Tải bản đầy đủ (.doc) (15 trang)

khả năng phân tích của gis

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1012.94 KB, 15 trang )

Thái Minh Tín
Lớp QLDD A2
Trường DH Cần Thơ
GIỚI THIỆU

 Xử lý thông tin không gian là một trong những chức năng chính của GIS.
Tiến trình xử lý dữ liệu không gian được thực hiện bởi các phép toán phân
tích trên một lớp và phân tích trên nhiều lớp dữ liệu.
 Phân tích một lớp thường được thực hiện trước khi tiến hành phân tích
nhiều lớp.
 Phép toán phân tích một lớp còn được gọi là phép toán phân tích ngang.
Bởi vì trong quá trình phân tích chỉ xử lý trên 1 lớp dữ liệu đầu vào.
 Lớp dữ liệu được xử lý chỉ chứa một kiểu đối tượng duy nhất
(điểm/đường/vùng).
 Phép toán phân tích 1 lớp được chia thành 3 nhóm: Xử lý đối tượng, chọn
đối tượng và phân loại đối tượng.
I. XỬ LÝ ĐỐI TƯỢNG
1. Xử lý vùng ranh
Clip:
 Phép kẹp: tạo đầu ra chứa 1 phần của bản đồ gốc.
 Phép này giữ lại tất cả các yếu tố thuộc tính từ bản đồ gốc nằm trong ranh
giới của vùng kẹp.
Erase:
 Phép xoá: ngược lại với phép kẹp.
 Phép xoá loại bỏ phần nằm trong vùng xoá và giữ nguyên những phần còn
lại từ bản đồ gốc.
Update:
 Phép cập nhật: thay thế dữ liệu không gian tại một số khu vực nhất định
trên bản đồ bằng một lớp mới hoặc đã được đính chính.
 Phép này tạo đầu ra bằng việc sử dụng lệnh cắt-dán.
Spit:


 Phép phân chia: tạo ranh giới chia bản đồ ra làm nhiều khu vực.
 Phép này rất hữu dụng khi ta cần chia một cơ sở dữ liệu lớn ra làm nhiều
phần nhỏ hơn để xử lý.
Append/Mapjoin:
 Phép kết nối: dùng để kết hợp nhiều bản đồ nhỏ, liền kề để tạo ra một bản
đồ lớn hơn.
 Phép này ngược với phép phân
chia.
Dissolve:
 Phép hoà tan: được dùng để xoá bỏ các ranh giới không cần thiết sau khi
đã kết nối các vùng liền kề có cùng tính chất.
 Phép này cũng có tác dụng xoá bỏ điểm nút (node) giữa các đường có cùng
thuộc tính.
2. Tạo vùng lân cận: Tạo vùng đệm, vùng Thiesen.
Thực hiện trên cơ sở giá trị khoảng cách tính từ các đối tượng được chọn.
a. Tạo vùng đệm (buffer):
Vùng đệm (Buffer zone): Bên trong đường biên thì gọi là lõi còn bên ngoài
đường biên thì gọi là vùng đệm (buffer).
Cho trước một đối tượng và một giá trị khoảng cách, phép toán buffer sẽ
tạo ra một vùng đệm là một polygon bao phủ xung quanh tất cả các điểm mà
khoảng cách từ chúng đến đối tượng nhỏ hơn hoặc bằng khoảng cách đề ra.
Hình: Tạo vùng đệm cho đối tượng
Vùng đệm được tạo thành sẽ xác lập các vùng bên trong hoặc bên ngoài
vùng đệm của mỗi đối tượng.
􀂄 Vùng bao
quanh điểm
􀂄 Vùng bao
quanh đường
􀂄 Vùng bao
quanh vùng

Đây là một phép chọn lọc đối tượng không gian được sử dụng phổ biến
trong GIS.
Các buffer bao quanh một điểm có dạng vùng hình tròn, quanh một đường
có dạng vùng ngoằn ngoèo và quanh một vùng có dạng vùng rộng lớn hơn.
Hình: Biểu diễn các vùng bên trong hoặc ngoài vùng đệm của mỗi
đối tượng
Hình: Buffer điểm Hình: Buffer đường Hình: Buffer vùng
Tạo vùng đệm có thể ở dạng Raster.
Kết quả là sự phân lớp các cell thành hai loại là các cell nằm bên trong và
các cell nằm bên ngoài của khu vực vùng đệm.
Độ rộng vùng đệm có thể được xác định như là hằng số hay là biến.
Hình:Tạo vùng đệm có thể ở dạng Raster
Hình: Độ rộng vùng đệm
 Ứng dụng:
Sử dụng trong tìm các nhà nằm trong phạm vi lộ giới quy định.
Một trong những hoạt động tạo vùng đệm hữu ích là tạo ra các vùng đồng
khoảng cách từ các đối tượng chọn lọc.
Các vùng đệm tạo ra như vậy được gọi là các vùng lân cận (proximity
zones).
b.Vùng Thiessen:
Vùng ảnh hưởng Thiessen (nội suy theo điểm gần nhất):
Ý tưởng đằng sau phương pháp nội suy đơn giản này là thông tin tốt nhất
về tính chất của một điểm có thể được rút ra từ điểm được quan sát gần nhất. Hơn
nữa vùng ảnh hưởng (= vùng Thiessen) được giới hạn xung quanh mỗi một điểm
quan sát. Mỗi điểm rơi vào bên trong vùng ảnh hưởng có cùng giá trị với vùng này
(Burrough,1986).
Vùng Thiessen được định nghĩa là vùng ảnh hưởng riêng biệt xung quanh
mỗi điểm trong tập các điểm.
Hình: Vùng đệm (Buffer zone)
Hình: Vùng đệm (Buffer zone)

