CÁC KHÁI NIỆM CƠ BẢN TRONG TÀI
CHÍNH DOANH NGHIỆP
THỐNG KÊ KINH TẾ ỨNG DỤNG
1
2
Thống kê là gì?
Thống kê là tập hợp các nguyên lý và phương pháp liên quan
đến việc trích dẫn các thông tin quan trọng từ một tập dữ liệu
để giúp ra quyết định.
Dữ liệu là các quan sát thực từ các cuộc điều tra, thí nghiệm
hay khảo sát.
Ví dụ về dữ liệu: Mức tiêu xài hàng năm cho thực phẩm của các gia
đình Tp.HCM.
2 loại dữ liệu:
Số lượng (định lượng): là các con số thực. Ví dụ: thu nhập bình quân
gia đình tại Tp.HCM, lợi nhuận bình quân doanh nghiệp tại Gò vấp.
Thuộc tính (định tính): là các quan sát được phân loại. Ví dụ: giới tính
(nam, nữ), nghề nghiệp, tình trạng hôn nhân.
2
3
Dân số và mẫu
Dân số: là toàn bộ các quan sát hay đo lường của nghiên cứu.
Ví dụ: thu nhập năm 2012 của mỗi người dân Việt Nam
Mẫu: là tập hợp các quan sát được chọn lọc từ dân số. Ví dụ:
thu nhập năm 2012 của 100 người chọn ngẫu nhiên từ người
dân Việt Nam.
Tham số: là thuộc tính của dân số. Ví dụ: thu nhập bình quân
của người dân Việt Nam, tỉ lệ giày bị lỗi tại công ty sản xuất
giày.
Thống kê mẫu: là đo lường được mô tả của mẫu. Ví dụ: thu
nhập bình quân của 100 người chọn ngẫu nhiên từ người dân
Việt Nam, tỉ lệ giày bị lỗi trong 200 đôi giày chọn ngẫu nhiên
từ công ty giày.
3
4
Tại sao phải nghiên cứu mẫu?
Dân số thì lớn, không thể điều tra hết mọi thành viên của dân
số vì:
Giới hạn về thời gian
Giới hạn về chi phí
Tính chính xác
Không thực tế
Phân tích mẫu thì
Rẻ hơn
Nhanh hơn
Dễ xử lý
Đôi khi chính xác hơn
Vì vậy có thể rút ra kết luận về đặc tính của dân số dựa trên
thông tin của mẫu
4
5
Hai lĩnh vực cơ bản của thống kê
Thống kê mô tả
Liên quan đển cách tổ chức, tóm tắt, trình bày dữ liệu theo hình thức
tiện lợi nhất.
Ví dụ: tóm tắt thu nhập hàng năm của mẫu 100 người dân Việt Nam
X1, 3, 5, 15, 8,….20 (triệu)
Thu nhập trung bình mẫu =
Thông kê suy diễn
Là hệ thống phương pháp ước lượng và rút ra kết luận về đặc tính (hay
gọi là tham số) của một dân số dựa vào thông tin thu thập được từ
mẫu của dân số đó.
Ví dụ: ước lượng thu nhập trung bình của người dân Việt Nam dựa vào
mẫu 100 người dân lấy ngẫu nhiên từ người dân Việt Nam.
5
6
Phân tích dữ liệu
Tóm tắt dữ liệu
2 phương pháp để mô tả dữ liệu
Phương pháp mô tả bằng bảng và đồ thị
Phương pháp mô tả bằng con số
6
7
Phương pháp mô tả bằng bảng và đồ thị
Đồ thị dạng thanh
Đồ thị dạng bánh tròn
Bảng tần số, và đồ thị phân phối tần số
Biểu đồ thân và lá
Đồ thị dạng đường
7
8
Phương pháp mô tả bằng bảng và đồ thị
cho dữ liệu định tính
Đồ thị thanh
Đồ thị bánh tròn
Lựa chọn đồ thị thanh hay đồ thị bánh tròn?
Sử dụng Excel vẽ đồ thị
8
9
Phương pháp mô tả bằng bảng và đồ thị
cho dữ liệu định lượng
Với dữ liệu định lượng, phương pháp mô tả bằng
bảng và đồ thị thông dụng nhất là bảng tần số, đồ thị
phân phối tần số, biểu đồ thân và lá, đồ thị đường.
