➯♥ tö❝ tr➯♥ [a, b]},
C(Q [a, b]}) = {f : Q [a, b]} → C : ❢ ❧✐➯♥ tö❝ tr➯♥ Q [a, b]},
R [a, b] ❧➔ t➟♣ ❤ñ♣ ❝→❝ ❤➔♠ ❣✐→ trà ♣❤ù❝ ✈➔ ❦❤↔ t➼❝❤ tr➯♥ [a, b] ,
R2 [a, b] ❧➔ t➟♣ ❤ñ♣ ❝→❝ ❤➔♠ ❜➻♥❤ ♣❤÷ì♥❣ ❦❤↔ t➼❝❤ tr➯♥ [a, b] .
❱î✐ ♠é✐ f ∈ C [0, 1] , t❛ ❦➼ ❤✐➺✉
b
f
1
|f (x)|dx
=
a
✈➔
1/2
b
f
2
|f (x)|2 dx
=
a
❱î✐ ♠é✐ K(x) ∈ C(Q[0, 1]) t❛ ❦➼ ❤✐➺✉
b
K
2
1/2
b
|K(x, t)|2 dxdt
=
a
a
❈❤♦ f ✈➔ g ❧➔ ❤❛✐ ❤➔♠ t❤✉ë❝ C [a, b] t❤➻ t❛ ✤à♥❤ ♥❣❤➽❛ t➼❝❤ ✈æ ❤÷î♥❣
b
f, g =
f (x)g(x)dx.
a
◆➳✉ f, g = 0 t❤➻ t❛ ♥â✐ f ✈➔ g trö❝ ❣✐❛♦✳
❚❛ ❝â ❜➜t ✤➥♥❣ t❤ù❝ Cauchy − Schwarz
b
b
a
b
|f (x)|2 dx
f (x)g(x)dx ≤
a
|g(x)|2 dx .
a
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✳ ✭❍➺ ❝→❝ ❤➔♠ trü❝ ❝❤✉➞♥✮✳ ❉➣② {ϕn(x)} ❝→❝ ❤➔♠ t❤✉ë❝ C [a, b] ✤÷ñ❝
❣å✐ ❧➔ ♠ët ❤➺ trü❝ ❝❤✉➞♥ ♥➳✉
ϕn , ϕm =
0
1
✺
♥➳✉ n = m,
♥➳✉ n = m.
ừ = {n(x)}n=1 trỹ
f R2 [a, b] . f trỹ ợ ồ tỷ ừ r f
ữủ ồ ừ
t m = {1, ..., m} t ỳ ừ . f
ộ rr ở tử
r õ
span {m }
2
= 0 t
t t õ
f (x) = f, 1 1 (x) + ã ã ã + f, m m (x),
ữủ ồ số rr tự n ừ f (x)
ỹ ở tử {fn(x)} tr [a, b] .
õ {fn(x)} ở tử tợ f (x) tr [a, b] ợ ồ > 0, tỗ t số
N = N () s ợ ồ n N t | fn(x) f (x) |< ợ ồ x [a, b] .
f, n , n = 1, ..., m
ỵ ổ {fn(x)} tr [a, b]
ở tử ợ ồ > 0, tỗ t số N () s ợ ồ
n, m N () | fn (x) fm (x) |< ợ ồ x [a, b] .
ỵ {fn(x)}n=1 t ở tử tợ f (x) tr
[a, b] , t f (x) ụ t tr [a, b]
b
b
f (x)dx = lim
fn (x)dx.
n
a
a
ứ õ t s r r ộ un(x) ở tử S(x) tr [a, b] ợ ộ
n=1
n, un (x) t tr [a, b] t
b
b
S(x)dx =
un (x)dx.
a
a
n=1
ở tử tr
{fn (x)} tr R2 [a, b] ữủ ồ ở tử
2
tr tợ ợ f (x) tr R
[a, b]
1/2
b
lim fn f
n
2
2
|f (x) fn (x)| dx
= lim
n
= 0.
a
tỷ r K(x, t) tr Q [a, b]
t t tứ tr [a, b] t tỷ
K : R2 [a, b] R2 [a, b]
b
(t)
K(x, t)(t)dt
a
ồ t tỷ r tữỡ ự ợ t K(x, t) t
K1 (x, t) = K(x, t)
b
K2 (x, t) =
.............
K1 (x, s)K(s, t)ds
a
b
Km (x, t) =
Km1 (x, s)K(s, t)ds
a
❚❛ ❣å✐ Km(x, t) ❧➔ ♥❤➙♥ ❧➦♣ t❤ù m ❝õ❛ K(x, t)✳ ❚ø ✤à♥❤ ♥❣❤➽❛ t❛ ❝â
b
Km ϕ =
♠ = 1, 2....
Km (x, t)ϕ(t)dt,
a
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✽✳ ❚♦→♥ tû K ✤÷ñ❝ ❣å✐ ❧➔ ❜à ❝❤➦♥ ♥➳✉ tç♥ t↕✐ ❤➡♥❣ sè C ≥ 0 s❛♦ ❝❤♦
Kϕ
2
≤ C ϕ 2 , ∀ϕ ∈ R2 [a, b] .
◆➳✉ K ❜à ❝❤➦♥ t❤➻ t❛ ✤➦t
Kϕ 2
: ϕ ∈ R2 [a, b] , ϕ = 0
ϕ 2
K = sup
✈➔ ❣å✐ ♥â ❧➔ ❝❤✉➞♥ ❝õ❛ t♦→♥ tû K.
▼➺♥❤ ✤➲ ✶✳✷✳✾✳ ◆➳✉ ♥❤➙♥ K(x, t) ❝â
2
2
Kϕ
❈❤ù♥❣ ♠✐♥❤✳
≤ K
K(x, t)
2
2
ϕ 22 ,
2
< ∞ t❤➻
∀ϕ ∈ R2 [a, b]
⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ Cauchy − Schwarz t❛ ❝â
2
b
2
|Kϕ(x)|
=
K(s, x)ϕ(s)ds
a
b
b
|K(x, s)|2 ds
≤
|ϕ(s)|2 ds .
a
a
❉♦ ✈➟②
b
Kϕ
2
2
|Kϕ(x)|2 dx
=
a
b
2
≤
|ϕ(s)|2 ds
|K(x, s)| dsdx
a
=
b
b
K
a
2
2
ϕ
a
2
2.
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✵✳ ●✐↔ sû K ❧➔ t♦→♥ tû ❋r❡❞❤♦❧♠ t÷ì♥❣ ù♥❣ ✈î✐ ♥❤➙♥ K(x, t). ❑➼ ❤✐➺✉
K ∗ (x.t) = K(x, t)
✈➔ t♦→♥ tû K∗ ①→❝ ✤à♥❤ ❜ð✐
b
∗
2
∗
K ∗ (x, t)ϕ(t)dt
K : ϕ ∈ R [a, b] → (K ϕ) (x) =
a
✤÷ñ❝ ❣å✐ ❧➔ t♦→♥ tû ❧✐➯♥ ❤ñ♣ ❝õ❛ t♦→♥ tû K.
❚ø ✤à♥❤ ♥❣❤➽❛ t❛ s✉② r❛✿
✭✐✮ ❱î✐ ♠å✐ ϕ, ψ t❤✉ë❝ R2 [a, b] t❤➻ Kϕ, ψ
✭✐✐✮ ❱î✐ ♠å✐ m ≥ 1 t❤➻ (Km)∗ = (K∗)m.
✼
= ϕ, K∗ ψ .
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✶✳ ✭▼✐➲♥✮✳ ❚➟♣ Ω ⊂ C ♠ð✱ ❦❤→❝ ré♥❣ ✈➔ ❧✐➯♥ t❤æ♥❣ ✤÷ñ❝ ❣å✐ ❧➔ ♠ët
♠✐➲♥ tr♦♥❣ C.
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✷✳ ❈❤♦ ♠✐➲♥ Ω ✈➔ ❤➔♠ f : Ω → C.
✭✐✮ ❍➔♠ f ✤÷ñ❝ ❣å✐ ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤ tr➯♥ Ω ♥➳✉ f ❦❤↔ ✈✐ t↕✐ ♠å✐ ✤✐➸♠ z ∈ Ω.