Được xây dựng xung quanh tập các điểm sao cho ranh giới của vùng cách
đều điểm lân cận.
Mỗi điểm rơi vào bên trong vùng ảnh hưởng có cùng giá trị với vùng này.
Phương pháp này thường được sử dụng trong phân tích khí hậu như dữ liệu
độ mưa. Khi thiếu các trạm quan sát địa phương, dữ liệu từ trạm khí tượng gần
nhất được sử dụng. Để làm được việc này, vùng Thiessen được xây dựng xung
quanh mỗi trạm khí tượng.
Hình: Xác định vị trí điểm gốc Hình: Xác định địa bàn phục vụ
Thí dụ: vị trí các trạm đo mưa được thể hiện bằng các điểm. Vùng Thiessen được
tạo ra xung quanh mỗi điểm và giá trị mưa được chỉ định cho mỗi vùng.
Hình minh hoạ
Lượng mưa trong vùng xung quanh trạm khí tượng đã biết sẽ bằng chính
lượng mưa đo được trên trạm đo. Tổng lượng mưa trên những vùng có thể được
tính toán như tổng lượng mưa đo được tại trạm đo nhân với diện tích của vùng
(Aronoff, 1989).
Phương pháp này có một số hạn chế.Hạn chế chính là vùng Thiessen coi
những điểm gần nhau tương tự những điểm ở xa. Nếu một tập hợp các điểm quan
sát rất thưa thớt và tất cả các điểm quan sát được xác định cách xa nhau thì sẽ tạo
dựng nên những vùng lớn. Sự thực, vị trí gần với đường bao của vùng không có
cùng giá trị như chính điểm quan sát (Aronoff,1989).
Đa số phương pháp nội suy bắt đầu từ nguyên lý những giá trị chưa biết
thay đổi một cách liên tục trong không gian.
Giá trị tại điểm không được quan sát sẽ được ước tính bằng cách sử dụng
các giá trị đã biết ở những vị trí lân cận. Để thực hiện điều này, hàm toán học được
xây dựng phản ảnh sự biến đổi không gian của hiện tượng được vẽ bản đồ càng
chính xác càng tốt.
Hàm toán học được rút ra từ bản chất của những điểm quan sát.Được sử
dụng để ước đoán giá trị của các điểm lân cận từ nột điểm quan sát đơn.
Ứng dụng: Xác định địa bàn hoạt động của các trung tâm thương mại
Dữ liệu điểm

A
B
C
D
E
F
G H
A
B
C
D
E
F
G H
Vùng Thiessen
II. PHÂN LỚP ĐỐI TƯỢNG
 Nhằm sắp xếp dữ liệu theo nhóm dựa vào thuộc tính xác định
 Có ích khi làm việc với số lượng lớn các đối tượng có giá trị thuộc tính biến
thiên
 Quá trình phân loại thường gồm hai bước:
 Chọn số nhóm
 Đồ họa cổ điển : thường từ 5 đến 7
 Dựa trên khả năng nhận dạng dễ dàng sự khác biệt về ký hiệu
(màu, cấp độ xám, độ sáng, độ bão hòa)
 Chọn phương pháp phân nhóm: khoảng cách bằng nhau, tấn số bằng nhau,
độ lệch chuẩn, natural breaks.
- Dựa trên phân bố của đối tượng
Uniform Normal Bimodal

Skewed(arithmatic) Skewed ( geometric) Clustered

1.Phân loại theo khoảng bằng nhau: dùng phân loại khoảng bằng
nhau với giới hạn của nhóm được cho bởi công thức sau:

];)1([
minmax
min
minmax
min
n
ZZ
kZ
n
ZZ
kZ

+

−+
Z
max
= giá trị thuộc tính cực đại
Z
min
= giá trị thuộc tính cực tiểu
n = số nhóm
Ưu điểm
+ Dễ dàng tính toán
+ Không có khoảng trống trong phân loại
Khuyết điểm
+ Có thể có ít phần tử trong một nhóm ,

2.Phân loại tần số bằng nhau
 Sắp xếp đối tượng theo giá trị tăng hoặc giảm
 Chia tổng số đối tượng bởi số lớp cần phân loại
Ưu điểm
 Dễ dàng tính toán
 Phương pháp duy nhất áp dụng cho dữ liệu thứ bậc
Khuyết điểm
 Có thể dẫn đến giải đoán sai về màu sắc do các phần tử có giá trị rất
khác nhau thuộc cùng 1 nhóm
Hình Phân loại khoảng bằng nhau
(Trần Trọng Đức)
3.Phân bố chuẩn: phân loại dựa trên giá trị trung bình và độ lệnh chuẩn:
 Biên giới hạn của nhóm được sắp xếp như sau:
[
, 2;;;;;2
σµσµµσµσµ
++−−
]
4.Phân bổ dạng dốc tuyến tính
 Giới hạn của mỗi nhóm được cho bởi công thức sau:
[
kk
TaTa Σ+Σ+