9
10
Bảng tần số và đồ thị phân phối tần số
Ví dụ: bảng sau ghi nhận lại số lượng khách hàng đến cửa hàng
quần áo trong suốt 25 ngày liên tiếp.
64 83 93 54 77
76 55 45 57 66
65 71 82 42 54
51 57 63 68 65
42 56 64 76 61
Hãy lập:
1. bảng tần số 2. bảng tần suất 3. bảng tần số tích luỹ
4. đồ thị phân phối tần số 5. đồ thị phân phối tần suất
6. đồ thị phân phối tần số tích luỹ
10
11
Bước 1 - Phân lớp dữ liệu.
Ước đoán số lớp cần chia K
Công thức Sturge: K =1+3.3lg N (N là tổng số quan sát)
Ước lượng độ rộng của một lớp d
Công thức: d = (giá trị lớn nhất – giá trị nhỏ nhất) / số lớp
Với ví dụ trên:
d = (93-42)/6 = 8.5
Để dễ tính toán, sử dụng d = 10, bắt đầu lớp đầu tiên là 40
40 ≤ X < 50; 50 ≤ X < 60;….
11
12
Bước 2 – Lập bảng đếm và tính tần số
Số lượng
Khách hàng
(1)
Đếm
(2)
Tần số
fi
(3)
Tần suất
pi
(4)
Tần số tích
luỹ
(5)
Tần suất
tích luỹ
(6)
40 ≤ X < 50 III 3
50 ≤ X < 60 IIII II 7
60 ≤ X < 70 IIII IIII 8
70 ≤ X < 80 IIII 4
80 ≤ X < 90 II 2
90≤X< 100 I 1
Tổng N = 25
12
13
Bước 3 – Tính tần số, tần suất, tần số tích
luỹ, tần suất tích luỹ
Tần số của lớp thứ i (fi):đươc tính từ phép đếm
Tần suất của lớp thứ I (pi) = tần số lớp i / số mẫu
Tần số tích luỹ: cộng dồn tần số trước đó
Tần suất tích luỹ: cộng dồn tần suất trước đó
13
14
Bước 4 – Vẽ đồ thị phân phối tần số
14
15
Bước 5 – Vẽ đồ thị phân phối tần suất
15
16
Bước 6 – Vẽ đồ thị phân phối tần số tích
luỹ
16
17
Một vài hình dáng của phân phối tần số
17
Phân ph i cân iố đố
Vd: trung bình s km / 1 lít x ng c a ô tô cùng lo iố ă ủ ạ
18
Một vài hình dáng của phân phối tần số
18
Phân ph i l ch ph iố ệ ả
Vd: phân ph i tài s n trong xã h iố ả ộ
19
Một vài hình dáng của phân phối tần số
19
Phân ph i l ch trái ố ệ
Vd: Tu i ch t t i n c Úcổ ế ạ ướ
20
Mô tả mối quan hệ giữa 2 biến
Sử dụng biểu đồ scatter
20
Gia đình Tổng chi xài hàng tháng Chi xài cho thực phẩm hàng tháng
1 600 160
2 400 110
3 540 150
4 360 90
5 500 130
6 720 200
7 450 120
8 680 180
21
Mô tả mối quan hệ giữa 2 biến
21
0 1 2 3 4 5 6 7 8 9
0
50
100
150
200
250
Tổng chi xài hàng tháng
Chi xài cho thực phẩm hàng tháng
22
Mô tả dữ liệu chuỗi thời gian
Biểu đồ đường
22
Năm Tỉ lệ thất nghiệp (%)
2000 15%
2001 14%
2002 17%
2003 15%
2004 13%
2005 10%
23
Mô tả dữ liệu chuỗi thời gian
23
2000.0 2001.0 2002.0 2003.0 2004.0 2005.0
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%
Tỉ lệ thất nghiệp (%)
Tỉ lệ thất nghiệp (%)
24
Phương pháp mô tả dữ liệu bằng con số
Đo lường độ tập trung của dữ liệu
Đo lường độ phân tán của dữ liệu
24
25
Đo lường độ tập trung của dữ liệu
3 giá trị thông dụng để đo độ tập trung của dữ liệu:
Trung bình
Trung vị
Yếu vị
25