✭✐✐✮ ❍➔♠ f ✤÷ñ❝ ❣å✐ ❧➔ ❤➔♠ ♣❤➙♥ ❤➻♥❤ tr➯♥ Ω ♥➳✉ tç♥ t↕✐ t➟♣ P ⊂ Ω s❛♦ ❝❤♦✿
✲ P ❦❤æ♥❣ ❝â ✤✐➸♠ ❣✐î✐ ❤↕♥ tr♦♥❣ Ω;
✲ f (z) ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤ tr♦♥❣ ♠✐➲♥ Ω\P ;
✲ ▼å✐ ✤✐➸♠ ❝õ❛ P ✤➲✉ ❧➔ ❝ü❝ ✤✐➸♠ ❝õ❛ f (z).
✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✸✳ ❍➔♠ f : C → C ✤÷ñ❝ ❣å✐ ❧➔ ❤➔♠ ♥❣✉②➯♥ ♥➳✉ f ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤
tr➯♥ t♦➔♥ ♠➦t ♣❤➥♥❣ ♣❤ù❝ C.
✶✳✸ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ✈î✐
♥❤➙♥ t→❝❤ ❜✐➳♥
❚r♦♥❣ ♠ö❝ ♥➔②✱ t❛ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ❝â ❞↕♥❣
b
ϕ(x) = f (x) + λ
K(x, t)ϕ(t)dt,
a
✭✶✳✸✮
tr♦♥❣ ✤â K(x, t) ❧➔ ♥❤➙♥ t→❝❤ ❜✐➳♥ tr➯♥ Q [a, b] ❝â ❞↕♥❣
n
K(x, t) =
ai (x)bi (t),
✭✶✳✹✮
i=1
tr♦♥❣ ✤â ai(x), bi(t) ❧➔ ❝→❝ ❤➔♠ t❤✉ë❝ C [a, b] . ❚❤❛② ✭✶✳✹✮ ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ t❛ t❤✉
✤÷ñ❝
n
ϕ(x) = f (x) + λ
b
ai (x)
bi (t)ϕ(t)dt .
a
i=1
❑❤✐ ✤â ♣❤÷ì♥❣ tr✐♥❤ tr➯♥ trð t❤➔♥❤
n
ci ai (x),
ϕ(x) = f (x) + λ
✭✶✳✺✮
i=1
tr♦♥❣ ✤â ci = ab bi(t)ϕ(t)dt, i = 1, ..., n. ❚ø ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ s✉② r❛ ♥❣❤✐➺♠ ϕ(x) ❝õ❛
♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮ ✤÷ñ❝ ①→❝ ✤à♥❤ ♥➳✉ ♥❤÷ ①→❝ ✤à♥❤ ✤÷ñ❝ ❤➺ sè ci.
◆❤➙♥ ❝↔ ❤❛✐ ✈➳ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✺✮ ✈î✐ bi(t) rç✐ ❧➜② t➼❝❤ ♣❤➙♥ t❤❡♦ ❜✐➳♥ t tr➯♥ [a, b]
t❛ t❤✉ ✤÷ñ❝ ❤➺ ♣❤÷ì♥❣ tr➻♥❤
n
aij cj ,
ci = f i + λ
i = 1, ..., n,
j=1
tr♦♥❣
b
fi =
b
bi (t)f (t)dt,
aij =
a
aj (t)bi (t)dt.
a
✽
❱✐➺❝ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t÷ì♥❣ ✤÷ì♥❣ ✈î✐ ✈✐➺❝ ❣✐↔✐ ♠ët ❤➺ ✤↕✐ sè t✉②➳♥ t➼♥❤
(■ − λ❆)❝ = ❢,
✭✶✳✻✮
tr♦♥❣ ✤â ■ ❧➔ ♠❛ tr➟♥ ✤♦♥ ✈à ❝➜♣ n × n, ❆ = (aij ) ❧➔ ♠❛ tr➟♥ ❝➜♣ n × n ✈î✐ ❝→❝ ♣❤➛♥ tû
✤÷ñ❝ ①→❝ ✤à♥❤ ♥❤÷ tr➯♥✱ ❢ = (f1, ..., fn)T ✈➔ ❝ = (c1, ..., cn)T ❧➔ ❝→❝ ❤➺ sè ♣❤↔✐ t➻♠✳
❑➼ ❤✐➺✉ D(λ) = ❞❡t (■ − λ❆) . ❱✐➺❝ ❣✐↔✐ ❤➺ t✉②➳♥ t➼♥❤ ✭✶✳✻✮ ♣❤ö t❤✉ë❝ ✈➔♦ ❣✐→ trà ❝õ❛
❚❛ ①➨t ❤❛✐ tr÷í♥❣ ❤ñ♣ s❛✉✿
❚r÷í♥❣ ❤ñ♣ ✶✿ D(λ) = 0. ❚r♦♥❣ tr÷í♥❣ ❤ñ♣ ♥➔② λ ✤÷ñ❝ ❣å✐ ❧➔ ❣✐→ trà ❝❤➼♥❤ q✉② ❝õ❛
♥❤➙♥✳ ❑❤✐ ✤â ❤➺ t✉②➳♥ t➼♥❤ tr➯♥ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t
D(λ).
❝ = (■ − λ❆)−1❢,
❤❛②
1
❝ = D(λ)
adj(■ − λ❆❢,
tr♦♥❣ ✤â ❛❞❥(■ − λ❆) = (Dji(λ))❧➔ ♠❛ tr➟♥ ♣❤ö ❤ñ♣ ❝õ❛ ♠❛ tr➟♥ (■ − λ❆). ❉♦ ✤â ♠é✐
❤➺ sè ci ❝â ❜✐➸✉ ❞✐➵♥
1
ci =
D(λ)
n
Dji (λ)fj .
j=1
❚❤❛② ❜✐➸✉ ❞✐➵♥ ❝õ❛ ci ✈➔ fi ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✺✮ t❛ ✤÷ñ❝
b
ϕ(x) = f (x) + λ
a
1
D(λ)
n
Dji (λ)ai (x)bj (t) f (x)dt.
i=1 j=1
❑➼ ❤✐➺✉
1
R(x, t; λ) =
D(λ)
n
n
n
Dji (λ)ai (x)bj (t)
i=1 j=1
✈➔ ❣å✐ ♥â ❧➔ ♥❤➙♥ ❣✐↔✐ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥✳ ❑❤✐ ✤â ♥❣❤✐➺♠ ϕ(x) ✤÷ñ❝ ①→❝ ✤à♥❤
❜ð✐ ❝æ♥❣ t❤ù❝
b
ϕ(x) = f (x) + λ
✭✶✳✼✮
R(x, t; λ)f (t)dt.
a
✣➦t
❉(x, t; λ) =
0
a1 (x)
a2 (x) · · ·
b1 (t) 1 − λa11 −λa12 · · ·
b2 (t) −λa21 1 − λa22 · · ·
✳✳✳
✳✳✳
✳✳✳
bn (t)
−λan1
−λan2
✈➔ D(x, t; λ) = ❞❡t(❉(x, t; λ)). ❑❤✐ ✤â
R(x, t; λ) = −
✾
D(x, t; λ)
.
D(λ)
✳✳✳
an (x)
−λa1n
−λa2n
✳✳✳
· · · 1 − λann
✭✶✳✽✮
❚r÷í♥❣ ❤ñ♣ ✷✿ D(λ) = 0. ❚r♦♥❣ tr÷í♥❣ ❤ñ♣ ♥➔② λ ✤÷ñ❝ ❣å✐ ❧➔ ❣✐→ trà r✐➯♥❣ ❝õ❛
♥❤➙♥✳ ●✐↔ sû λk ❧➔ ♠ët ❣✐→ trà r✐➯♥❣✱ ♥❣❤➽❛ ❧➔ D(λk ) = 0.
❳➨t tr÷í♥❣ ❤ñ♣ f = 0. ❑❤✐ ✤â ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✺✮ trð t❤➔♥❤
(■ − λk ❆)❝ = 0.
❱➻ D(λk ) = 0 ♥➯♥ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ❝â pk ♥❣❤✐➺♠ ✤ë❝ ❧➟♣ t✉②➳♥ t➼♥❤ ✤÷ñ❝ ❜✐➸✉ ❞✐➵♥ ❜ð✐
❝(j)(λk ) =
(j)
c1 (λk )
(j)
✳✳✳
j = 1, ..., pk .
cn (λk )
❚❤❛② ❝→❝ ❣✐→ trà ♥➔② ✈➔♦ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✺✮ t❛ t❤✉ ✤÷ñ❝ ❝→❝ ♥❣❤✐➺♠
n
(j)
ϕj (x; λk ) = f (x) + λk
ci (λk )a)i (x),
j = 1, ..., pk
i=1
◆➳✉ f (x) ≡ 0 tr➯♥ [a, b] t❤➻ ♠é✐ ❤➔♠
n
(e)
ϕj (x; λk )
(j)
= λk
ci (λk )a)i (x)
i=1
❧➔ ♠ët ♥❣❤✐➺♠ ❦❤æ♥❣ t➛♠ t❤÷í♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t❤✉➛♥ ♥❤➜t
b
K(x, t)ϕ(t)dt.
