Tải bản đầy đủ (.doc) (80 trang)

TOÁN HỌC CỦA PISA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.14 MB, 80 trang )

Phần thứ tư
CÁC CÂU HỎI VỀ LĨNH VỰC TOÁN HỌC CỦA PISA
GIỚI THIỆU CHUNG VỀ LĨNH VỰC
TOÁN HỌC
1. Yêu cầu chung
Đánh giá năng lực phổ thông trong PISA
Năng lực phổ thông (literacy) là khái niệm quan trọng xác định nội dung
đánh giá của PISA, xuất phát từ sự quan tâm tới những điều mà học sinh, sau
giai đoạn giáo dục cơ bản, cần biết và có khả năng thực hiện được những điều
cần thiết chuẩn bị cho cuộc sống trong xã hội hiện đại.
Năng lực Toán học phổ thông (Mathematical literacy) là khả năng nhận
biết ý nghĩa, vai trò của kiến thức toán học trong cuộc sống; vận dụng và phát
triển tư duy toán học để giải quyết các vấn đề của thực tiễn, đáp ứng nhu cầu
đời sống hiện tại và tương lai một cách linh hoạt; là khả năng phân tích, suy
luận, lập luận, khái quát hóa, trao đổi thông tin hiệu quả thông qua việc đặt ra,
hình thành và giải quyết vấn đề toán học trong các tình huống, hoàn cảnh khác
nhau, trong đó chú trọng quy trình, kiến thức và hoạt động.
Năng lực Toán học phổ thông không đồng nhất với khả năng tiếp nhận nội
dung của chương trình toán trong nhà trường phổ thông truyền thống, mà điều
cần nhấn mạnh đó là kiến thức toán học được học, vận dụng và phát triển như
thế nào để tăng cường khả năng phân tích, suy luận, lập luận, khái quát hóa và
phát hiện được những tri thức toán học ẩn dấu bên trong các tình huống, các sự
kiện.
2. Khung đánh giá năng lực Toán học
PISA đề cập đến 3 cấp độ Năng lực Toán học phổ thông:
Cấp độ của năng lực Đặc điểm
Cấp độ 1
Ghi nhớ, tái hiện
- Nhớ lại các đối tượng, khái niệm, định nghĩa và tính chất
toán học
- Thực hiện được một cách làm quen thuộc


- Áp dụng một thuật toán tiêu chuẩn
Cấp độ 2
Kết nối, tích hợp
- Kết nối, tích hợp thông tin để giải quyết các vấn đề đơn
giản
- Tạo những kết nối trong các cách biểu đạt khác nhau
- Đọc và giải thích được các kí hiệu và ngôn ngữ hình thức
(toán học) và hiểu mối quan hệ của chúng với ngôn ngữ tự
nhiên
Cấp độ 3
Khái quát hóa, toán học
hóa
- Nhận biết nội dung toán học trong tình huống có vấn đề
phải giải quyết,
- Vận dụng kiến thức toán học để giải quyết các vấn đề
thực tiễn,
- Biết phân tích, tổng hợp, suy luận, lập luận, khái quát hóa
1
trong chứng minh toán học.
Khung đánh giá năng lực Toán học
Việc đánh giá theo PISA khác với đánh giá truyền thống, đòi hỏi không
chỉ chú ý đến nội dung kiến thức học sinh đã tiếp thu được, mà còn chú trọng
đánh giá những năng lực, quá trình hình thành các kĩ năng (processes skills)
cho học sinh. Vì vậy, khi xây dựng khung đánh giá của PISA đối với Toán học
cần chú ý đến 2 vấn đề:
Nội dung được đề cập khi xây dựng khung đánh giá:
- Thay đổi và quan hệ
+ Những dạng thay đổi cơ bản và có thể nhận thức được.
+ Áp dụng những dạng thay đổi vào thực tiễn.
+ Suy luận về các mối quan hệ: Các mối quan hệ có thể biểu diễn dưới

