Tải bản đầy đủ (.doc) (17 trang)

function varargout

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (67.36 KB, 17 trang )

PHỤ LỤC
function varargout = ketqua(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name',

mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @ketqua_OpeningFcn, ...
'gui_OutputFcn', @ketqua_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
function ketqua_OpeningFcn(hObject, eventdata, handles, varargin)
handles.output = hObject;
guidata(hObject, handles);
varargout{1} = handles.output;
function NUT1_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',1);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);



set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 5;
lamda = 1000;
%KHI KHONG SU DUNG FDL
B = 0;
n0 = 10^3.*C./(lamda.*L);
% DIEU KIEN n0+1i=7:12;
Ti=B.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a=3.333;
b=1.4286;
% DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
Pl=p.*exp(-i.*a.*Ti);
%VE HAM Pl THEO i
h=plot(i,Pl,'b*-');
title('ket qua khong su dung FDL');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO



axes(h)
function NUT2_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',1);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 10 ms
B1=10;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti1=B1.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a=3.333;
b=1.4286;
%CHON n THOA DIEU KIEN n>i
n=25;

p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));


Pl1=p.*exp(-i.*a.*Ti1);
%VE HAM Pl1 THEO i
g=plot(i,Pl1,'ko--');
title('ket qua khi FDL=10ms');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(g)
function NUT3_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',1);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B2=50;

n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1


i=7:12;
Ti2=B2.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a=3.333;
b=1.4286;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
Pl2=p.*exp(-i.*a.*Ti2);
%VE HAM Pl2 THEO i
m=plot(i,Pl2,'r+:');
title('ket qua khi FDL=50ms');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(m,'square')
% --- Executes on button press in NUT4.
function NUT4_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',1);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);

set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);


%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KET HOP KHONG SU DUNG FDL, KHI FDL=10ms VA FDL=50ms
B = 0;
B1=10;
B2=50;
n0 = 10^3.*C./(lamda.*L);
i=7:12;
Ti=B.*C./(lamda.*L.*(i-n0).*(i-n0+1));
Ti1=B1.*C./(lamda.*L.*(i-n0).*(i-n0+1));
Ti2=B2.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a=3.333;
b=1.4268;
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
Pl=p.*exp(-i.*a.*Ti);
Pl1=p.*exp(-i.*a.*Ti1);
Pl2=p.*exp(-i.*a.*Ti2);
%VE TONG HOP 3 DO THI
w=plot(i,Pl,'b*-',i,Pl1,'ko--',i,Pl2,'r+:');
title('so sanh ket qua');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');

%HIEN THI DO THI TONG HOP TREN HE TOA DO
axes(w);
function NUT5_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);


set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',1);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B5=0;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti5=B5.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a5=3.1250;
b5=1.4706;
%CHON n THOA DIEU KIEN n>i

n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b5./(a5+b5)).^i).*((b5./(a5+b5)).^(n-i));
Pl5=p.*exp(-i.*a5.*Ti5);
%VE HAM Pl2 THEO i


l=plot(i,Pl5,'k*:');
title('khong FDL voi 1/a=320 va 1/b=680');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(l,'square')
function NUT6_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',1);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms

B6=0;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti6=B6.*C./(lamda.*L.*(i-n0).*(i-n0+1));


a=3.333;
b=1.4268;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
Pl6=p.*exp(-i.*a.*Ti6);
%VE HAM Pl2 THEO i
q=plot(i,Pl6,'r+:');
title('khong FDL voi 1/a=300 va 1/b=700');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(q,'square')
function NUT7_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',1);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);

set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;


lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B7=0;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti7=B7.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a7=3.5714;
b7=1.3889;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b7./(a7+b7)).^i).*((b7./(a7+b7)).^(n-i));
Pl7=p.*exp(-i.*a7.*Ti7);
%VE HAM Pl2 THEO i
x=plot(i,Pl7,'bo:');
title('khong FDL voi 1/a=280 va 1/b=720');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(x,'square')
function NUT8_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);

set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',1);


set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B5=50;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti5=B5.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a5=3.1250;
b5=1.4706;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b5./(a5+b5)).^i).*((b5./(a5+b5)).^(n-i));
Pl5=p.*exp(-i.*a5.*Ti5);
%VE HAM Pl2 THEO i

l=plot(i,Pl5,'k*:');
title('khong FDL voi 1/a=320 va 1/b=680');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(l,'square')
function NUT9_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);


set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',1);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B6=50;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;