ϕ(x) = λk
a
❈❤➾ sè tr➯♥ (e) ✤➸ ❦➼ ❤✐➺✉ r➡♥❣ ♥❣❤✐➺♠ ϕ(e)
j (x; λ) ❧➔ ❤➔♠ r✐➯♥❣ ❝õ❛ ♥❤➙♥ t÷ì♥❣ ù♥❣ ✈î✐
❣✐→ trà r✐➯♥❣ λk . ▼é✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t s➩ ❝â ❞↕♥❣
pk
ϕ
(h)
(e)
(x; λk ) =
αj ϕj (x; λk ),
j=1
tr♦♥❣ ✤â αj ❧➔ ❤➡♥❣ sè tò② þ✱ ❝❤➾ sè tr➯♥ (h) ❧➔ ✤➸ ❦➼ ❤✐➺✉ r➡♥❣ ϕ(h)(x; λk ) ❧➔ ♥❣❤✐➺♠ tê♥❣
q✉→t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t❤✉➛♥ ♥❤➜t tr➯♥✳
❳➨t tr÷í♥❣ ❤ñ♣ ❢ = 0. ❚❛ s➩ sû ❞ö♥❣ ❜ê ✤➲ s❛✉✿
❇ê ✤➲ ✶✳✸✳✶✳ ❈❤♦ B = (bij )n×n ✈➔ B∗ = (bij )n×n ✳ ❑❤✐ ✤â ♥➳✉ ❞❡t (B) = 0 t❤➻ ❤➺
❦❤æ♥❣ t❤✉➛♥ ♥❤➜t Bx = f ❝â ♥❣❤✐➺♠ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ f trü❝ ❣✐❛♦ ✈î✐ t➜t ❝↔ ❝→❝ ♥❣❤✐➺♠
❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧✐➯♥ ❤ñ♣ t❤✉➛♥ ♥❤➜t B∗ y = 0.
❚ø ❜ê ✤➲ ♥➔②✱ t❛ t❤➜② ❤➺ t✉②➳♥ t➼♥❤ (I − λk A)c = f ❝â ♥❣❤✐➺♠ ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ f trü❝
❣✐❛♦ ✈î✐ t➜t ❝↔ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
(I − λk A)∗ d = 0.
✭✶✳✾✮
❱➻ ♠❛ tr➟♥ (I − λk A) ✈➔ (I − λk A)∗ ❝â ❝ò♥❣ ❤↕♥❣ ✈➔ sè ❦❤✉②➳t ♥➯♥ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✾✮
❝ô♥❣ ❝â pk ♥❣❤✐➺♠ ✤ë❝ ❧➟♣ t✉②➳♥ t➼♥❤✳ ▲↕✐ ❝â
❚
(I − λk A)∗ d = (I − λk A∗ )d = (I − λk A )d = 0.
✶✵
❱➻ ✈➟② ♥➳✉
❚
d(j) (λk ) = (d1 (λk ), ..., d(j)
n (λk ))
(j)
❧➔ ♠ët tr♦♥❣ pk ♥❣❤✐➺♠ ❝õ❛ ✭✶✳✾✮ t❤➻
n
d(j)
m (λk )
(j)
− λk
aim di (λk ) = 0,
m = 1, ..., n.
✭✶✳✶✵✮
i=1
▼➦t ❦❤→❝✱ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❤ñ♣ ✈î✐ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✸✮
b
ψ(x) = λ
K(t, x)ψ(t)dt.
a
✭✶✳✶✶✮
n
❱➻ K(t, x) = ai(t)bi(x) ♥➯♥ t÷ì♥❣ tü ♥❤÷ tr➯♥✱ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✶✮ ❝â t❤➸ ✤÷ñ❝ ✈✐➳t
n=1
❞÷î✐ ❞↕♥❣
n
dm − λ
aim di = 0,
m = 1, ..., n
✭✶✳✶✷✮
i=1
tr♦♥❣ ✤â di = ab ai(t)ψ(t)dt✱ aim = ab am(t)bi(t)dt. ❚ø ✭✶✳✶✵✮ ✈➔ ✭✶✳✶✷✮ s✉② r❛ d(j)(λk )
❧➔ ♥❣✐➺♠ ❝õ❛ ✭✶✳✸✮ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ ♥â ❧➔ ♥❣❤✐➺♠ ❝õ❛ ✭✶✳✶✷✮ ✈î✐ λ = λk .
❚ø ✤â t❛ ❝â ❦➳t q✉↔ s❛✉✿
✣à♥❤ ❧þ ✶✳✸✳✷✳ ✭✣à♥❤ ❧þ ❋r❡❞❤♦❧♠ ✤è✐ ✈î✐ ❤↕t ♥❤➙♥ t→❝❤ ❜✐➳♥✮✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤
♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐
b
K(x, t)ϕ(t)dt
ϕ(x) = f (x) + λ
a
tr♦♥❣ ✤â λ ❧➔ t❤❛♠ sè ♣❤ù❝✱ f (x) ∈ C[a, b] ✈➔ K(x, t) ∈ C(Q[a, b]) ❧➔ ❤↕t ♥❤➙♥ t→❝❤ ❜✐➳♥
❝â ❞↕♥❣ ✭✶✳✹✮✳ ❑❤✐ ✤â✿
✭✐✮ ♥➳✉ λ ❧➔ ❣✐→ trà ❝❤➼♥❤ q✉② ❝õ❛ ♥❤➙♥ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ❜✐➸✉ ❞✐➵♥
❞÷î✐ ❞↕♥❣
b
ϕ(x) = f (x) + λ
R(x, t; λ)f (t)dt,
a
tr♦♥❣ ✤â R(x, t; λ) ✤÷ñ❝ ①→❝ ✤à♥❤ ❜ð✐ ❝æ♥❣ t❤ù❝ ✭✶✳✽✮
✭✐✐✮ ◆➳✉ λ ❧➔ ❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t
b
K(x, t)ϕ(t)dt
ϕ(x) = λ
a
❝â ♥❣❤✐➺♠ ❦❤æ♥❣ t➛♠ t❤÷í♥❣✳ ❍ì♥ ♥ú❛✱ ♣❤÷ì♥❣ tr➻♥❤ ❦❤æ♥❣ t❤✉➛♥ ♥❤➜t ❝â ♥❣❤✐➺♠ ❦❤✐ ✈➔
❝❤➾ ❦❤✐ ❤➔♠ f (x) trü❝ ❣✐❛♦ ✈î✐ t➜t ❝↔ ❝→❝ ❤➔♠ r✐➯♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❦➳t
b
ψ(x) = λ
K(t, x)ψ(t)dt.
a
✶✶
❈❤÷ì♥❣ ✷
P❍×❒◆● ❚❘➐◆❍ ❚➑❈❍ P❍❹◆
❋❘❊❉❍❖▲▼ ▲❖❸■ ❍❆■ ❱❰■
◆❍❹◆ ❚✃◆● ◗❯⑩❚
Ð ❈❤÷ì♥❣ ✶✱ t❛ ✤➣ ①➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ✈î✐ K(x, t) ❧➔ ♥❤➙♥
t→❝❤ ❜✐➳♥ t❤✉ë❝ C(Q[a, b]). ❚❛ ✤➣ ❝❤ù♥❣ ♠✐♥❤ ✤à♥❤ ❧þ ❋r❡❞❤♦❧♠ ✈➲ ❝➜✉ tró❝ ❝õ❛ ❝→❝
♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♣❤ö t❤✉ë❝ ✈➔♦ λ. ❚r♦♥❣ ❝❤÷ì♥❣ ♥➔② t❛ s➩ ♥❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣
tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐ ✈î✐ ♥❤➙♥ tê♥❣ q✉→t✳
✷✳✶ P❤÷ì♥❣ ♣❤→♣ t❤➳ ❧✐➯♥ ❤ñ♣
✣à♥❤ ❧þ ✷✳✶✳✶✳ ✭✣à♥❤ ❧þ t❤❛② t❤➳ ❧✐➯♥ t✐➳♣✮✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐
❤❛✐
b
ϕ(x) = f (x) + λ
K(x, t)ϕ(t)dt.
a
✭✷✳✶✮
tr♦♥❣ ✤â λ ❧➔ ♠ët t❤❛♠ sè ♣❤ù❝✱ f (x) ∈ C[a, b] ✈➔ K(x, t) ❧➔ ♠ët ♥❤➙♥ t❤✉ë❝ C(Q[a, b]).