các dạng khác nhau (kí hiệu, đại số, đồ thị, bảng và hình học). Các biểu diễn
nhằm phục vụ các mục đích khác nhau và có các tính chất khác nhau. Việc
chuyển dịch giữa các biểu diễn thường liên quan đến tình huống và nhiệm vụ
cần giải quyết.
- Hình phẳng và hình khối
+ Hình phẳng là những kiểu hình có thể quan sát qua các đồ vật trong
thực tế đời sống như: nhà cửa, cầu cống, đồ pha lê, (con) sao biển, bóng nắng ...
+ Nhận biết hình khối theo các cách thể hiện khác nhau, dưới nhiều góc
độ và nhiều chiều, từ đó nhận biết những điểm tương đồng hoặc khác biệt khi
phân tích cấu trúc của hình. Liên hệ với hình ảnh các đồ vật có trong thực tế đời
sống.
- Đại lượng và ngẫu nhiên
Quá trình hình thành, phát triển các kỹ năng:
- Kĩ năng tư duy và lập luận toán học
- Kĩ năng giao tiếp toán học
- Kĩ năng mô hình hóa toán học
- Kĩ năng đặt và giải quyết vấn đề
- Kĩ năng biểu diễn
- Kĩ năng sử dụng kí hiệu, ngôn ngữ và phép toán hình thức
- Kĩ năng sử dụng phương tiện và công cụ.
Năng lực Toán học phổ thông của PISA được đánh giá qua các bài toán
(unit) bao gồm phần dẫn “stimulus material” (có thể trình bày dưới dạng chữ,
hình vẽ, hình ảnh, bảng, biểu đồ, đồ thị…) và sau đó là một số câu hỏi (item)
được kết hợp với phần dẫn này.
Đây là một điểm quan trọng trong cách xây dựng bài toán PISA. Nó cho
phép các câu hỏi đi sâu hơn (so với việc sử dụng các câu hỏi hoàn toàn riêng rẽ
- mỗi câu hỏi lại đặt trong một bối cảnh mới hoàn toàn). Điều này cũng cho
phép học sinh có thời gian suy nghĩ kĩ, sâu tài liệu và sau đó có thể được sử
dụng trong đánh giá ở những góc độ khác nhau. Nó cũng thuận lợi hơn trong
việc gắn với tình huống thực tế của cuộc sống.

2
Mô tả tóm tắt 6 trình độ của khung đánh giá năng lực toán học
Trình
độ
Điểm
tối
thiểu
Khả năng thực hiện của học sinh
6 669 Ở trình độ 6, học sinh biết cách khái niệm hóa, khái quát hóa và sử
dụng thông tin dựa vào việc các em tìm hiểu và mô phỏng những
tình huống phức tạp. Các em biết kết nối nhiều nguồn thông tin,
trình bày và diễn giải linh hoạt thông tin. Ở trình độ này, học sinh
có khả năng suy nghĩ và suy luận toán học cao cấp. Các em có khả
năng áp dụng nhận thức và hiểu biết việc am hiểu các ký hiệu, công
thức và mối quan hệ toán học để xây dựng nhiều phương pháp tiếp
cận và chiến lược mới trong việc giải quyết nhiều tình huống lạ.
5 607 Ở trình độ 5, học sinh biết phát triển và làm việc với các mô hình
tình huống phức tạp, xác định khó khăn và nêu phương án giải
quyết. Các em có thể chọn lựa, so sánh và đánh giá các chiến lược
phù hợp giải quyết vấn đề để xử lý nhiều vấn đề phức tạp liên quan
tới các mô hình này. Ở trình độ này, học sinh biết làm việc có kế
hoạch sử dụng suy nghĩ tư duy phát triển và kỹ năng suy luận tốt,
trình bày có sự liên kết phù hợp, các đặc điểm biểu trưng và chính
thức, có tư duy sâu sắc đối với những tình huống này. Các em biết
suy ngẫm về hành động, xây dựng thuyết trình và giải thích lý luận.
4 545 Ở trình độ 4, học sinh biết làm việc hiệu quả với các mô hình cụ thể
về những tình huống phức tạp cụ thể có thể liên quan tới khó khăn
hạn chế hoặc nêu lên giả định. Các em biết chọn lọc và tích hợp các
phần trình bày, gồm có trình bày ký hiệu, liên kết trực tiếp chúng
với các khía cạnh trong tình huống thực tế. Ở trình độ này, học sinh

biết sử dụng kỹ năng toàn diện và suy luận hợp lý, cùng với tư duy
theo bối cảnh. Các em biết xây dựng và giải thích cũng như biện
luận dựa vào sự diễn giải, lý luận và hành động của mình.
3 482 Ở trình độ 3, học sinh biết thực hành các phương pháp quy định rõ
ràng, gồm có việc yêu cầu quyết định tuần tự. Các em biết chọn lựa
và áp dụng nhiều kế hoạch giải quyết tình huống đơn giản. Ở trình
độ này, học sinh biết diễn giải và trình bày dựa vào nhiều nguồn
thông tin và lý lẽ của chính mình. Các em biết xây dựng các đoạn
thông tin ngắn báo cáo phần trình bày, kết quả và lý do.
2 420 Ở trình độ 2, học sinh biết diễn giải và nhận biết tình huống trong
bối cảnh mà không cần kết luận trực tiếp. Các em biết trích dẫn
thông tin liên quan từ một nguồn thông tin và chỉ sử dụng một cách
trình bày. Ở trình độ này, học sinh biết sử dụng các thuật toán cơ
bản, công thức, phương pháp, hoặc quy ước. Các em có khả năng
biện luận trực tiếp và giải thích ý nghĩa kết quả.
1 358 Ở trình độ 1, học sinh biết trả lời câu hỏi về bối cảnh quen thuộc
trong đó có các thông tin liên quan và câu hỏi được nêu rõ. Các em
3
có khả năng xác định thông tin và thực hiện các thủ tục thường lệ
theo hướng dẫn trực tiếp trong các tình huống cụ thể. Các em biết
thực hiện hành động cụ thể theo những tác động nhất định.
II. CÁC CÂU HỎI VỀ LĨNH VỰC TOÁN HỌC
1. Tổng quan về các dạng câu hỏi, bài toán
Phần này giới thiệu các hình thức câu hỏi PISA và các bài toán đơn giản
minh họa, đánh giá năng lực học sinh ở cấp độ thấp.
Các hình thức câu hỏi:
- Câu hỏi trắc nghiệm khách quan nhiều lựa chọn (Multiple-choice) đơn
giản hoặc phức tạp;
- Câu hỏi đóng đòi hỏi trả lời (dựa trên những trả lời có sẵn) (close –
constructed response question);