Ti6=B6.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a=3.333;
b=1.4268;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
Pl6=p.*exp(-i.*a.*Ti6);
%VE HAM Pl2 THEO i
q=plot(i,Pl6,'r+:');


title('khong FDL voi 1/a=300 va 1/b=700');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(q,'square')
function NUT10_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',1);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',0);
%THONG SO

C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B7=50;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti7=B7.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a7=3.5714;


b7=1.3889;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b7./(a7+b7)).^i).*((b7./(a7+b7)).^(n-i));
Pl7=p.*exp(-i.*a7.*Ti7);
%VE HAM Pl2 THEO i
x=plot(i,Pl7,'bo:');
title('khong FDL voi 1/a=280 va 1/b=720');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(x,'square')
function NUT11_Callback(hObject, eventdata, handles)
set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);

set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',1);
set(handles.NUT12,'Value',0);
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms


B6=0;
n0 = 10^3.*C./(lamda.*L);
%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti6=B6.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a5=3.1250;
b5=1.4706;
a=3.333;
b=1.4268;
a7=3.5714;
b7=1.3889;
%CHON n THOA DIEU KIEN n>i
n=25;
p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
p5=factorial(n)./(factorial(i).*factorial(n-i)).*((b5./(a5+b5)).^i).*((b5./(a5+b5)).^(ni));
p7=factorial(n)./(factorial(i).*factorial(n-i)).*((b7./(a7+b7)).^i).*((b7./(a7+b7)).^(ni));
Pl6=p.*exp(-i.*a.*Ti6);

Pl5=p5.*exp(-i.*a5.*Ti6);
Pl7=p7.*exp(-i.*a7.*Ti6);
%VE HAM Pl2 THEO i
q=plot(i,Pl6,'r+:',i,Pl5,'k*:',i,Pl7,'bo:');
title('so sanh ket qua');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(q,'square')
function NUT12_Callback(hObject, eventdata, handles)


set(handles.NUT1,'Value',0);
set(handles.NUT2,'Value',0);
set(handles.NUT3,'Value',0);
set(handles.NUT4,'Value',0);
set(handles.NUT5,'Value',0);
set(handles.NUT6,'Value',0);
set(handles.NUT7,'Value',0);
set(handles.NUT8,'Value',0);
set(handles.NUT9,'Value',0);
set(handles.NUT10,'Value',0);
set(handles.NUT11,'Value',0);
set(handles.NUT12,'Value',1);
C = 6;
L = 1;
lamda = 1000;
%KHI SU DUNG FDL = 50 ms
B6=50;
n0 = 10^3.*C./(lamda.*L);

%CHON i THOA DIEU KIEN i>n0+1
i=7:12;
Ti6=B6.*C./(lamda.*L.*(i-n0).*(i-n0+1));
a5=3.1250;
b5=1.4706;
a=3.333;
b=1.4268;
a7=3.5714;
b7=1.3889;
%CHON n THOA DIEU KIEN n>i
n=25;


p=factorial(n)./(factorial(i).*factorial(n-i)).*((b./(a+b)).^i).*((b./(a+b)).^(n-i));
p5=factorial(n)./(factorial(i).*factorial(n-i)).*((b5./(a5+b5)).^i).*((b5./(a5+b5)).^(ni));
p7=factorial(n)./(factorial(i).*factorial(n-i)).*((b7./(a7+b7)).^i).*((b7./(a7+b7)).^(ni));
Pl6=p.*exp(-i.*a.*Ti6);
Pl5=p5.*exp(-i.*a5.*Ti6);
Pl7=p7.*exp(-i.*a7.*Ti6);
%VE HAM Pl2 THEO i
q=plot(i,Pl6,'r+:',i,Pl5,'k*:',i,Pl7,'bo:');
title('so sanh ket qua');
xlabel('luu luong tai');
ylabel('xac suat chum suy hao');
%HIEN THI TREN HE TOA DO
axes(q,'square')




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×