◆➳✉ |λ|(b − a) sup |K(x, t)| < 1 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ✤÷ñ❝ ①→❝
(x,t)∈Q[a,b]
✤à♥❤ ❜ð✐ ❝æ♥❣ t❤ù❝
b
ϕ(x) = f (x) + λ
R(x, t; λ)f (t)dt.
a
tr♦♥❣ ✤â R(x, t; λ) ❧➔ t♦→♥ tû ❣✐↔✐ ✤÷ñ❝ ①→❝ ✤à♥❤ ❜ð✐
∞
λm−1 Km (x, t).
R(x, t; λ) =
m=1
✣➦t M = sup |K(x, t)|. ●➾❛ sû ϕ(x) ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
(x,t)∈Q[a,b]
✭✷✳✶✮✳ ❑❤✐ ✤â t❤❛② ❜✐➸✉ t❤ù❝ ❝õ❛ ϕ(x) ✈➔♦ ϕ(t) tr♦♥❣ ✈➳ ♣❤↔✐ t❛ t❤✉ ✤÷ñ❝
❈❤ù♥❣ ♠✐♥❤✳
b
ϕ(x) = f (x) + λ
b
K(x, t) f (t) + λ
a
K(t, s)ϕ(s)ds dt
a
b
b
b
K(x, t)f (t)dt + λ2
= f (x) + λ
a
K(x, t)K(t, s)ϕ(s)dsdt.
a
✶✷
a
❙❛✉ ❦❤✐ t❤❛② ✤ê✐ t❤ù tü ❧➜② t➼❝❤ ♣❤➙♥ tr♦♥❣ t➼❝❤ ♣❤➙♥ ❝✉è✐ ✈➔ t❤❛② t❤➳ ❜✐➳♥ s ✈î✐ t✱ t❛
t❤✉ ✤÷ñ❝
b
b
2
ϕ(x) = f (x) + λ
K(x, t)f (t)dt + λ
a
K2 (x, t)ϕ(t)dt.
a
❚✐➳♣ tö❝ q✉→ tr➻♥❤ ♥➔② n ❧➛♥✱ t❛ s➩ t❤✉ ✤÷ñ❝ ❞↕♥❣ tê♥❣ q✉→t
n
b
λm
ϕ(x) = f (x) +
b
Km (x, t)f (t)dt
+ λn+1
Kn+1 (x, t)ϕ(t)dt.
a
m=1
a
✭✷✳✷✮
✣➦t
n
b
σn (x) =
λ
m−1
Km (x, t)f (t)dt ,
a
m=1
b
ρn (x) = λn+1
Kn+1 (x, t)ϕ(t)dt.
a
❑❤✐ ✤â ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✷✮ ❝â t❤➸ ✈✐➳t ❣å♥ ❧↕✐ ❧➔
ϕ(x) = f (x) + λσn (x) + ρn (x).
❚❛ s➩ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ♥➳✉ |λ|M (b − a) < 1 t❤➻ ❞➣② {σn(x)} ❤ë✐ tö ✤➲✉ ✤➳♥ ❤➔♠ ❧✐➯♥
tö❝ σ(x) tr➯♥ ✤♦↕♥ [a, b] ✈➔ ❞➣② {ρn(x)} ❤ë✐ tö ✤➲✉ ✤➳♥ ✵ tr➯♥ ✤♦↕♥ [a, b]. ❚❤➟② ✈➟②✱ ✈➻
|K(x, t)| ≤ M ♥➯♥ |Km (x, t)| ≤ M m (b − a)m−1 . ❉♦ ✤â
b
λm−1
Km (x, t)f (t)dt ≤ (|λ|M (b − a))m−1 M f
1.
a
❱➻ |λ|M (b − a) < 1 ♥➯♥ ❦❤✐ n ✤õ ❧î♥ t❤➻ ∀m > n, ∀ε > 0, t❛ ❝â
m
(|λ|M (b − a))k−1 M f
|σm (x) − σn (x)| ≤
1
k=n+1
≤ (|λ|M (b − a))n
M f 1
1 − |λ|M (b − a)
< ε.
◆❤÷ ✈➟②✱ ❞➣② ❤➔♠ ❧✐➯♥ tö❝ σn(x) ❤ë✐ tö t✉②➺t ✤è✐ ✈➔ ✤➲✉ tî✐ ❤➔♠ ❣✐î✐ ❤↕♥
∞
b
σ(x) =
λ
m=1
m−1
Km (x, t)f (t)dt .
a
❍ì♥ ♥ú❛✱ ❧➜② t➼❝❤ ♣❤➙♥ tø♥❣ sè ❤↕♥❣ t❛ ✤÷ñ❝
b
∞
σ(x) =
b
λ
a
m=1
m−1
▼➦t ❦❤→❝✱ t❛ ❝â |ρn(x)| ≤ |λ|M
[a, b] ❦❤✐ n → +∞.
Km (x, t) f (t)dt =
R(x, t; λ)f (t)dt.
a
ϕ 1 (|λ|M (b − a))n . ❉♦ ✤â ρn (x) ❤ë✐ tö ✤➲✉ tî✐ ✵ tr➯♥
✶✸
❱➟② ϕ(x) = f (x) + λσ(x) ❤❛②
b
ϕ(x) = f (x) + λ
R(x, t; λ)f (t)dt.
a
❱➼ ❞ö ✷✳✶✳✷✳ ●✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ s❛✉✿
ϕ(x) = cos x +
π/2
1
2
sin xϕ(t)dt.
0
▲í✐ ❣✐↔✐✳ ❚r÷î❝ ❤➳t t❛ t❤➜②
sup | sin x| = 1,
[0, π2 ]
1
λ= ,
2
a = 0,
b=
π
.
2
❙✉② r❛
1 π
π
λ(b − a) sup |K(x, t)| = ( − 0)1 = < 1.
2 2
4
❱➻ t❤➳ t❛ ❝â t❤➸ →♣ ❞ö♥❣ ♣❤÷ì♥❣ ♣❤→♣ t❤❛② t❤➳ ❧✐➯♥ t✐➳♣ ✤➸ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ ♥➔②✳ ❚❤❛②
ϕ(t) = cos t +
1
2
✈➔♦ ❜✐➸✉ t❤ù❝ ❞÷î✐ ❞➜✉ t➼❝❤ ♣❤➙♥✱ t❛ ✤÷ñ❝
ϕ(x) = cos x +
1
2
π/2
sin tϕ(t1 )dt1
0
π/2
sin x cos t +
0
1
2
π/2
sin tϕ(t1 )dt1 dt
0
1 π/2
1 π/2 π/2
= cos x +
sin x cos tdt +
sin x sin tϕ(t1 )dt1 dt
2 0
4 0
0
π/2
1
1 π/2
= cos x + sin x +
sin x
sin tϕ(t1 )dt1 dt.
2
4 0
0
▲↕✐ t❤❛② ϕ(t1) = cos t1 + 21
1
sin x +
2
1
= cos x + sin x +
2
ϕ(x) = cos x +
π/2
sin t1 ϕ(t2 )dt2 ,
0
t❛ ✤÷ñ❝
1 π/2
1
sin x sin t cos t1 dt1 dt +
2 0
4
π/2
1
1
sin x + sin x
ϕ(t2 )dt2 .
4
8
0
❈ù t✐➳♣ tö❝ ♣❤÷ì♥❣ ♣❤→♣ ♥➔② t❛ s➩ t❤✉ ✤÷ñ❝ ♥❣❤✐➺♠
ϕ(x) = cos t + sin x
1 1 1
+ + + ···
2 4 8
= cos x + sin x.