- Câu hỏi mở đòi hỏi trả lời ngắn (short response question); Câu hỏi mở đòi
hỏi trả lời dài (open – constructed response question).
1.1 Câu hỏi trắc nghiệm khách quan nhiều lựa chọn
Bài 1: NHỮNG CHIẾC KẸO MÀU
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: NHỮNG CHIẾC KẸO MÀU M01Q01- 0 1 9
Mẹ của Robert cho phép cậu bé chọn một chiếc kẹo trong một túi. Cậu bé
không nhìn thấy những chiếc kẹo. Số lượng kẹo của mỗi màu, nằm trong túi
được biểu diễn trong biểu đồ sau:
Khả năng để chọn được một chiếc kẹo màu đỏ của Robert là bao nhiêu?
4
10%
20%
25%
50%
NHỮNG CHIẾC KẸO MÀU: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: B. 20%
Không tính điểm
Mã 0: Câu trả lời khác
Mã 9: Không trả lời.
Bài 2: HỘI CHỢ XUÂN
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: HỘI CHỢ XUÂN M02Q01- 0 1 9
Ở hội chợ xuân, một gian hàng tổ chức trò chơi gồm có một vòng quay với mũi
tên. Nếu mũi tên dừng ở một số chẵn, người chơi sẽ được phép chọn một viên
bi đá trong chiếc túi. Trong hình dưới đây là vòng quay mũi tên và những viên
bi trong túi

Người ta sẽ trao giải thưởng khi người chơi nhặt được một viên bi đá màu đen.
Sue chơi trò chơi một lần.
Khả năng để Sue có được giải thưởng là bao nhiêu?
Không thể nào.
Không chắc lắm.
Chắc là khoảng 50%.
Rất có khả năng.
Chắc chắn.
HỘI CHỢ XUÂN: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: B. Không chắc lắm
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 3: HÌNH TAM GIÁC
5
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: HÌNH TAM GIÁC M03Q01 – 019
Khoanh vào hình vẽ tương ứng với mô tả sau đây: PQR là tam giác vuông tại
R. Đoạn RQ ngắn hơn đoạn PR. M là trung điểm đoạn PQ và N là trung điểm
của đoạn QR. S là một điểm ở trong tam giác. Đoạn MN dài hơn MS.
HÌNH TAM GIÁC: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: Câu trả lời đúng: D.
Nêu ví dụ về những câu trả lời có thể được nhận mã 1. [Ghi thêm giải thích đặt
trong ngoặc vuông ở phông chữ italic, nếu cần thiết.]
Không tính điểm
Mã 0: Câu trả lời khác
Mã 9: Không trả lời.

6
1.2 Câu hỏi trắc nghiệm khách quan nhiều lựa chọn phức hợp
bài 4: NHỮNG KHỐI LẬP PHƯƠNG ĐÁNH SỐ
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: NHỮNG KHỐI LẬP PHƯƠNG ĐÁNH SỐ M04Q01 - 0 1 9
Bên phải là bức ảnh của hai con súc sắc.
Súc sắc là những khối hình lập phương có
đánh số theo quy luật sau:Tổng số chấm ở
hai mặt đối diện nhau bằng 7
Bạn có thể tự mình làm những khối hình lập phương đánh số bằng cách cắt, gấp
và dán những miếng bìa. Có thể làm theo rất nhiều cách. Trong bảng sau đây có
4 miếng bìa cắt có chấm ở các mặt có thể được dùng để làm thành khối lập
phương.
Hình nào có thể gấp lại để tạo thành một hình lập phương tuân theo quy luật
tổng hai mặt đối diện bằng 7? Đối với mỗi hình, khoanh tròn “Có” hoặc
“Không” trong bảng dưới đây
Hình
Có tuân theo quy luật tổng hai mặt
đối diện bằng 7 không?
I Có/Không
II Có/Không
III Có/Không
IV Có/Không
NHỮNG KHỐI LẬP PHƯƠNG ĐÁNH SỐ: HƯỚNG DẪN CHẤM ĐIỂM
CÂU HỎI 1
Mức đầy đủ
Mã 1: Theo thứ tự: Không, Có, Có, Không
Không tính điểm
Mã 0: Các câu trả lời khác

