P N THI TH I HC, CAO NG 2012.
Mụn thi : TON ( 210 )
PHN CHUNG CHO TT C TH SINH (7,0 im)
Cõu I:(2 im) Cho hm s y = x
3
+ 3x
2
+ mx + 1 cú th l (C
m
); ( m l tham s)
1. Kho sỏt s bin thiờn v v th hm s khi m = 3.
2. Xỏc nh m (C
m
) ct ng thng: y = 1 ti ba im phõn bit C(0;1), D, E
sao cho cỏc tip tuyn ca (C
m
) ti D v E vuụng gúc vi nhau.
Cõu II:(2 im)
1. Giai hờ phng trinh:
2 0
1 2 1 1
x y xy
x y
=
=
2. Tìm
);0(
x
thoả mãn phơng trình: cotx 1 =
xx
x
x
2sin
2
1
sin
tan1
2cos
2
+
+
.
Cõu III: (2 im)
1. Trờn cnh AD ca hỡnh vuụng ABCD cú di l a, ly im M sao cho AM = x (0 < x a).
Trờn ng thng vuụng gúc vi mt phng (ABCD) ti A, ly im S sao cho SA = 2a.
a) Tớnh khong cỏch t im M n mt phng (SAC).
b) Kẻ MH vuông góc với AC tại H . Tìm vị trí của M để thể tích khối chóp SMCH lớn nhất
2. Tớnh tớch phõn: I =
2
4
0
( sin 2 )cos2x x xdx
+
.
Cõu IV: (1 im) : Cho các số thực dơng a,b,c thay đổi luôn thoả mãn : a+b+c=1.
Chng minh rng :
2 2 2
2.
a b b c c a
b c c a a b
+ + +
+ +
+ + +
PHN RIấNG (3 im) ( Chú ý!:Thí sinh chỉ đợc chọn bài làm ở một phần)
A. Theo chng trỡnh chun
Cõu Va : 1.Trong mặt phẳng Oxy cho tam giác ABC biết A(2; - 3), B(3; - 2), có diện tích bằng
3
2
và
trọng tâm thuộc đờng thẳng
: 3x y 8 = 0. Tìm tọa độ đỉnh C.
2.Trong không gian với hệ toạ độ Oxyz cho hai điểm A(1;4;2),B(-1;2;4)
và đờng thẳng
:
1 2
1 1 2
x y z +
= =
.Tìm toạ độ điểm M trên
sao cho:
2 2
28MA MB
+ =
Cõu VIa : Giải bất phơng trình:
32
4
)32()32(
1212
22
++
+
xxxx
B. Theo chng trỡnh Nõng cao
Cõu Vb : 1. Trong mpOxy, cho ng trũn (C): x
2
+ y
2
6x + 5 = 0. Tỡm M thuc trc tung sao cho
qua M k c hai tip tuyn ca (C) m gúc gia hai tip tuyn ú bng 60
0
.
2.Trong khụng gian vi h ta Oxyz, cho im M(2 ; 1 ; 0) v ng thng d với
d :
x 1 y 1 z
2 1 1
+
= =
.Vit phng trỡnh chớnh tc ca ng thng i qua im M,
ct v vuụng gúc vi ng thng d và tìm toạ độ của điểm M đối xứng với M qua d
Cõu VIb : Gii h phng trỡnh
3 3
log log 2
2 2
4 4 4
4 2 ( )
log ( ) 1 log 2 log ( 3 )
xy
xy
x y x x y
= +
+ + = + +
Ht.
(C¸n bé coi thi kh«ng gi¶i thÝch g× thªm)
ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG .
Mơn thi : TỐN ( ĐỀ 210 )
C©u
ý
Néi Dung
§iĨm
I 2
2
1
Phương trình hoành độ giao điểm của (C
m
) và đường thẳng y = 1 là:
x
3
+ 3x
2
+ mx + 1 = 1 ⇔ x(x
2
+ 3x + m) = 0 ⇔
=
+ + =
2
x 0
x 3x m 0 (2)
0,25
* (C
m
) cắt đường thẳng y = 1 tại C(0;1), D, E phân biệt:
⇔ Phương trình (2) có 2 nghiệm x
D
, x
E
≠ 0.
⇔
≠
∆ = − >
⇔
<
+ × + ≠
2
m 0
9 4m 0
4
m
0 3 0 m 0
9
(*)
0,25
Lúc đó tiếp tuyến tại D, E có hệ số góc lần lượt là:
k
D
=y’(x
D
)=
+ + = − +
2
D D D
3x 6x m (3x 2m);
k
E
=y’(x
E
)=
+ + = − +
2
E E E
3x 6x m (3x 2m).