✶✹
π/2
π/2
sin x sin t sin t1 ϕ(t2 )d
0
0
Pữỡ t
r t s ợ t ởt ữỡ qt ữỡ tr
t r t ủ ừ ữỡ t s sỷ ử
ự sỹ ở tử t ữủ ởt t q tốt ỡ tr trữớ ủ ộ t
tỷ õ ở tử ợ
t ữỡ tr t r
b
(x) = f (x) +
K(x, t)(t)dt.
a
t t ồ ổ 0(x) ởt tr tỹ ợ a x b. ổ
tữớ t s ồ 0(x) {0, 1, x, ex} . ởt 1(x) ừ (x) ữủ
ữ s
b
1 (x) = f (x) +
K(x, t)0 (t)dt.
a
2(x) ừ (x) t ữủ t t (t) tr ữỡ
tr 1(x) t ữủ
b
2 (x) = f (x) +
K(x, t)1 (t)dt
a
ự t tử ữỡ t s t ữủ n + 1 ừ (x) t
ổ tự tr ỗ s
b
K(x, t)n (t)dt,
n+1 (x) = f (x) +
ợ n 0.
a
t ộ j (x) tr tú ừ t t
j = 0, ..., n t t ữủ
n
b
m
n+1 (x) = f (x) +
Km (x, t)f (t)dt
a
m=1
b
+
n+1
Kn+1 (x, t)0 (t)dt
a
n+1 (x) = f (x) + n (x) + n+1 (x),
tr õ
n
n (x) =
b
m1
Km (x, t)f (t)dt ,
a
m=1
b
n+1 (x) =
ứ õ ỵ s
n+1
Kn+1 (x, t)0 (t)dt.
a
j+1 (x)
ợ
✣à♥❤ ❧þ ✷✳✷✳✶✳ ✭✣à♥❤ ❧þ ①➜♣ ①➾ ❧✐➯♥ t✐➳♣ ✮✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐✳
b
ϕ(x) = f (x) + λ
✭✷✳✺✮
K(x, t)ϕ(t)dt,
a
tr♦♥❣ ✤â λ ❧➔ ♠ët t❤❛♠ sè ♣❤ù❝✱ f (x) ∈ C[a, b] ✈➔ ❝❤♦ K(x, t) ❧➔ ♠ët ♥❤➙♥ t❤✉ë❝
C(Q[a, b]). ◆➳✉ |λ| K 2 < 1 t❤➻ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t ✈➔ ♥❣❤✐➺♠ ✤â
✤÷ñ❝ ❝❤♦ ❜ð✐ ❝æ♥❣ t❤ù❝
b
ϕ(x) = f (x) + λ
R(x, t; λ)f (t)dt,
a
tr♦♥❣ ✤â R(x, t; λ) ❧➔ t♦→♥ tû ❣✐↔✐ ✤÷ñ❝ ①→❝ ✤à♥❤ ♥❤÷ s❛✉
∞
λm−1 Km (x, t).
R(x, t; λ) =
m=1
❚❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ ♠➔ ✤➣ t❤ü❝ ❤✐➺♥ ð tr➯♥✱ t❛ ✤➣ ❝â ①➜♣ ①➾ ❜➟❝ n + 1
❝õ❛ ♥❣❤✐➺♠ ϕ(x) ✤÷ñ❝ ①→❝ ✤à♥❤ ❜ð✐ ❝æ♥❣ t❤ù❝
❈❤ù♥❣ ♠✐♥❤✳
ϕn+1 (x) = f (x) + λσn (x) + ωn+1 (x).
❚❛ s➩ ❝❤ù♥❣ ♠✐♥❤ r➡♥❣ ♥➳✉ |λ| K 2 < 1 t❤➻ ❞➣② σn(x) ❤ë✐ tö ✤➲✉ tî✐ ❤➔♠ ❣✐î✐ ❤↕♥ σ(x),
❝á♥ ❞➣② ωn+1(x) ❤ë✐ tö ✈➲ ✵ ❦❤✐ n → ∞. ⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✤è✐
✈î✐ ❤↕t ♥❤➙♥ ❧➦♣ t❛ ✤÷ñ❝
b
2
b
2
|Km (x, t)| ≤
|K(s, t)|2 ds .
|Km−1 (x, s)| ds
a
a
▲➜② t➼❝❤ ♣❤➙♥ tr➯♥ ❝↔ ❤❛✐ ✈➳ ❝õ❛ ❜➜t ✤➥♥❣ t❤ù❝ ♥➔② t❤❡♦ ❜✐➳♥ t✱ t❛ ✤÷ñ❝
b
b
2
|Km (x, t)| dt ≤
a
b
b
2
|K(s, t)|2 dsdt .
|Km−1 (x, s)| ds
a
a
a
✣➦t
b
|Km (x, t)|2 dt.
κm (x) =
a
❚❛ ✤÷ñ❝
κm (x) ≤ κm−1 (x) K
❇➡♥❣ q✉② ♥↕♣✱ t❛ t❤✉ ✤÷ñ❝ ✤→♥❤ ❣✐→
κm (x) ≤ κ1 (x) K
2
2
.
2m−2
.
2
⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤②✲❙❝❤✇❛r③ ✤è✐ ✈î✐ ♥❤ú♥❣ t➼❝❤ ♣❤➙♥ tr♦♥❣ tê♥❣ σn(x),
t❛ ✤÷ñ❝
✶✻
2
b
b
≤
Km (x, t)f (t)dt
b
2
|f (t)|2 dt
|Km (x, t)| dt
a
a
a
2
2
2
2
≤ κm (x) f
≤ κ1 (x) f
K
2m−2
.
2
❉♦ ✤â ♠é✐ sè ❤↕♥❣ tr♦♥❣ tê♥❣ σn(x) ✤➲✉ ✤÷ñ❝ ✤→♥❤ ❣✐→ ❜ð✐ ❜➜t ✤➥♥❣ t❤ù❝
b
λ
m
κ1 (x) f
K 2
Km (x, t)f (t)dt ≤
a
2
(|λ| K 2 )m .
❚ø ✤â t❛ s✉② r❛ r➡♥❣ ♥➳✉ ♥❤÷ |λ| K 2 < 1 t❤➻ ❝❤✉é✐ {σn(x)} ❤ë✐ tö t✉②➺t ✤è✐ ✈➔ ✤➲✉ tî✐
❤➔♠ ❣✐î✐ ❤↕♥ ❞✉② ♥❤➜t σ(x) tr➯♥ ✤♦↕♥ [a, b]. ❈ô♥❣ sû ❞ö♥❣ ✤→♥❤ ❣✐→ t÷ì♥❣ tü ♥❤÷ tr➯♥✱
t❛ t❤➜② r➡♥❣
κ1 (x) ϕ0
K 2
|ωn+1 (x)| ≤
2
(|λ| K 2 )n+1 → 0 khi n → +∞.
◆❤÷ ✈➟② tø ❤❛✐ ✤✐➲✉ tr➯♥ t❛ s✉② r❛ r➡♥❣
ϕ(x) = f (x) + λσ(x).
❈❤ù♥❣ ♠✐♥❤ t➼♥❤ ❞✉② ♥❤➜t ♥❣❤✐➺♠ ✿ ●➾❛ sû ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✺✮ ❝â ❤❛✐ ♥❣❤✐➺♠ ♣❤➙♥ ❜✐➺t
✈➔ ϕ(x). ✣➦t δ(x) = ϕ(x) − ϕ(x). ❑❤✐ ✤â δ(x) t❤ä❛ ♠➣♥ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥
t❤✉➛♥ ♥❤➜t
ϕ(x)
b
δ(x) = λ
K(x, t)δ(t)dt.
a
⑩♣ ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ ❈❛✉❝❤②✲❙❝❤✇❛r③ t❛ ✤÷ñ❝
b
2
|δ(x)| ≤ |λ|
2
b
2
|δ(t)|2 dt .
|K(x, t)| dt
a
a
▲➜② t➼❝❤ ♣❤➙♥ ❝↔ ❤❛✐ ✈➳ t❤❡♦ ❜✐➳♥ x s✉② r❛
b
2
(1 − |λ| K
2
2)
|δ(x)|2 dx ≤ 0.
a
◆❤÷♥❣ ✈➻ |λ| K 2 < 1 ❝❤♦ ♥➯♥ ab |δ(x)|2dx = 0, s✉② r❛ δ(x) = 0 ❤❛② ϕ(x) ≡ ϕ(x).
❈❤ù♥❣ tä ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✺✮ ❝â ♥❣❤✐➺♠ ❞✉② ♥❤➜t✳
❱➼ ❞ö ✷✳✷✳✷✳ ●✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ s❛✉
1
ϕ(x) = cosx +
2
▲í✐ ❣✐↔✐✳ ❚❛ ❦✐➸♠ tr❛ t❤➜② r➡♥❣
K(x, t)
1
cos(xt)ϕ(t)dt.
0
2
✶✼
1
=√ .
2
õ
|| K(x, t)
=
2
1 1
< 1.
2 2
t õ t ử ữỡ t ữỡ tr t
t t ổ 0(x) = 1. õ ởt
1 1
1 (x) = cosx +
cost0 (t)dt.
2 0
1 sinx
.
= cosx +
2 x
ự t tử ữỡ t t ữủ ừ ữỡ tr t tr
1 (x) =
11532090
7944195 2
607005 4
x +
x.