Mã 9: Không trả lời.
bài 5: NgƯỜI THỢ MỘC
cÂU HỎI 1: NGƯỜI THỢ MỘC M05Q01 - 0 1 2 9
7
Người thợ mộc có 32m gỗ làm nhà, muốn làm một hàng rào xung quanh một
khu vườn. Ông đang cân nhắc giữa các thiết kế khu vườn như các hình vẽ dưới
đây.
Hãy khoanh tròn “Có” hoặc “Không” ứng với mỗi thiết kế hàng rào có thể
được dựng lên từ 32m gỗ xây nhà.
Thiết kế Phương án đúng
Thiết kế A Có / Không
Thiết kế B Có / Không
Thiết kế C Có / Không
Thiết kế D Có / Không

NGƯỜI THỢ MỘC: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 2: Trả lời đúng theo thứ tự: Có; Không; Có; Có
Mức không đầy đủ
Mã 1: Có 3 câu trả lời đúng.
Không tính điểm
Mã 0: Có ít hơn 3 câu trả lời đúng.
Mã 9: Không trả lời.
1.3 Câu hỏi yêu cầu trả lời ngắn
bài 6: BÀI KIỂM TRA KHOA HỌC
Câu hỏi 1: BÀI KIỂM TRA KHOA HỌC M06Q01 - 0 1 9
8
Trong trường của Mei Lin, cô giáo môn Khoa học giao cho học sinh các bài
kiểm tra theo thang điểm 100. Điểm trung bình bốn bài kiểm tra khoa học đầu
tiên của Mei Lin là 60, bài kiểm tra khoa học thứ năm của em là 80 điểm.

Điểm trung bình của Mei Lin sau năm bài kiểm tra là bao nhiêu?
Điểm trung bình:...................................................
BÀI KIỂM TRA KHOA HỌC: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 64
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 7: CẦU THANG
Biểu đồ dưới đây minh họa một cầu thang gồm 14 bậc với tổng chiều cao các
bậc là 252 cm:

Câu hỏi 1: CẦU THANG
M07Q01 – 019
Chiều cao của mỗi bậc cầu
thang là bao nhiêu?
Chiều cao: .................... cm.
CẦU THANG: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 18
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 8: GIÁ SÁCH
Để làm được một giá sách thì người thợ mộc cần các bộ phận sau:
4 tấm gỗ dài,
6 tấm gỗ ngắn,
12 cái kẹp nhỏ,
2 cái kẹp lớn và
14 ốc vít.


9
Tổng chiều cao 252 cm
Tổng chiều sâu 400 cm
Người thợ mộc có 26 tấm gỗ dài, 33 tấm gỗ ngắn, 200 cái kẹp nhỏ, 20 cái kẹp
lớn và 510 ốc vít.
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: GIÁ SÁCH M08Q01 – 019
Người thợ mộc có thể làm được bao nhiêu cái giá sách?
Đáp số: .......................giá sách
GIÁ SÁCH: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 5
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 9: GIẦY DÀNH CHO TRẺ EM
Bảng sau đưa ra các loại kích cỡ giầy ở Zedland phù hợp với những độ dài bàn
chân khác nhau.
10
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: GIẦY DÀNH CHO TRẺ EM M09Q01 - 0 1 9
Bàn chân của Marina dài 163 mm. Hãy sử dụng thông tin trong bảng để xác định
Marina có thể thử được cỡ giầy nào của Zedland.
Đáp án:.............................................................
GIẦY DÀNH CHO TRẺ EM: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 26

Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 10: LỰA CHỌN
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: LỰA CHỌN M10Q01- 0 1 9
Trong một cửa hàng bánh pizza, bạn có thể chọn mua một chiếc pizza truyền
thống với hai lớp: pho mát và cà chua. Bạn cũng có thể gọi pizza theo lựa chọn
của mình với các lớp thêm. Có thể chọn từ bốn lớp thêm sau: ô-liu, giăm bông,
nấm và xúc xích.
Giang muốn đặt một chiếc bánh pizza với hai lớp thêm khác nhau.
Có bao nhiêu lựa chọn kết hợp mà Giang có thể đưa ra?
Đáp án:............................................................................... kết hợp
LỰA CHỌN: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 6.
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bai 11: TRANG TRẠI
Dưới đây là ảnh chụp và mô hình toán học của một trang trại với mái nhà có hình
dạng của một kim tự tháp trong đó các kích thước được ghi trên hình vẽ.
11
Sàn tầng gác mái ABCD là một hình vuông, còn hình khối EFGHKLMN là hình
hộp chữ nhật, trong đó E, F, G, H là trung điểm của AT, BT, CT và DT. Các cạnh
bên của kim tự tháp đều có chiều dài là 12m.
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: TRANG TRẠI M11Q01 – 019