Các tiếp tuyến tại D, E vuông góc khi và chỉ khi: k
D
k
E
= –1
0,25
⇔ (3x
D
+ 2m)(3x
E
+ 2m) =-1
⇔ 9x
D
x
E
+6m(x
D
+ x
E
) + 4m
2
= –1
⇔ 9m + 6m(–3) + 4m
2
= –1 (vì x
D
+ x
E
= –3; x
D
x
E
= m theo đònh lý Vi-ét). ⇔ 4m
2
– 9m +
1 = 0 ⇔
9 65
8
9 65
8
m
m
+
=
−
=
So s¸nhĐk (*): m =
( )
−
1
9 65
8
0,25
II 2
1
1. §k:
1
1
2
x
y
≥
≥
=>
( ) 0 ( )( 2 ) 0
2 0
2
0( )
x y y xy x y x y
x y
x y
x y voly
⇔ − − + = ⇔ + − =
− =
⇔ ⇔ =
+ =
0,5
⇔ x = 4y Thay vµo (2) cã
4 1 2 1 1 4 1 2 1 1
4 1 2 1 2 2 1 1 2 1 2 2 1
1
( )
2 1 0
2
2
5 10
2 1 2
( )
2
y y y y
y y y y y
y tm
y
x
x
y
y tm
− − − = ⇔ − = − +
⇔ − = − + − + ⇔ − = −
=
− =
=
⇔ ⇔ ⇒
=
− =
=
0,25
Vây hệ có hai nghiệm (x;y) = (2;1/2) và (x;y) = (10;5/2) 0,25
2
1
đK:
+
1tan
02sin
0cossin
02sin
x
x
xx
x
PT
xxx
xx
xx
x
xx
cossinsin
sincos
cos.2cos
sin
sincos
2
+
+
=
xxxxxx
x
xx
cossinsincossincos
sin
sincos
22
+=
0,25
IV
1
1
.Ta có :VT =
2 2 2
( ) ( )
a b c b c a
A B
b c c a a b b c c a a b
+ + + + + = +
+ + + + + +
0,25
[ ]
3
3
1 1 1 1
3 ( ) ( ) ( )
2
1 1 1 1 9
3 ( )( )( )3
2 2
3
2
A a b b c c a
a b b c c a
a b b c c a
a b b c c a
A
+ = + + + + + + +
+ + +
+ + + =
+ + +
0,25
2 2 2
2 2
1 ( ) ( )( )
1
1 .2
2
a b c
a b c a b b c c a
a b b c c a
B B
= + + + + + + + + +
+ + +
0,25
Từ đó tacó VT
3 1
2
2 2
VP + = =
Dấu đẳng thức xảy ra khi a=b=c=1/3
0,25
V.a 2
1
1
Ta có: AB =
2
, trung điểm M (
5 5
;
2 2
), pt (AB): x y 5 = 0
0,25
S
ABC
=
1
2
d(C, AB).AB =
3
2
d(C, AB)=
3
2
Gọi G(t;3t-8) là trọng tâm tam giác ABC thì d(G, AB)=
1
2
0,25
d(G, AB)=
(3 8) 5
2
t t
=
1
2
t = 1 hoặc t = 2
G(1; - 5) hoặc G(2; - 2)
0,25
Mà
3CM GM
=
uuuur uuuur
C = (-2; -10) hoặc C = (1; -1)
2
1
1
: 2 (1 ; 2 ;2 )
2
x t
ptts y t M t t t
z t
= −
∆ = − + ⇒ − − +
=
Ta cã:
2 2 2
28 12 48 48 0 2MA MB t t t+ = ⇔ − + = ⇔ =
Tõ ®ã suy ra : M (-1 ;0 ;4)
0,5
VI.a 1 1
VIb
Suy ra, phương trình chính tắc của đường thẳng MH là:
x 2 y 1 z
1 4 2
− −
= =
− −
Theo trªn cã
7 1 2
( ; ; )
3 3 3
H − −
mµ H lµ trung ®iÓm cña MM’ nªn to¹ ®é M’
8 5 4
( ; ; )
3 3 3
− −
0,25
ĐK: x>0 , y>0
(1) ⇔
3 3
2 log log
2 2 2 0
xy xy
− − =
0,5
⇔log
3
xy = 1 ⇔ xy = 3⇔y=
3
x
(2)⇔ log
4
(4x
2
+4y
2
) = log
4
(2x
2
+6xy) ⇔ x
2
+ 2y
2
= 9
0,25
Kết hợp (1), (2) ta được nghiệm của hệ: (
3
;
3
) hoặc (
6
;
6
2
)
0,25