6397711
12795422
12795422
ỵ r
é ữỡ t ự ỵ r ố ợ ữỡ tr t
r
b
K(x, t)(t)dt,
(x) = f (x) +
a
ợ t é ử t r ữỡ t ữỡ
tr ữ K(x, t) tờ qt ợ || < K1 . é t s t ủ
ữỡ ỹ ỵ r ố ợ K(x, t) C(Q[a, b])
tờ qt t số ự tũ ỵ
rữợ t t sỷ t số ự tở õ = { : || } , tr õ
số ố õ t ợ tũ ỵ s t t K(x, t).
ỵ rstrss K(x, t) õ t t t tờ ừ
tử tr ự
2
K(x, t) = Ksep (x, t) + K (x, t),
tr õ Ksep(x, t) tự t õ
n
Ksep (x, t) =
ai (x)bi (t),
i=1
tr õ ai(x) bi(t) tở C[a, b]. ỏ K(x, t) tọ
b
K
2
1/2
b
2
|K (x, t)| dxdt
=
a
< .
a
ồ = 1 õ || t || <
ữỡ tr ữợ
1
K
2
.
ứ sỹ t t õ t t
b
ϕ(x) = f (x) + λ
b
Ksep (x, t)ϕ(t)dt + λ
a
✣➦t F (x; λ) = f (x) + λ
Kε (x, t)ϕ(t)dt.
a
t❤➻
b
a Ksep (x, t)ϕ(t)dt
b
ϕ(x) = F (x; λ) + λ
Kε (x, t)ϕ(t)dt.
a
✭✷✳✽✮
❱➻ ϕ(t) ❦❤↔ t➼❝❤ ♥➯♥ F (x; t) ❧✐➯♥ tö❝ tr➯♥ [a, b]. ❱➻ λ < K1 ♥➯♥ t❤❡♦ ✤à♥❤ ❧þ ①➜♣ ①➾ ❧✐➯♥
t✐➳♣✱ ♥❣❤✐➺♠ ϕ(x) ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✽✮ tç♥ t↕✐✱ ❧✐➯♥ tö❝ tr➯♥ [a, b] ✈➔ ✤÷ñ❝ ❜✐➸✉ ❞✐➵♥ ❜ð✐
ε 2
b
ϕ(x) = F (x; λ) + λ
Rε (x, t; λ)F (t; λ)dt,
a
tr♦♥❣ ✤â
∞
✭✷✳✾✮
λm−1 Kεm (x, t)
Rε (x, t; λ) =
m=1
✈➔ Kεm ❧➔ ♥❤➙♥ ❧➦♣ ❝õ❛ Kε(x, t). ❚❤❛② F (x; λ) = f (x) + λ
♣❤↔✐ t❛ ✤÷ñ❝
b
a Ksep (x, t)ϕ(t)dt
b
ϕ(x) = fε (x; λ) + λ
Gε (x, t; λ)ϕ(t)dt,
✭✷✳✶✵✮
Rε (x, t; λ)f (t)dt,
✭✷✳✶✶✮
a
tr♦♥❣ ✤â
b
fε (x; λ) = f (x) + λ
a
✈➔
b
Gε (x, t; λ) = Ksep (x, t) + λ
Rε (x, u; λ)Ksep (u, t)du.
a
❚❛ t❤➜② r➡♥❣ G(x, t; λ). ❝â ❞↕♥❣ t→❝❤ ❜✐➳♥ ❜ð✐ ✈➻
Ksep (x, t) = ai (x)bi (t),
✈➔
b
n
b
Rε (x, u; λ)Ksep (u, t)du =
a
Rε (x, u; λ)
a
ai (u)bi (t) du
i=1
n
b
=
Rε (x, u; λ)ai (u)du bi (t)
i=1
n
=
a
Aεi (x; λ)bi (t),
i=1
✶✾
✈➔♦ ✈➳
✭✷✳✶✷✮
tr õ
b
Ai (x; ) =
R (x, u; )ai (u)du
a
b
m1 Km (x, u) ai (u)du
=
a
m=1
b
m1
=
Km (x, u)ai (u)du .
a
m=1
G(x, ; t) õ t ữủ t t ữ s
n
[ai (x) + Ai (x; )]bi (t).
G (x, t; ) =
i=1
ữ ữỡ tr tr t ữỡ tr t r ợ
t õ t ữỡ tr ữỡ ữủ ổ t
ữỡ õ sỹ t õ ỏ ử tở t số
. s qt ữỡ tr ữ s
ừ G(x, t; ) tr ữỡ tr t ữủ
n
(x) = f (x; ) +
ci ()[ai (x) + Ai (x; )],
i=1
tr õ t t
b
(t)bi (t)dt,
ci () =
i = 1, ..., n.
a
sỷ r ộ ừ ữỡ tr õ t t
số ci(). r ữỡ tr t t t x t ờ số ừ tờ tứ i t
j, s õ ừ ữỡ tr ợ bi (t) rỗ t tứ a tợ b t t ữủ
b
(t)bi (t)dt =
a
n
b
cj ()
f (x; )bi (t)dt +
a
b
[aj (t) + Aj (t; )]bi (tdt.
a
j=1
t
b
fi () =
f (x; )bi (t)dt,
a
b
aij () =
[aj (t) + Aj (t; )]bi (tdt.
a
õ t ữủ ữỡ tr
n
ci () = fi () +
cj ()aij ().
j=1
❍❛② t❛ ❝ô♥❣ ❝â t❤➸ ✈✐➳t ❧↕✐ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t✉②➳♥ t➼♥❤ tr➯♥ ❞÷î✐ ❞↕♥❣ ♠❛ tr➟♥ ♥❤÷ s❛✉
(■ − λ❆(λ))❝(λ) = ❢(λ).
✭✷✳✶✻✮
✣➦t
Dρ (λ) = ❞❡t(■ − λ❆(λ)),
✈➔ ❣å✐ Dρ(λ) ❧➔ ✤à♥❤ t❤ù❝ ❋r❡❞❤♦❧♠ ✳ ❚❛ t❤➜② Dρ(λ) ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤ ❝õ❛ λ tr➯♥ ✤➽❛ ✤â♥❣
ρ . ❑❤✐ ✤â sè ♥❣❤✐➺♠ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✻✮ ♣❤ö t❤✉ë❝ ✈➔♦ ❣✐→ trà ❝õ❛ Dρ (λ). ❚❛
s➩ ①❡♠ ①➨t ❤❛✐ tr÷í♥❣ ❤ñ♣ s❛✉✿
❚r÷í♥❣ ❤ñ♣ ✶✿ Dρ(λ) = 0. ❑❤✐ ✤â ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t✉②➳♥ t➼♥❤ tr➯♥ ❝â ♥❣❤✐➺♠ ❞✉②
♥❤➜t
❝(λ)
= (■ − λ❆(λ))−1 ❢(λ)
1
=
❛❞❥(■ − λ❆(λ))❢(λ)
Dρ (λ)
tr♦♥❣ ✤â ❛❞❥(■ − λ❆(λ)) = (Dji(λ)) ❧➔ ♠❛ tr➟♥ ♣❤ö ❤ñ♣ ❝õ❛ ■ − λ❆(λ). ▼é✐ ❤➺ sè ci(λ)
❝â t❤➸ ✤÷ñ❝ ❜✐➸✉ ❞✐➵♥ ❞÷î✐ ❞↕♥❣
1
ci (λ) =
Dρ (λ)
n
Dji (λ)fj (λ).
j=1
✭✐✮ ◆➳✉ ❢(λ) = 0 t❤➻ ❝(λ) = 0✱ ♥❣❤➽❛ ❧➔ ci(λ) = 0 ✈î✐ ♠å✐ i = 1, ..., n. ❉♦ ✤â tø
♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✹✮ s✉② r❛ ϕ(x) = fε(x; λ).
✭✐✐✮ ◆➳✉ ❢(λ) = 0 t❤➻ ❝(λ) = 0, ♥❣❤➽❛ ❧➔ tç♥ t↕✐ ➼t ♥❤➜t ♠ët ❝❤➾ sè ❞÷î✐ i s❛♦ ❝❤♦
ci (λ) = 0. ❚❤❛② ❝→❝ ❣✐→ trà ci (λ) ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✹✮ t❛ t❤✉ ✤÷ñ❝
n
ϕ(x) = fε (x; λ) + λ
i=1
b
= fε (x; λ) + λ
1
Dρ (λ)
n
Dji (λ)fj (λ) [ai (x) + λAεi (x; λ)]
j=1
Sε (x, t; λ)fε (t; λ)dt,
a
tr♦♥❣ ✤â t❛ ✤➦t
n
n
Dji (λ)[ai (x) + λAεi (x; λ)]bj (t)
Sε (x, t; λ) =
i=1 j=1
Dρ (λ)
.