Tính diện tích sàn tầng gác mái ABCD?
Diện tích sàn tầng gác mái ABCD = ………….. m2.
TRANG TRẠI: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: Câu trả lời đúng: 144 m2
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
Câu hỏi 2: TRANG TRẠI M11Q02 – 019
Tính độ dài cạnh EF ?
Độ dài cạnh EF là : EF = ……….m.
TRANG TRẠI: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 2
MỤC ĐÍCH CÂU HỎI:
12
Học sinh biết kết nối mô hình thực tế với mô hình toán học; nhận biết một hình
tam giác trong hình biểu diễn ba chiều; biết lựa chọn thông tin thích hợp về độ
dài tương ứng và từ đó giải bài toán.
Mức đầy đủ
Mã 1: Câu trả lời đúng: 6 m
Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
1.4 Câu hỏi yêu cầu trả lời dài

bài 12: THANH TOÁN THEO DIỆN TÍCH
Mọi người sống trong một khu căn hộ quyết định mua cả khu này. Họ sẽ cùng
nhau thanh toán theo cách mỗi người sẽ trả phần tiền tỉ lệ thuận với diên tích căn
hộ mà họ ở.
Câu hỏi 1: THANH TOÁN THEO DIỆN TÍCH M12Q01- 0 1 9
Đối với mỗi nhận định sau, khoanh tròn Đúng/Không đúng.

Nhận định
Đúng / Không
đúng
Một người sống trong căn hộ rộng nhất sẽ phải trả
nhiều tiền hơn so với người sống trong căn hộ nhỏ
nhất.
Đúng / Không
đúng
Nếu ta biết diện tích của hai căn hộ và giá của một
trong hai căn hộ này thì có thể tính toán được giá cả
của căn hộ thứ hai
Đúng / Không
đúng
Nếu ta biết giá của khu nhà đó và biết mỗi người chủ
sở hữu trả bao nhiêu tiền, thì có thể tính toán được
tổng diện tích của tất cả các căn hộ.
Đúng / Không
đúng
Nếu tổng giá trị của khu nhà giảm xuống 10%, thì
mỗi người chủ sở hữu cũng sẽ phải trả ít hơn 10%.
Đúng / Không
đúng
THANH TOÁN THEO DIỆN TÍCH: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: Theo đúng thứ tự: Không đúng, Đúng, Không đúng, Đúng.
Không tính điểm
Mã 0: Đáp án khác.
Mã 9: Không trả lời.
Câu hỏi 2: THANH TOÁN THEO DIỆN TÍCH M12Q02 –
0129

Có ba căn hộ nằm trong khu nhà. Căn hộ 1 là căn hộ rộng nhất, có tổng diện tích
là 95m2. Căn hộ 2 và 3 có diện tích lần lượt là 85m2 và 70m2. Giá bán của khu
nhà là 300000 zed.
13
Chủ nhân của căn hộ 2 phải trả bao nhiêu tiền? Em hãy trình bày lời giải của
mình.
THANH TOÁN THEO DIỆN TÍCH: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 2
Mức đầy đủ
Mã 2: 102000 zed, có thể kèm hoặc không kèm phần tính toán, và không yêu cầu
có kèm đơn vị tính.
Mỗi mét vuông căn hộ có giá
1200
250
300000
=
zed;
Vậy giá của Căn hộ 2 là 1200 zed x 85 m2 = 102000 zed.
Căn hộ 2: 102000 zed.
zedCH 102000300000
250
85
:2

Mức không đầy đủ
Mã 1: Phương pháp đúng, nhưng mắc lỗi nhỏ về mặt tính toán
zedCH 102000300000
250
85
:2


Không tính điểm
Mã 0: Đáp án khác.
Mã 9: Không trả lời
bài 13: HÌNH LẬP PHƯƠNG
Câu hỏi 1: HÌNH LẬP PHƯƠNG M13Q01 - 0 1 9
Trong hình dưới đây, bạn quan sát thấy 6con súc sắc, đã đánh dấu từ (a) đến (f).
Có một quy luật chung cho tất cả các con súc sắc:
Tổng số chấm ở hai mặt đối nhau của mỗi con súc sắc luôn là 7.
Điền vào mỗi ô dưới đây số chấm ở mặt dưới của mỗi con súc sắc được đánh dấu
tương ứng trong hình vẽ
14
HÌNH LẬP PHƯƠNG: HƯỚNG DẪN CHẤM ĐIỂM CÂU 1
Mức đầy đủ
Mã 1: Dòng trên (1 5 4), dòng dưới (2 6 5). Câu hỏi tương tự được ghi bằng số
chấm cũng được chấp nhận.
Mã 0: Các câu trả lời khác.
Mã 9: Không trả lời
bài 14: ĐỊA Y
Kết quả của sự nóng dần lên của trái đất là băng tan trên các dòng sông bị đóng
băng. Mười hai năm sau khi băng tan, những thực vật nhỏ, được gọi là Địa y, bắt
đầu phát triển trên đá.
Mỗi nhóm Địa y phát triển trên một khoảng đất hình tròn.
Mối quan hệ giữa đường kính d, tính bằng mi-li-mét (mm), của hình tròn và tuổi t
của Địa y có thể biểu diễn tương đối theo công thức:
d = 7,0 x với t 12
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: ĐỊA Y M14Q01 – 0129
Em hãy sử dụng công thức trên để tính đường kính của một nhóm Địa y, sau 16
năm khi băng tan.

