Tải bản đầy đủ (.pdf) (5 trang)

THE SUMS OF SQUARE TECHNIQUE

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (65 KB, 5 trang )

Võ Quc Bá Cn Phm Th Hng
Copyright © Vo Quoc Ba Can 1
THE SUMS OF SQUARE TECHNIQUE
I. Theorem.
Consider the following inequality
422332
( )0
cyc cyc cyc cyc cyc
m a n a b p a b g ab m n p g a bc
+++−+++≥
∑∑∑∑∑
With
,,
abc
be real numbers.
Then this inequality holds when
22
0
3()
m
mmn p pgg
>


+≥++

.
Proof.
We rewrite the inequality as
422 222 3 2
32


()
0
cyc cyc cyc cyc cyc cyc
cyc cyc
m a ab m n ab abc p ab abc
g ab a bc
 
−++ −+ −
 
 

+ −≥


∑∑ ∑ ∑ ∑∑
∑∑
Note that
4 2 2 2 22
3 2 3 2 22
22 22 22
3 2 3 2 22
22
1
()
2
()
11
()( )()()( 2)
33
()

()
cyc cyc cyc
cyc cyc cyc cyc cyc
cyc cyc cyc
cyc cyc cyc cyc cyc
cy
a ab ab
ab abc bc abc bca b
bc a b ab bc ca a b a b ab ac bc
ab a bc ca ab c ca a b
caab
−=−
−=−= −
=− − + ++ − = − +−
−=−= −
=−
∑∑∑
∑∑∑∑∑
∑ ∑∑
∑∑∑∑∑
22 22
11
( ) ( ) ( )( 2)
33
c cyc cyc
ab bc ca a b a b ab bc ca
− ++ − =− − +−
∑ ∑∑
Then the inequality is equivalent to
222 22

222
1
( ) ( )[()(2)(2)]
23
()0
cyc cyc
cyc cyc
m
a b a b p g ab p g bc p g ca
m n a b a bc
− + − − − + ++

++ −≥


∑∑
∑∑
Moreover
2222
22
1
[()(2)(2)]
6()
cyc cyc cyc
a b a bc p g ab p g bc p g ca
p pgg
− = − − + ++
++
∑∑∑
The inequality becomes

Võ Quc Bá Cn Phm Th Hng
Copyright © Vo Quoc Ba Can 2
222 22
2
22
222
1
( ) ( )[()(2)(2)]
23
[( ) (2 ) (2)]0
6()
1
[3( )()(2)(2)]
18
cyc cyc
cyc
cyc
m
a b a b p g ab p g bc p g ca
mn
p g ab p g bc p g ca
p pgg
ma b p gab p gbc p gca
m
− + − − − + ++
+
+ −−+++≥
++
⇔ − +− − + ++
∑∑



22
2
22
3()
[()(2)(2)]0
18()
cyc
mmn p pgg
p g ab p g bc p g ca
mp pgg
+−−−
+ −−+++≥
++

From now, we can easily check that if
22
0
3()
m
mmn p pgg
>


+≥++

then the inequality is true.
Our theorem is proved. J
II. Application.

Example 1
. (Vasile Cirtoaje) Prove that
2222 333
( ) 3( ).
a b c ab bc ca
++ ≥ ++
Solution.
The inequality is equivalent to
4 223
20
cyc cyc cyc
a ab ab
+ −≥
∑∑∑
From this, we get
1,2, 3,0
mnpg
== =−=
, we have
22 22
10
3 ( ) 3 1 (1 2) ( 3) ( 3) 0 0 0
m
mmn p pgg
=>


+ − − − =⋅⋅ + −− −−⋅− =

Then using our theorem, the inequality is proved. J

Example 2
. (Võ Quc Bá Cn) Prove that
( )
444 333
3 1 ( ) 3( ).
a b c abca b c ab bc ca
+++ − ++≥ ++
Solution.
We have
1,0, 3,0
mnpg
===−=
and
( ) ( )
2
222
10
3( ) 31(10) 3 3000
m
mmn p pgg
=>



+ − − − = ⋅⋅ + −− −− ⋅ − =


Then the inequality is proved. J
Example 3
. (Phm Vn Thun) Prove that

444 333
7( ) 10( ) 0.
abc abbcca
+++ ++≥
Solution.
We will prove the stronger result, that is
4
43
17
7 10
27
cyc cyc cyc
aaba