✭✷✳✶✼✮
◆❤➙♥ Sε(x, t; λ) ❧➔ ❤➔♠ ♣❤➙♥ ❤➻♥❤ ❝õ❛ λ tr➯♥ ✤➽❛ ✤â♥❣ ρ. ❍ì♥ ♥ú❛ ♥â ❝á♥ ❧➔ ❤➔♠ t→❝❤
❜✐➳♥ ✤è✐ ✈î✐ ❤❛✐ ❤➔♠ x ✈➔ t. ❚❤❛② fε(x; λ) ✈➔♦ tr♦♥❣ ❜✐➸✉ ❞✐➵♥ tr➯♥ ❝õ❛ ϕ(x) t❛ t❤✉ ✤÷ñ❝
✤↕♥❣ t❤✉ ❣å♥ ❝õ❛ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✵✮ ✈➔ ❝ô♥❣ ❝❤➼♥❤ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✻✮
♥❤÷ s❛✉
b
ϕ(x) = f (x) + λ
tr♦♥❣ ✤â
Uε (x, t; λ)f (t)dt
a
b
Uε (x, t; λ) = Rε (x, t; λ) + Sε (x, t; λ) + λ
Sε (x, t; λ)Rε (s, t; λ)ds.
a
✷✶
✭✷✳✶✽✮
ứ t t R(x, t; ) tữỡ ố ọ õ tứ t t S(x, t; ) t
ừ U(x, t; ). S(x, t; ) U(x, t; ) ụ
tr . ỡ ỳ U(x, t; ) ỏ tr t t ự
sỷ ởt số tũ ỵ s 0 < < . õ tữỡ tỹ t ụ
ỹ ữủ t tỷ U(x, t; ) tr . õ ừ ữỡ
tr õ
b
(x) = f (x) +
U (x, t; )f (t)dt.
a
ữ t U(x, t; ) = U(x, t; ) tr . ữ U(x, t; )
t tr tứ U(x, t; ). õ t ợ tũ ỵ s r U(x, t; )
õ t ữủ t tr t ởt tr t t ự
sỹ tr t R(x, t; ) ồ t tỷ .
ứ ự tr t t ữủ t q s
ỵ ỵ r tự t t ữỡ tr t r
b
(x) = f (x) +
K(x, t)(t)dt,
a
tr õ ởt t số ự f (x) C[a, b], K(x, t) C(Q[a, b]). ởt
tr q ừ K(x, t) t ữỡ tr tr õ t ữủ
ổ tự
b
(x) = f (x) +
R(x, t; )f (t)dt,
a
t tỷ t R(x, t; ) ữủ ữ tr
ỵ ỵ r tự tữ t ữỡ tr t t t
b
K(x, t)(t)dt,
(x) =
a
tr õ K(x, t) C(Q[a, b]). K t tr r ừ K(x, t).
õ K ỳ ữủ ổ õ ợ ỳ
tự D() ởt t ừ tr õ . s ự
K ỳ ợ ồ > 0. sỷ ự r K ổ õ
D() õ ổ ổ tr . D() t t D() 0
tr . ổ D(0) = 1. õ tỗ t ỳ tr tr s
D() = 0.
rữớ ủ D() = t( ()) = 0. r trữớ ủ õ ỳ
tr tở s D() = 0. t s
f () = 0 t t t
ự
( ())()
õ p() tỡ ở t t c(j)(), j = 1, 2, ..., p()
õ ữủ t ữợ
c(j) () =
(1)
cj ()
(n)
cj ()
,
j = 1, ..., p().
❚❤❛② ❝→❝ ❣✐→ trà ❝õ❛ cji (λ) ✈➔♦ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✹✮ t❛ t❤✉ ✤÷ñ❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
✭✷✳✻✮✳ ◆➳✉ f (x) ≡ 0 tr➯♥ [a, b] t❤➻ fε(x; λ) ≡ 0. ❑❤✐ ✤â ♥❣❤✐➺♠ tê♥❣ q✉→t ❝õ❛ ♣❤÷ì♥❣
tr➻♥❤ t❤✉➛♥ ♥❤➜t t÷ì♥❣ ù♥❣ ✈î✐ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✻✮ ✤÷ñ❝ t❤✉ ❣å♥ t❤➔♥❤
n
(e)
ϕj (x; λ)
(j)
=
ci (λ) [ai (x) + λAεi (x; λ)]
i=1
n
(j)
ci (λ)
=
b
ai (x) + λ
Rε (x, t; λ)ai (u)du ,
j = 1, ..., p(λ).
a
i=1
❈❤➾ sè tr➯♥ (e) ✤➸ ❦➼ ❤✐➺✉ r➡♥❣ ϕj(e)(x; λ) ❧➔ ♠ët ❤➔♠ r✐➯♥❣ ❝õ❛ ♥❤➙♥ K(x, t). ◆➳✉ t❛ ❦➼
❤✐➺✉ ϕh(x; λ) ❧➔ ♥❣❤✐➺♠ tê♥❣ q✉→t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t❤✉➛♥ ♥❤➜t K(x, t) t❤➻ ♥â
❝â ❞↕♥❣
p
(e)
h
(λ)αj ϕj (x; λ),
ϕ (x; λ) =
j=1
tr♦♥❣ ✤â αj ❧➔ ❤➡♥❣ sè tò② þ✱ ❝❤➾ sè tr➯♥ (h) ✤➸ ❦➼ ❤✐➺✉ r➡♥❣ ϕh(x; λ) ❧➔ ♥❣❤✐➺♠ tê♥❣
q✉→t ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t t÷ì♥❣ ù♥❣ ✈î✐ ❣✐→ trà r✐➯♥❣ λ. ❚÷ì♥❣ tü ♥❤÷ ð ❈❤÷ì♥❣
✶✱ t❛ s➩ ✤✐ ①❡♠ ①➨t ♠è✐ ❧✐➯♥ ❤➺ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✻✮ ✈î✐ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t ❧✐➯♥
❦➳t tr♦♥❣ tr÷í♥❣ ❤ñ♣ λ ❧➔ ❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ tê♥❣ q✉→t✳
❳➨t ♣❤÷ì♥❣ tr➻♥❤
b
K(t, x)ψ(t)dt
✭✷✳✶✾✮
ψ=λ
a
tr♦♥❣ ✤â K(t, x) t❤✉ë❝ C(Q[a, b]). ❚ø ✭✷✳✼✮ t❛ s✉② r❛
K(t, x) = Ksep (t, x) + Kε (t, x).
❚❤❛② K(t, x) ✈➔♦ ✭✷✳✶✾✮ t❛ ✤÷ñ❝
b
ω(x) = ψ(x) − λ
b
Kε (t, x)ψ(t)dt = λ
a
Ksep (t, x)ψ(t)dt
a
✭✷✳✷✵✮
❚❛ t❤➜② ♣❤÷ì♥❣ tr➻♥❤
b
ψ(x) = ω(x) + λ
Kε (t, x)ψ(t)dt
a
❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❦❤æ♥❣ t❤✉➛♥ ♥❤➜t ✈î✐ ♥❤➙♥ ❝â ❝❤✉➞♥ ✤õ ♥❤ä✱ ❞♦ ✈➟② →♣ ❞ö♥❣ ✤à♥❤ ❧þ ①➜♣
①➾ ❧✐➯♥ t✐➳♣ t❛ t❤✉ ✤÷ñ❝ ♥❣❤✐➺♠ ψ(x) ❝â ❞↕♥❣
b
ψ(x) = ω(x) + λ
Rε (t, x; λ)ω(t)dt,
a
✭✷✳✷✶✮
tr♦♥❣ ✤â Rε(t, x; λ) ❧➔ ♥❤➙♥ ❣✐↔✐ ❧✐➯♥ ❤ñ♣ ✈î✐ ❤↕t ♥❤➙♥ Rε(t, x; λ) ✤÷ñ❝ ①➙② ❞ü♥❣ tø ❝→❝
❤↕t ♥❤➙♥ ❧➦♣ ❝õ❛ ♥❤➙♥ Kε(x, t). ❚❤❛② ω(x) = λ ab Ksep(t, x)ψ(t)dt t❛ ✤÷ñ❝
b
ψ(x) = λ
Gε (t, x; λ)ψ(t)dt,
a
✷✸
✭✷✳✷✷✮
tr♦♥❣ ✤â Gε(t, x; λ) ❧➔ ❧✐➯♥ ❤ñ♣ ♣❤ù❝ ❝õ❛ ♥❤➙♥ Gε(t, x; λ) ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✶✵✮✳ ❙✉② r❛
n
Gε (t, x; λ) =
[ai (t) + λAεi (t; λ)]bi (x).