Em hãy trình bày lời giải của mình.
ĐỊA Y: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
MỤC ĐÍCH CÂU HỎI: Khả năng áp dụng công thức của học sinh
Mức đầy đủ
Mã 2: 14mm (không bắt buộc có đơn vị). Tính đúng kết quả, có thể không trình
bày lời giải vẫn cho Mã 2.
Mức không đầy đủ
Mã 1: Một phần câu trả lời đúng, ví dụ:
Thay các giá trị đúng vào công thức nhưng kết quả không đúng hoặc thiếu chưa
kịp viết kết quả.
Câu trả lời chưa hoàn chỉnh (ví dụ: 7 )
Không tính điểm
Mã 0: Câu trả lời khác.
15
Mã 9: Không trả lời.
Câu hỏi 2: ĐỊA Y M14Q02 – 0129
Ann đo đường kính của một số nhóm địa y và thấy có số đo là 35 mm.
Đối với kết quả trên thì băng đã tan cách đó bao nhiêu năm?
Trình bày tính toán của em.
ĐỊA Y: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 2
MỤC ĐÍCH CÂU HỎI: Khả năng áp dụng công thức của học sinh
Mức đầy đủ
Mã 2: 37 năm (không bắt buộc có đơn vị). Tính đúng kết quả, có thể không trình
bày lời giải vẫn cho Mã 2.
Mức không đầy đủ
Mã 1: Thay các giá trị đúng vào công thức nhưng kết quả không đúng hoặc thiếu
chưa kịp viết kết quả.
HOẶC
36 năm hoặc 38 năm. (Học sinh làm ra đáp án như trên có thể do sử dụng cách
thử hoặc phương pháp sai)

Không tính điểm
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.
bài 15: TỈ LỆ TRAO ĐỔI
Mei-Ling đến từ Sing-ga-po, cô ấy dự định đến Nam Phi trong vòng 3 tháng theo
diện học sinh trao đổi. Cô ấy cần đổi tiền từ đô-la Sing-ga-po (đồng SGD) sang
đồng ran Nam Phi (đồng ZAR).
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: TỈ LỆ TRAO ĐỔI M15Q01 – 019
Mei-Ling thấy rằng tỉ lệ trao đổi giữa đô-la Sing-ga-po và đồng ran Nam Phi là:
1 SGD = 4,2 ZAR.
Mei-Ling đổi 3000 đô-la Sing-ga-po ra đồng ran Nam Phi theo tỉ lệ trên.
Số tiền theo đồng ran Nam Phi mà Mei-Ling nhận được là bao nhiêu?
Đáp án:......................................................ZAR
TỈ LỆ TRAO ĐỔI: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: 12600 ZAR (không yêu cầu có đơn vị).
Không tính điểm
Mã 0: Các câu trả lời khác
Mã 9: Không trả lời.
Câu hỏi 2: TỈ LỆ TRAO ĐỔI M15Q02 – 019
Khi trở lại Sing-ga-po sau 3 tháng, Mei-Ling còn lại 3900 ZAR. Cô ấy lại đổi
ngược lại về đô-la Sing-ga-po, lưu ý rằng tỉ lệ trao đổi hiện thời đã thay đổi.
16
1 SGD = 4,0 ZAR
Mei-Lin sẽ nhận được bao nhiêu đô-la Sing-ga-po theo tỉ lệ này?
Đáp án:..................................................SGD
TỈ LỆ TRAO ĐỔI: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 2
Mức đầy đủ

Mã 1: 975 SGD (không yêu cầu có đơn vị).
Không tính điểm
Mã 0: Các câu trả lời khác
Mã 9: Không trả lời.
Câu hỏi 3: TỈ LỆ TRAO ĐỔI M15Q03 - 01 02 11 99
Trong 3 tháng, tỉ lệ trao đổi đã thay đổi từ 4,2 thành 4,0 ZAR tương đương với 1
đồng SGD.
Với tỉ lệ 4,0 ZAR thay vì 4,2 ZAR, thì khi đổi từ đồng ran Nam Phi sang đô-la
Sing-ga-po, Mei-Ling có lợi không? Hãy giải thích cho câu trả lời của em.
TỈ LỆ TRAO ĐỔI: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 3
Mức đầy đủ
Mã 11: “Có”, kèm theo giải thích hợp lý,
Có, với tỉ lệ trao đổi thấp hơn (cho 1 SGD), Mei-Ling sẽ nhận được nhiều đô-la
Sing-ga-po hơn cho số đồng ran Nam Phi của mình.
Có, 4,2 ZAR cho 1 đô-la thì sẽ được kết quả chỉ là 929 ZAR (Lưu ý: Học sinh có
thể nhầm đơn vị từ SGD thành ZAR nhưng rõ ràng là tính toán đúng, vì vậy có
thể bỏ qua lỗi này).
Có, bởi vỉ cô ấy đã nhận được 4,2 ZAR cho 1 đồng SGD của mình, còn bây giờ
thì chỉ cần trả 4,0 ZAR để có được 1 đồng SGD.
Có, bởi vì sẽ giảm được 0,2 ZAR cho mỗi đồng SGD.
Có, bởi vì nếu chia cho 4,2 thì kết quả sẽ nhỏ hơn là chia cho 4.
Có, sẽ có lợi cho cô ấy vì nếu nó không giảm xuống thì cô ấy có thể sẽ nhận được
ít hơn 50 đô-la.
Không tính điểm
Mã 01: “Có”, nhưng không kèm theo giải thích hoặc giải thích không hợp
lý.
Có, một tỉ lệ trao đổi thấp hơn thì tốt hơn
Có, bởi vì theo lợi ích của Mei-Ling thì nêu tỉ lệ trao đổi với đồng ZAR giảm đi
thì cô ấy có nhiều tiền để đổi sang SGD hơn.
Có, nó có lợi cho Mei-Ling.

