CHUYÊN ĐỀ: PHƯƠNG TRÌNH LƯỢNG GIÁC
DẠNG 1. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN
1) sin x sin
6
π
=
2
2) sin x
2
= −
1
3) sin(x 2)
3
− =
0
1
4) sin(x 10 )
2
+ =
5) cosx cos
4
π
=
1
6) cos 2x
2
= −
7) cos x sin 2x=
0
3
8) cos(3x 30 )
2
+ =
3
9) tan x tan
4
π
=
10) tan2x 3= −
11) tan x tan 2x=
12) cot4x 3=
0
13) cot(2x 60 ) cot x− = −
14) cot(4x 2) 2− =
15) sin(2x 1) sin(x 3)
− = +
16) sin3x cos 2x=
17) tan(3x 2) cot 2x 0− + =
18) sin4x cos5x 0+ =
DẠNG 2. PHƯƠNG TRÌNH BẬC NHẤT VÀ BẬC HAI VỚI 1 HÀM SỐ LƯỢNG GIÁC
1)
2cos 2x 4 cos x 1
− =
2) 4sin
3
x + 3
2
sin 2x = 8sinx 3) 4cosx.cos2x + 1 = 0
4)
1 5sin x 2cos 2x 0− + =
5) 3sin
3
x – 3cos
2
x + 4sinx – cos2x + 2 = 0 6) sin3x + 2cos2x – 2 = 0
7) tanx +
3
cot x
– 2 = 0 8)
2
4
cos x
+ tanx = 7 9)
sin
6
x + cos
4
x = cos2x
10) sin(
5
2
2
x
π
+
) – 3cos(
7
2
x
π
−
) = 1 + 2sinx 11) tanx + cotx = 4
12)
2
sin 2sin 2 2sin 1x x x
− + = −
13)
2 4
sin 2 4cos 2 1
0
2sin cos
x x
x x
+ −
=
14)
sin 1 cos 0x x+ + =
15)
2 4
4sin 2 6sin 9 3cos 2
0
cos
x x x
x
+ − −
=
16) 2cosx –
sin x
= 1.
DẠNG 3. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI SINX VÀ COSX: asinx + bcosx = c
1) 2sin15x +
3
cos5x + sin5x = 0 2)
1
3 sin cos
cos
x x
x
+ =
3)
6
4sin 3cos 6
4sin 3cos 1
x x
x x
+ + =
+ +
4)
1
3 sin cos 3
3 sin cos 1
x x
x x
+ = +
+ +
5)
cos 7 3 sin 7 2 0x x
− + =
6) (cos2x –
3
sin2x) –
3
sinx – cosx + 4 = 0
7)
2
1 cos cos 2 cos3 2
(3 3 sin )
2cos cos 1 3
x x x
x
x x
+ + +
= −
+ −
8)
2
cos 2sin .cos
3
2cos sin 1
x x x
x x
−
=
+ −
DẠNG 4. PHƯƠNG TRÌNH ĐẲNG CẤP ĐỐI VỚI sinx và cosx
1) 3sin
2
x –
3
sinxcosx + 2cos
2
x = 2 2) 4sin
2
x +3
3
sinxcosx – 2cos
2
x = 4
3) sin
2
x + 5cos
2
x – 2cos2x – 4sin2x = 0 4) 2sin
2
x + 6sinxcosx + 2(1 +
3
)cos
2
x – 5 –
3
= 0
5) sinx – 4sin
3
x + cosx = 0 6) tanxsin
2
x – 2sin
2
x = 3(cos2x + sinxcosx) 7)
3cos
4
x – 4sin
2
xcos
2
x + sin
4
x = 0 8) 4cos
3
x + 2sin
3
x – 3sinx = 0
9) 2cos
3
x = sin3x 10) cos
3
x – sin
3
x = cosx + sinx
11) sinxsin2x + sin3x = 6cos
3
x 12) sin
3
(x –
π
/4) =
2
sinx
DẠNG 5. PHƯƠNG TRÌNH ĐỐI XỨNG ĐỐI VỚI sinx và cosx
1) 1 + tanx = 2sinx +
1
cos x
2) sin x + cosx =
1
tan x
–
1
cot x
3) sin
3
x + cos
3
x = 2sinxcosx + sinx + cosx 4) 1 – sin
3
x + cos
3
x = sin2x
5)
2
sin2x(sinx + cosx) = 2 6) (1 + sin x)(1 + cosx) = 2
7)
2
(sin x + cosx) = tanx + cotx 8) 1 + sin
3
2x + cos
3
2
x =
3
2
sin4x
9) 3(cotx – cosx) – 5(tanx – sinx) = 2 10)
sin x cos x 4sin 2x 1− + =
11) cosx +
1
cos x
+ sinx +
1
sin x
=
10
3
12) sinxcosx +
sin x cos x+
=1
13) cos
4
x + sin
4
x – 2(1 – sin
2
xcos
2
x)sinxcosx – (sinx + cosx) = 0
DẠNG 6. SỬ DỤNG CÔNG THỨC HẠ BẬC
1) sin
2
x + sin
2
3x = cos
2
2x + cos
2
4x 2) cos
2
x + cos
2
2x + cos
2
3x + cos
2
4x = 3/2
3) sin
2
x + sin
2
3x – 3cos
2
2x = 0 4) cos3x + sin7x = 2sin
2
(
5
4 2
x
π
+
) – 2cos
2
9
2
x
5) sin
2
4x + sin
2
3x = cos
2
2x + cos
2
x 6) sin
2
4x – cos
2
6x = sin(