✭✷✳✷✸✮
i=1
❚❛ t❤➜② Gε(t, x; λ) ❝â ❞↕♥❣ t→❝❤ ❜✐➳♥ ♥➯♥ ♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✷✷✮ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥
t❤✉➛♥ ♥❤➜t ✈î✐ ♥❤➙♥ t→❝❤ ❜✐➳♥✳ ❱➻ ✈➟②✱ ♥❣❤✐➺♠ ❝õ❛ ♥â ❝â ❞↕♥❣
n
(e)
ψj (x, λ)
(j)
di (λ)bi (x),
=λ
j = 1, .., q(λ).
i=1
tr♦♥❣ ✤â q(λ) ❧➔ sè ❤➔♠ r✐➯♥❣ ✤ë❝ ❧➟♣ t✉②➳♥ t➼♥❤ t÷ì♥❣ ù♥❣ ✈î✐ λ ✈➔
(j)
di (λ)
b
ψ(t)[ai (t) + λAεi (t; λ)]bi (x).
=
a
❉♦ ✤â λ ❧➔ ❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ K(t, x) t÷ì♥❣ ù♥❣ ✈î✐ q(λ) ❤➔♠ r✐➯♥❣ ✤➣ ❝❤♦✳ ▲↕✐ ❝â
♣❤÷ì♥❣ tr➻♥❤ ✭✷✳✷✷✮ ✈➔ ♣❤÷ì♥❣ tr➻♥❤ ϕ(x) = ab Gε(x, t; λ)ϕ(t)dt ❝â ❤↕t ♥❤➙♥ ❧✐➯♥ ❦➳t
♥➯♥ ❝❤ó♥❣ ♣❤↔✐ ❝â ❝ò♥❣ sè ❤➔♠ r✐➯♥❣ ✤ë❝ ❧➟♣ t✉②➳♥ t➼♥❤✱ ♥❣❤➽❛ ❧➔ p(λ) = q(λ). ❚ø ✤â✱
t❛ ❝â ✤à♥❤ ❧þ s❛✉✿
✣à♥❤ ❧þ ✷✳✸✳✸✳ ✭✣à♥❤ ❧þ ❋r❡❞❤♦❧♠ t❤ù ❤❛✐✮✳ ❈❤♦ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ t❤✉➛♥ ♥❤➜t
b
ϕ(x) = λ
K(x, t)ϕ(t)dt.
a
tr♦♥❣ ✤â λ ❧➔ ♠ët t❤❛♠ sè ♣❤ù❝✱ f (x) ∈ C[a, b] ✈➔ K(x, t) ∈ C(Q[a, b]). ◆➳✉ λ ❧➔ ♠ët
❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ K(x) t❤➻ λ ❧➔ ❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ ❧✐➯♥ ❤ñ♣ K(x, t) ✈➔ sè ❝→❝
❤➔♠ r✐➯♥❣ ✤ë❝ ❧➟♣ t✉②➳♥ t➼♥❤ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t ❜➡♥❣ ✈î✐ sè ❤➔♠ r✐➯♥❣ ❝õ❛
♣❤÷ì♥❣ tr➻♥❤ t✉②➳♥ t➼♥❤ t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❦➳t
b
ϕ(x) = λ
K(t, x)ψ(t)dt
a
✭✐✐✮ ❢(λ) = 0. ❑❤✐ ✤â ♣❤÷ì♥❣ tr➻♥❤
b
ϕ(x) = fε (x; λ) + λ
Gε (x, t; λ)ϕ(t)dtdx
a
✭✷✳✷✹✮
❝â Gε(x, t; λ) ❧➔ ❤↕t ♥❤➙♥ t→❝❤ ❜✐➳♥✳ ❱➻ ✈➟②✱ t❤❡♦ ✤à♥❤ ❧þ ❋r❡❞❤♦❧♠ t❤ù ❜❛✱ ♣❤÷ì♥❣ tr➻♥❤
✭✷✳✷✹✮ ❝â ♥❣❤✐➺♠ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐ fε(x; λ) trü❝ ❣✐❛♦ ✈î✐ t➜t ❝↔ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤
t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❦➳t
b
ψ(x) = λ
Gε (x, t; λ)ψ(t)dt.
a
◆➳✉ ω(x) ❧➔ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t tr➯♥ t❤➻ tø ❜✐➸✉ ❞✐➵♥ ✭✷✳✶✶✮ ✈➔
✷✹
✭✷✳✷✶✮ t❛ ❝â
b
b
fε (t; λ)ω(t)dt =
b
Rε (t, s; λ)f (s)ds ω(t)dt
f (t) + λ
a
a
a
b
=
b
b
f (t)ω(t)dt + λ
a
b
=
Rε (t, s; λ)f (s)ω(t)dsdt
a
b
f (t) ω(t) + λ
a
a
Rε (s, t; λ)ω(t)ds dt
a
b
=
b
f (t) ω(t) + λ
a
Rε (s, t; λ)ω(s)ds dt
a
b
=
f (t)ψ(t)dt.
a
❚ø ✤â t❛ t❤➜② r➡♥❣ fε(x; λ) trü❝ ❣✐❛♦ ✈î✐ ω(x) ♥➳✉ ✈➔ ❝❤➾ ♥➳✉ f (x) trü❝ ❣✐❛♦ ✈î✐ ♥❣❤✐➺♠
ψ(x) ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❦➳t
b
ψ(x) = λ
K(t, x)ψ(t)dt.
a
❚❛ ❝â ✤à♥❤ ❧þ s❛✉✿
✣à♥❤ ❧þ ✷✳✸✳✹✳ ✭✣à♥❤ ❧þ ❋r❡❞❤♦❧♠ t❤ù ❜❛✮✳ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❋r❡❞❤♦❧♠ ❧♦↕✐ ❤❛✐
b
ϕ(x) = f (x) + λ
K(x, t)ϕ(t)dt,
a
tr♦♥❣ ✤â λ ❧➔ ♠ët t❤❛♠ sè ♣❤ù❝✱ f (x) ∈ C[a, b] ✈➔ K(x, t) ∈ C(Q[a, b]). ◆➳✉ λ ❧➔ ♠ët
❣✐→ trà r✐➯♥❣ ❝õ❛ ♥❤➙♥ K(x, t) t❤➻ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ tr➯♥ ❝â ♥❣❤✐➺♠ ❦❤✐ ✈➔ ❝❤➾ ❦❤✐
f (x) trü❝ ❣✐❛♦ ✈î✐ t➜t ❝↔ ❝→❝ ❤➔♠ r✐➯♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤✉➛♥ ♥❤➜t ❧✐➯♥ ❦➳t
b
ψ(x) = λ
K(x, t)ψ(t)dt.
a
✷✳✹ ❈➜✉ tró❝ ❝õ❛ ♥❤➙♥ ❣✐↔✐
Ð ♣❤➛♥ ♥➔②✱ t❛ s➩ ✤✐ ①➙② ❞ü♥❣ ❝➜✉ tró❝ ❝õ❛ ♥❤➙♥ ❣✐↔✐ ❦❤✐ λ ❧➔ ❣✐→ trà ❝❤➼♥❤ q✉②✳ ❚❛
t❤✉ ✤÷ñ❝ ❝→❝ ❦➳t q✉↔ ❞÷î✐ ✤➙②✿
✣à♥❤ ❧þ ✷✳✹✳✶✳ ◆❤➙♥ ❣✐↔✐ R(x, t; λ) ❝â t❤➸ ✤÷ñ❝ ❜✐➸✉ ❞✐➵♥ ♥❤÷ ❧➔ t❤÷ì♥❣ ❝õ❛ ❤➔♠ ♥❣✉②➯♥
D(x, t; λ) ✈➔ D(λ) ✤➣ ❝❤♦ ❜ð✐ ❝→❝ ❝❤✉é✐ ❧ô② t❤ø❛
∞
D(x, t; λ) =
i=1
(−1)n
Bn (x, t)λn
n!
∞
✈➔ D(λ) =
i=1
(−1)n
cn λn ,
n!
tr♦♥❣ ✤â B0 (x, t) = K(x, t) ✈➔ c0 = 1. ❱î✐ n ≥ 1 t❤➻
b
b
Bn−1 (t, t)dt ✈➔ Bn (x, t) = cn K(x, t) − n
cn =
a
K(x, s)Bn−1 (s, t)dt.
a
✷✺