Mã 02: Các câu trả lời khác
Mã 99: Không trả lời.
2. Các ví dụ cụ thể, tiêu biểu
Phần này giới thiệu một số dạng toán tương đối khác lạ về nội dung, hình
thức, yêu cầu đối với lời giải và đánh giá năng lực Toán học của học sinh ở mức
cao; do vậy, một số bài sẽ có phần "Gợi ý và lưu ý".
17
2.1 Tính gần đúng

bài 16: HIÊN NHÀ
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: HIÊN NHÀ M16Q01 – 0129
Nick muốn lát hiên phía trước nhà. Hiên nhà hình chữ nhật, dài 5,15 mét và rộng
3,00 mét. Anh ấy cần 81 viên gạch cho mỗi mét vuông.
Tính số viên gạch Nick cần để lát toàn bộ hiên nhà.
HIÊN NHÀ: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 2: 1252 (không bắt buộc có đơn vị).
Mức không đầy đủ
Mã 1: 1251 (không bắt buộc có đơn vị).
HOẶC
1215 viên gạch cho 5m x 3m.
(Mã này sử dụng cho những học sinh có thể tính toán được số lượng viên gạch lát
cho số nguyên mét vuông).
HOẶC
Lỗi tính diện tích, nhưng nhân đúng với 81.
HOẶC
Tính tròn diện tích và nhân đúng với 81.
Không tính điểm

Mã 0: Câu trả lời khác
Mã 9: Không trả lời.
Ví dụ về câu trả lời
Mã 2: 5,15 x 3 = 15,45; 15,45 x 81 = 1251,45; số viên gạch là 1252
Mã 1: Việc làm tròn thiếu thực tế:
5,15 x 3 = 15,45; 15,45 x 81 = 1251,45; số viên gạch là 1251
5,15 x 3 = 15,45; 15 x 81 = 1215
5 x 3 = 15; 81 x 15 = 1215
Học sinh làm đúng được một phần
5,15 x 3.0 = 15,45 m2; 15,45 x 81 = 1351,45 viên gạch.
5,15 x 3.0 = 15,5 m2; 15,5 x 81 = 1255,5 viên gạch.
bài 17: BUỔI BIỂU DIỄN NHẠC ROCK
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: BUỔI BIỂU DIỄN NHẠC ROCK M17Q01 - 0 1 9
18
Sân khấu của một buổi biểu diễn nhạc Rock rộng 100m; 50m trước sân khấu
dành cho khán giả. Buổi biểu diễn đã bán hết vé và sân tràn ngập người hâm mộ
đang đứng chờ.
Số nào ước tính đúng nhất số lượng người dự buổi biểu diễn này?
2000
5000
20000
50000
100000
GỢI ý và lưu ý: Ước tính diện tích dành cho khán giả khoảng 5 000 m2.
Nếu chọn B, mỗi m2 chỉ có một người, không hợp lý vì sân tràn ngập khán giả;
do vậy A cũng không phù hợp.
Nếu chọn D, mỗi m2 sẽ có 10 người, không hợp lý vì quá chật; do vậy E cũng
không phù hợp

BUỔI BIỂU DIỄN NHẠC ROCK: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 1: C. 20000
Không tính điểm
Mã 0: Các câu trả lời khác
Mã 9: Không trả lời.
bài 18: CHUYẾN BAY TRONG KHÔNG GIAN
Trạm không gian MIR đã duy trì một quỹ đạo trong suốt 15 năm và bay quanh
Trái đất được 86500 lần trong thời gian nó nằm trong vũ trụ.
Lần dừng lại lâu nhất của một nhà du hành vũ trụ ở tại MIR là khoảng 680 ngày.
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: CHUYẾN BAY TRONG KHÔNG GIAN M18Q01 0 1 9
Nhà du hành bay quanh trái đất khoảng bao nhiêu lần?
110
1100
11000
110000
Gợi ý và lưu ý:
+ 15 năm có khoảng 5478 ngày, mỗi ngày Mir bay quanh trái đất khoảng 16 lần
+ Từ đó tính được khoảng số lần Nhà du hành vũ trụ bay quanh trái đất trong 680
ngày
CHUYẾN BAY TRONG KHÔNG GIAN: HƯỚNG DẪN CHẤM ĐIỂM CÂU
HỎI 1
Mức đầy đủ
Mã 1: C. 11000
Không tính điểm
19
Mã 0: Câu trả lời khác.
Mã 9: Không trả lời.

