Tải bản đầy đủ (.pdf) (5 trang)

Kết cấu bê tông cốt thép : CẤU KIỆN CHỊU UỐN part 4 pptx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (190.16 KB, 5 trang )

Chỉång 4
Trãn tiãút diãûn nghiãng C báút k
∑F
x
=
QQ
R
iD
â
B

sin
α


Trãn tiãút diãûn nghiãng C
0
∑F
x
=
QQ
R

â
b

sin
α

Xẹt mäüt säú trỉåìng håüp củ thãø ca C
0


v C.
C
0
α
F
x1
F
x1
- C
0
càõt qua mäüt låïp cäút xiãn, âiãưu kiãûn cỉåìng âäü:
Q ≤ Q
âb
+ R
â
.F
x1
.Sinα ⇒ F
x1
=
QQ
R

â
b

sin
α

- C

0
càõt qua 2 låïp cäút xiãn, âiãưu kiãûn cỉåìng âäü:
Q
≤ Q
âb
+ R
â
.(F
x1
+F
x2
).Sinα ⇒ F
x1
+ F
x2
=
QQ
R

â
b

sin
α

C
1
C
2
=C

0
C
0
F
x2
F
x1
C
0
càõt qua nhiãưu låïp cäút xiãn ta cng tênh tỉång tỉû.
- Ngoi ra TD nghiãng C
1
chè càõt 1 låïp cäút xiãn nhỉng ráút gáưn
tiãút diãûn nguy hiãøm C
0
nãn cng phi xẹt, âiãưu kiãûn cỉåìng âäü:
Q ≤ Q
ÂB
C1
+ R
â
.F
x1
.Sinα ⇒ F
x1
=
QQ
R
iD
C

â

1
sin
α
B

- Màût khạc cọ thãø xút hiãûn TD nghiãng C
2
= C
0
chè càõt qua F
x2
:

⇒ F
x1
=
QQ
R
âb
â
2

sin
α

Tuy váûy qui phảm cho phẹp tênh toạn mäüt cạch âån gin v an ton hån bàòng cạch chè xem C
0
chè

càõt qua 1låïp cäút xiãn. Khi âọ âiãưu kiãûn cỉåìng âäü s l:
Q
1
≤ Q
âb
+R
â
.F
x1
.Sinα.
Q
2
≤ Q
âb
+R
â
.F
x2
.Sinα.
Q
âb
≤u
max
≤u
max
Q
1
Q
2
Q

3
Q
âb

Trong âọ Q
1
, Q
2
,
tỉång ỉïng tải âáưu tỉìng màût càõt C
0
, ta tênh âỉåüc:
F
xi
=
QQ
R

â

sin
α
b
(4 - 54)
u cáưu bäú trê cäút xiãn:
Trãn âoản dáưm cọ Q > Q
âb
phi bäú trê cäút xiãn.











≤u
max
≤u
max
≤u
max
P
≤u
max
≤u
max
KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP
16
Chỉång 4

5.6 Những u cầu cấu tạo để đảm bảo cường độ trên tiết diện nghiêng
chịu mơ men :
Âiãưu kiãûn cỉåìng âäü (4 - 42) cọ thãø tha mn bàòng mäüt säú u cáưu cáúu tảo. Sau âáy ta xẹt cạc
u cáưu cáúu tảo âãø âm bo âiãưu kiãûn tdng chëu mämen âọ.
a. Neo cốt dọc chịu kéo tại các gối tựa tự do:
Cäút thẹp chëu kẹo âỉåüc neo täút thç måïi phạt huy âỉåüc kh nàng chëu lỉûc, nãúu neo kẹm thç cäút
thẹp dãù bë tüt khi chỉa âảt âỉåüc cỉåìng âäü giåïi hản v dáưm s bë phạ hoải theo tdng âi qua mẹp gäúi

do mämen.
ÛP
17
Khi Q ≤ k
1
.R
k
.b.h
0
.
Âoản neo l
a
≥ 5d thỉåìng l l
a
≥ 10d.
Nãúu lỉåïi hn cọ cäút âån thç trãn âoản l
a
êt nháút phi cọ
1 cäút ngang neo cạch nụt cäüt dc 1 âoản C: C ≤
15 khi d ≤ 10.
C ≤ 1,5d khi d > 10.
Khi Q > k
1
.R
k
.b.h
0
.
Âoản neo l
a

≥1,5d.
l
a
≥10d khi M
bt
≥200 v thẹp cọ gåì.
Nãúu khung hay lỉåïi cäút hn våïi cäút dc chëu lỉûc trn
trån thç trãn âoản l
a
phi cọ êt nháút hai thanh neo våïi
C v d
a
quy âënh nhỉ trãn.
b. Uốn cốt dọc chịu k éo:
1. Biãøu âäư bao váût liãûu: (BÂBVL).
Biãøu âäư bao váût liãûu ca dáưm l âỉåìng biãøu diãùn kh nàng chëu lỉûc ca dáưm âọ. BÂBVL ca
dáưm BT cäút thẹp (âàût cäút âån) âỉåüc xáy dỉûng bàòng cạch:
Dáưm â biãút b, h, F
a
→ Tênh α =
RF
Rbh
aa
n0
→ A → Tênh M
VL
= A.R
n
.b.h
0