;
1
]
Với:
1


k
T
k
= b + ( k-1) d
a: Giá trị cực tiểu
d: Giá trị khác biệt chung
k: Số lớp
5.Phân bố dạng dốc phi tuyến tính
 Giới hạn của mỗi nhóm được cho bởi công thức sau:
[ ar
k-1
; ar
k
]
Với:
1≥k
r: hệ số nhân
a: Giá trị cực tiểu
Hình Phân loại tần số bằng nhau
(Trần Trọng Đức)
4
3
2
2
9 11
12
1
10
78
843 1

12
1
9
6
7
12
5
8
5
4
k: Số lớp
6. Phân loại nhị phân:
Phân bố nhị phân: được xử lý như tạo thành bởi 2 nhóm riêng biệt:
- Tách hai nhóm.
- Phân loại mỗi nhóm theo một trong các phương pháp phân loại kể trên.
Trong trường hợp, các đối tượng trên bản đồ là các polygon, chỉ số phân mảnh
(fragmentation) có thể được sử dụng để đánh giá kết quả phân loại:


m: số đơn vị bản đồ sau phân loại.
n: số đơn vị bản đồ trước phân loại
 Ví dụ:
1. Phân loại các vùng trong hình bên dưới ra thành 3 lớp theo các sơ đồ
phân loại sau: Khoảng bằng nhau, tần số bằng nhau, 1 tới 3, 4 tới 9, 10 tới 12; và 1
tới 2, 3 tới 10, 11 tới 12
2. Tính chỉ số phân mảnh của các phương pháp phân loại này
 Vd 1:
a. 1 tới 3, 4 tới 9, 10 tới 12
1
1



=
n
m
ρ
[ ]
1;0∈
ρ
b. 1 tới 2, 3 tới 10, 11 tới 12.
 Vd 2: Chỉ số phân mảnh.
1 tới 3, 4 tới 9, 10 tới 12 = (8-1) / (25-1) = 0.29
1 tới 2, 3 tới 10, 11 tới 12 = (6-1) / (25-1) = 0.21
7.Phân nhóm dạng đa đỉnh: giới hạn tối ưu của nhóm được xác
định bằng dường phân chia tự nhiên giữa các nhóm:
- Phương pháp Jenk ’ Optimization : Tạo ra các nhóm sau cho đồng nhất trong
nhóm nhưng rất khác biệt giữa các nhóm.
Ưu điểm
+ Dựa trên sự phân bố của dữ liệu
+ Tìm kiếm kiểu mẫu tự nhiên trong dữ liệu

Khuyết điểm
+ Khó khăn đối với người sử dụng để có thể hiểu được bằng cách nào
ranh giới của nhóm được xác định.
Trong trường hợp, các đối tượng trên bản đồ là các polygon, chỉ số phân mảnh
( fragmentation index) có thể được sử dụng để đánh giá kết quả phân loại:

[ ]
1,0∈
ρ


1
1


=
n
m
ρ
Trong đó:
m : số đơn vị bản đồ sau phân loại
n : số đơn vị bản đồ trước phân loại
4
4
3
22
9 11
12
1
10
78
84
3
1
12
1
9
6
7
12

5
8
5
8. Phân loại Natural Break.
Các lớp học được dựa trên các nhóm tự nhiên vốn có trong dữ
liệu. ArcMap xác định điểm break bằng cách chọn các lớp vỡ các giá trị tốt
nhất nhóm tương tự và tối đa hóa sự khác biệt giữa các lớp. Các tính năng được
chia thành các lớp có ranh giới được thiết lập, nơi có bước nhảy tương
đối lớn trong các giá trị dữ liệu.
Các Jenks tự nhiên Breaks phân loại (hoặc tối ưu hóa) hệ thống là một
phương pháp phân loại dữ liệu được thiết kế để giá trị tối ưu hóa sắp xếp của một
tập hợp thành "tự nhiên" lớp học. Điều này được thực hiện bằng việc tìm cách
giảm thiểu độ lệch trung bình từ trung bình lớp học, trong khi tối đa độ lệch từ các
phương tiện của các nhóm khác. Phương pháp này làm giảm các biến trong các
lớp học và tối đa hóa các phương sai giữa các lớp. [1] [2]
Đề án Jenks xác định việc bố trí tốt nhất của các giá trị vào các lớp học
bằng cách lặp đi lặp lại so sánh số tiền chênh lệch bình phương giữa các giá trị
quan sát được trong mỗi lớp học và có nghĩa là lớp. Việc phân loại tốt nhất xác
định các vi phạm trong việc phân phối ra lệnh cho các giá trị là giảm thiểu tổng
hợp trong sự khác biệt đẳng cấp của bình phương.

×