10,5 10x
π
+
)
7) cos
4
x – 5sin
4
x = 1 8) 4sin
3
x – 1 = 3 –
3
cos3x
9) sin
2
2x + sin
2
4x = sin
2
6x 10) sin
2
x = cos
2
2x + cos
2
3x
11) (sin
2
2x + cos
4
2x –1):
sin cosx x
= 0 12) 4sin
3
xcos3x + 4cos
3
x sin3x + 3
3
cos4x = 3
13) 2cos
2
2x + cos2x = 4sin
2
2xcos
2
x 14) cos4xsinx – sin
2
2x = 4sin
2
(
4 2
x
π
−
) – 7/2
15) 2cos
3
2x – 4cos3xcos
3
x + cos6x – 4sin3xsin
3
x = 0 16) sin
3
xcos3x + cos
3
xsin3x = sin
3
4x
17) 8cos
3
(x +
3
π
) = cos3x 18)
sin 5
5sin
x
x
= 1
19) cos10x + 2cos
2
4x + 6cos3xcosx = cosx + 8cosxcos
2
3x 20) cos7x + sin
2
2x = cos
2
2x – cosx
21) sin
2
x + sin
2
2x + sin
2
3x = 3/2 22) 3cos4x – 2cos
2
3x = 1
DẠNG 7. SỬ DỤNG CÔNG THỨC BIẾN ĐỔI
1) sin
3
xcosx =
1
4
+ cos
3
xsinx 2) cosxcos2xcos4xcos8x = 1/16
3) tanx + 2cot2x = sin2x 4) sin2x(cotx + tan2x) = 4cos
2
x
5) sin4x = tanx 6) sin2x + 2tanx = 3
7) sin2x + cos2x + tanx = 2 8) tanx + 2cot2x = sin2x
9) cotx = tanx + 2cot2x 10) tan2x + sin2x =
3
2
cotx
11) sin8x + cos4x = 1 + 2sin2xcos6x 12) cosx + cos2x + cos3x + cos4x = 0
13)
sin 3 sin
sin 2 cos 2
1 cos 2
x x
x x
x
−
= +
−
14) sinx + sin2x + sin3x + sin4x = 0
15) sin5x + sinx + 2sin
2
x = 1 16)
( )
3 cos 2x cot 2x
4sin x cos x
cot 2x cos 2x 4 4
+
π π
= + −
÷ ÷
−
17) tanx + tan2x = tan3x 18) 3cosx + cos2x – cos3x + 1 = 2sinxsin2x
DẠNG 8. SỬ DỤNG HẰNG ĐẲNG THỨC
1) sin
4
2
x
+ cos
4
2
x
= 1 – 2sinx 2) cos
3
x – sin
3
x = cos
2
x – sin
2
x
3) cos
3
x + sin
3
x = cos2x 4)
4 4
sin cos 1
(tan cot )
sin 2 2
x x
x x
x
+
= +
5) cos
6
x – sin
6
x =
13
8
cos
2
2x 6) sin
4
x + cos
4
x =
7
cot( )cot( )
8 3 6
x x
π π
+ −
7) cos
6
x + sin
6
x = 2(cos
8
x + sin
8
x) 8) cos
3
x + sin
3
x = cosx – sinx
9) cos
6
x + sin
6
x = cos4x 10) cos
8
x + sin
8
x =
1
8
11) (sinx + 3)sin
4
2
x
– (sinx + 3) sin
2
2
x
+ 1 = 0
12) sinx + sin
2
x + sin
3
x + sin
4
x = cosx + cos
2
x + cos
3
x + cos
4
x
DẠNG 9. BIẾN ĐỔI VỀ TÍCH
1) cos2x – cos8x + cos4x = 1 2) sinx + 2cosx + cos2x – 2sinxcosx = 0
3) sin2x – cos2x = 3sinx + cosx – 2 4) sin
3
x + 2cosx – 2 + sin
2
x = 0
5) 3sinx + 2cosx = 2 + 3tanx 6)
3
2
sin2x +
2
cos
2
x +
6
cosx = 0
7) 2sin2x – cos2x = 7sinx + 2cosx – 4 8)
sin 3 sin 5
3 5
x x
=
9) 2cos2x – 8cosx + 7 =
1
cos x
10) cos
8
x + sin
8
x = 2(cos
10
x + sin
10
x) +
5
4
cos2x
11) 1 + sinx + cos3x = cosx + sin2x + cos2x 12) 1 + sinx + cosx + sin2x + cos2x = 0
13) sin
2
x(tanx + 1) = 3sinx(cosx – sinx) + 3 14) 2sin3x –
1
sin x
= 2cos3x +
1
cos x
15) cos
3
x + cos
2
x + 2sinx – 2 = 0 16) cos2x – 2cos
3
x + sinx = 0
17) tanx – sin2x – cos2x + 2(2cosx –
1
cos x
) = 0 18) sin2x = 1 +
2
cosx + cos2x
19) 1 + cot2x =
2
1 cos 2
sin 2
x
x
−
20) 2tanx + cot2x = 2sin2x +
1
sin 2x
21) cosx(cos4x + 2) + cos2x – cos3x = 0 22) 1 + tanx = sinx + cosx
23) (1 – tanx)(1 + sin2x) = 1 + tanx 24) 2
2
sin( )
4
x
π
+
=
1 1
sin cosx x
+
25) 2tanx + cotx =
2
3
sin 2x
+
26) 9sinx + 6cosx – 3sin2x + cos2x = 8