2
→ V M
VL
trãn trủc
cng tè lãû våïi biãøu âäư bao Mämen (BÂBM). BÂBVL phi bao ngoi BÂBM.
Gi sỉí cọ dáưm nhỉ hçnh v. Biãøu âäư bao
M låïn nháút tải giỉỵa nhëp. Våïi M
max
tênh âỉåüc
F
a
=2φ22 + 1φ18 → v âỉåìng bèãu diãùn kh
nàng chëu lỉûc ca dáưm cọ 2φ22+1φ18 nhỉ
trãn (âỉåìng 1). Nhỉng tải gáưn 2 âáưu dáưm M
gim nhỉng Q låïn nãn ta dỉû âënh ún 1
φ18
lãn thnh cäút xiãn. Sau khi ún cäút thẹp chëu
kẹo chè cn 2
φ22, ta lải v âỉåìng biãøu diãøn
M
VL
chè våïi 2φ22 (âỉåìng 2).
KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃ
C
d
l
a
M
d
l

a
2
q
h
1φ18
1-1
l
(2)
(1)
M
2φ22
2φ22
d
e
g
c
a
b
b
2
φ20+1φ18
1
d
a
C
Chỉång 4
Âỉåìng (1) v (2) âỉåüc näúi våïi nhau bàòng âoản xiãn tỉång ỉïng våïi vë trê cạc âiãøm ún ca cäút xiãn.
Âỉåìng gáúp khục bao ngoi BÂBM l BÂBVL.





2. ún cäút dc:
N
1
Z
x
≥h
0
/2
Z
a
I
I
II
N
1
II
Khong cạch tỉì khåíi âiãøm ca cäút xiãn
trong vng kẹo (Tiãút diãûn I-I) âãún TD m tải âọ cäút
dc âỉåüc táûn dủng hãút kh nàng chëu lỉûc (Tiãút diãûn
II-II) phi
≥ (h
0
/2). Nãúu âiãưu kiãûn ny khäng âm
bo thç âiãưu kiãûn cỉåìng âäü trãn TD nghiãng chëu M
s khäng âỉåüc âm bo.
Thỉûc váûy, âãø âm bo cỉåìng âäü trãn tdng
N
1

-N, thç cạnh tay ân Z
x
phi khäng nh hån cạnh
tay ân Z
a
. Âiãưu ny xy ra khi khong cạch tỉì (I-I)
âãún (II-II) ≥ h
0
/2.
KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP
18
Chỉång 4
c.Cắt cốt dọc chịu kéo:
Âãø tiãút kiãûm thẹp, ngỉåìi ta thỉåìng càõt båït mäüt säú cäút thẹp chëu kẹo åí ngoi phảm vi gäúi tỉûa
(ca dáưm liãn tủc) m theo tênh toạn thç khäng cáưn thiãút nỉỵa (do M gim nhiãưu).
Gi sỉí ta cọ dáưm BT cäút thẹp liãn tủc nhỉ hçnh v. Tải gäúi diãûn têch cäút thẹp chëu kẹo u cáưu
l F
a
=F
a1
+F
a2
. Nhỉng khi ra xa gäúi M gim âi nhiãưu, tải tiãút diãûn o-o theo tênh toạn ta cọ thãø càõt b
cäút thẹp F
a2
, TD o-o gi l màût càõt l thuút.

M
g
W

M
0
M
A
M
B
B
A
o
B
A
o
F
a
=F
a1
+F
a2
A-A B-B
F
a1
2
F
a2
F
a1
1 1
F
a1
F

a1


F
a2











Nhỉng nãúu càõt ngay tải âọ thç kh nàng chëu ún trãn TD nghiãng (Chàóng hản oA) s khäng
âỉåüc âm bo, vç thỉûc tãú M tạc dủng lãn tdng âọ l M
A
>M
0
nhỉng cäút chëu kẹo váùn l F
a1
=F
a
-F
a2
v
cọ thãm mäüt säú êt cäút âai chëu mä men ún m thäi. Säú cäút âai m tdng oA càõt qua khäng â âãø
chëu pháưn mämen M

A
-M
0
. Âãø khäng bë phạ hoải trãn TD nghiãng do mä men ta phi kẹo cäút thẹp
F
a2
ra ngoi màût càõt l thuút o-o mäüt âoản W nỉỵa (âãún âiãøm B). Xẹt TD nghiãng AB thç tuy M
0
<
M
A
nhỉng lỉåüng cäút âai âi qua màût càõt nghiãng AB â låïn âãø chëu âỉåüc pháưn mämen M
A
-M
0
âọ.
Ngỉåìi ta â chỉïng minh âỉåüc ràòng:
W =
d
2.q
0,8.Q
+ 5d v W ≥ 20d;
Trong âọ Q: Lỉûc càõt tải âiãøm càõt l thuút, láúy bàòng âäü däúc ca biãøu âäư mämen.
d: Âỉåìng kênh cäút dc bë càõt.
q
â
=
u
.n.fR
ad d

.
5d: Âoản cáưn thiãút âãø cäút dc bàõt âáưu chëu lỉûc.
Khi trong vng càõt thẹp cọ cäút xiãn thç:
W =
d
x
2.q
Q-0,8.Q
+ 5d v W ≥ 20d;
Trong âọ Q
x
= ΣR
â
.F
x
.Sinα våïi ΣF
x
diãûn têch nhỉỵng låïp cäút xiãn trong vng càõt thẹp. Âãø âån
gin v an ton ΣF
x
l diãûn têch låïp cäút xiãn càõt qua TD càõt l thuút, l diãûn têch låïp cäút xiãn nàòm
phiạ trỉåïc màût càõt l thuút.
Thê dủ: Xem sạch.
KHOA XÁY DỈÛNG DÁN DỦNG & CÄNG NGHIÃÛP
19
Chæång 4


KHOA XÁY DÆÛNG DÁN DUÛNG & CÄNG NGHIÃÛP
20

×