+≥


∑∑∑
Võ Quc Bá Cn Phm Th Hng
Copyright © Vo Quoc Ba Can 3
4223 32
86 51 101 34 102 0
86
51
101
34
cyc cyc cyc cyc cyc
a a b a b ab a bc
m
n

p
g
⇔−+−−≥
=


=−



=


=−

∑∑ ∑∑∑
Moreover
22 22
860
3 ( ) 3 86 (86 51) 101 101 ( 34) ( 34) 1107 0
m
mmn p pgg
=>


+−−−=⋅⋅−− − ⋅−−− = >

Then the inequality is proved. J
Example 4
. (Vình Quý) Let

, , 0, 1.
a b c abc
>=
Prove that
2 22
111
3.
111aa bb cc
++≤
−+ −+ −+
Solution.
On Mathlinks inequality forum, I posted the following proof:
Lemma. If
, , 0, 1,
a b c abc
>=
then
222
111
1.
111aa bb cc
++≥
++ ++ ++
Proof. From the given condition
,,0,1
a b c abc
>=
, there exist
,,0
xyz

>
such that
2
2
2
.
yz
a
x
zx
b
y
xy
c
z

=



=



=


And
then, the inequality becomes
4

4 2 22
1
cyc
x
x xyz yz

++

By the Cauchy Schwarz Inequality, we get
2 22
2 22
4
4 2 22
4 2 22 4 22 2 4 22
1
()2
cyc cyc cyc
cyc
cyc cyc cyc cyc cyc cyc
x xx
x
x xyz yz
x xyz yz x yz xyz x yz
  
  
  
≥ = ≥=
++
+++++
∑ ∑∑


∑ ∑∑ ∑ ∑∑
Our lemma is proved.
Now, using our lemma with note that
222
222
111
,,0
,
111
1
abc
abc

>




⋅⋅=


we get
Võ Quc Bá Cn Phm Th Hng
Copyright © Vo Quoc Ba Can 4
422
42 42 42
22
22 22
1 2( 1)

124
111
( 1) ( 1) 1 1
44
( 1)( 1) 1 1
cyc cyc cyc
cyc cyc cyc
xxx
xx xx xx
xx xx
xx xx xx xx
++
≥⇔≤⇔≤
++ ++ ++
++ + −+
⇔ ≤⇔+≤
++ −+ −+ ++
∑∑∑
∑ ∑∑
Using our lemma again, we can get the result. J
Now, I will present another proof of mine based on this theorem
Since
, , 0, 1,
a b c abc
>=
there exists
,,0
xyz
>
such that ,,

yzx
abc
xyz
===
then our inequality
becomes
22 22
22 22 22 22
3 3 ( 2)
39433
cyc cyc cyc cyc
x x x xy
x xyy x xyy x xyy x xyy


≤⇔≤⇔−≥⇔≥

−+ −+ −+ −+

∑∑∑∑
By the Cauchy Schwarz Inequality, we get
2
2
2222
22
( 2)
( 2)( ) ( 2)
cyc cyc cyc
xy
xyxxyy xy

x xyy
  

− −+≥−
  
−+
  
∑∑∑
It suffices to show that
2
2 222
4 22 3 32
( 2) 3 ( 2)( )
10 39 25 16 8 0
cyc cyc
cyc cyc cyc cyc cyc
x y x yx xyy
x x y x y xy x yz

− ≥ − −+


⇔+ −−−≥
∑∑
∑∑ ∑ ∑∑
From this, we get
10, 39, 25, 16
mnpg
= = =−−
and

22 22
100
3 ( ) 3 10 (10 39) ( 25) ( 25) ( 16) ( 16) 189 0
m
mmn p pgg
=>


+ − − − = ⋅ ⋅ + −− −− ⋅− −− = >

Then using our theorem, the inequality is proved. J
III. Some problems for own study.
Problem 1
. (Vasile Cirtoaje) Prove that
444333 333
2( ).
a b c ab bc ca ab bc ca
+++++≥ ++
Problem 2
. (Phm Vn Thun, Võ Quc Bá Cn) Prove that
3334
8
( ) ( ) ( ) ( ).
27
aab bbc cca abc
+ + + + + ≥ ++
Problem 3
. (Phm Kim Hùng) Prove that
444 2 333
1

( ) 2( ).
3
a b c ab bc ca a b b c c a
+++ ++ ≥ + +
Võ Quc Bá Cn
Student
Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
E-mail:
Võ Quc Bá Cn Phm Th Hng
Copyright © Vo Quoc Ba Can 5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×