bài 19: DIỆN TÍCH LỤC ĐỊA
Dưới đây là bản đồ Châu Nam Cực.
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: DIỆN TÍCH LỤC ĐỊA M19Q01 – 0129
Ước tính diện tích của châu Nam Cực bằng cách sử dụng tỉ lệ bản đồ. Trình bày
cách tính và giải thích cách ước tính của em.
Gợi ý và lưu ý: Ước lượng diện tích của một hình “không tiêu chuẩn“ bằng cách
chọn ra một hoặc nhiều hình “tiêu chuẩn” có thể tính được diện tích (hình tròn,
hình chữ nhật hoặc hình tam giác) có thể “phủ” được toàn bộ hình đã cho; sau đó
tính diện tích của những hình này để từ đó suy ra diện tích hình cần phải tìm.
DIỆN TÍCH LỤC ĐỊA: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 2: + Mã 21. So sánh và ước lượng diện tích hình đã cho với diện tích một
hình vuông hoặc hình chữ nhật. Diện tích hình đã cho ở vào khoảng giữa
12000000 km2 và 18000000 km2
+ Mã 22. So sánh và ước lượng diện tích hình đã cho với diện tích một hình tròn.
Diện tích hình đã cho ở vào khoảng giữa 12000000 km2 và 18000000 km2
20
+ Mã 23. So sánh và ước lượng diện tích hình đã cho bằng cách cộng diện tích
một vài hình “tiêu chuẩn” cũng có kết quả như trên.
+ Mã 24. So sánh và ước lượng diện tích hình đã cho bằng các phương pháp
khác.
Mức không đầy đủ
Mã 1: + Mã 11. So sánh và ước lượng diện tích hình đã cho với diện tích một
hình vuông hoặc hình chữ nhật. Phương pháp đúng nhưng kết quả không chính
xác hoặc không đầy đủ.
+ Mã 12. So sánh và ước lượng diện tích hình đã cho với diện tích một hình tròn.
Phương pháp đúng nhưng kết quả không chính xác hoặc không đầy đủ.
+ Mã 13. So sánh và ước lượng diện tích hình đã cho bằng cách cộng diện tích

một vài hình “tiêu chuẩn”. Phương pháp đúng nhưng kết quả không chính xác
hoặc không đầy đủ.
+ Mã 14. So sánh và ước lượng diện tích hình đã cho bằng các phương pháp
khác. Phương pháp đúng nhưng kết quả không chính xác hoặc không đầy đủ.
Không tính điểm
Mã 01: Nhầm lẫn diện tích với chu vi.
Mã 02: Các trường hợp sai khác
Mã 9: Không trả lời.
bài 20: CÁC KIỂU HÌNH DẠNG
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: CÁC KIỂU HÌNH DẠNG M20Q01 – 0129
Trong các hình trên, hình nào có diện tích lớn nhất? Hãy giải thích lựa chọn của
em.
CÁC KIỂU HÌNH DẠNG: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
MỤC ĐÍCH CÂU HỎI: So sánh diện tích của các hình không đều nhau
Mức đầy đủ:
21
Mã 2: Hình B, đưa ra lý giải hợp lý
Hình này có diện tích lớn nhất vì các hình còn lại sẽ nằm vừa trong lòng hình đó.
Mức không đầy đủ:
Mã 1: Hình B nhưng không đưa ra được lý giải hợp lý
Không tính điểm
Mã 0: Câu trả lời khác
Mã 9: Không trả lời.
Ví dụ về đáp án
Mã 2:
B, hình B không có phần lùi vào trong để giảm diện tích. Trong khi A và C thì có
khoảng trống.
B, bởi vì đó là một hình tròn đầy đủ, còn các hình khác là dạng hình tròn nhưng

có phần lồi lõm.
B, bởi vì nó không có phần diện tích mở.
Mã 1:
B, bởi vì nó có diện tích bề mặt lớn nhất.
Hình tròn. Khá là rõ ràng.
B, bởi vì nó lớn hơn.
Mã 0: Tất cả đều như nhau
Câu hỏi 2: CÁC KIỂU HÌNH DẠNG M20Q02 – 0 1 2 9
Đưa ra một phương thức để ước tính diễn tích của hình C.
CÁC KIỂU HÌNH DẠNG: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 2
MỤC ĐÍCH CÂU HỎI: Đánh giá tư duy học sinh qua việc đưa ra cách đo diện
tích của một hình không “tiêu chuẩn”.
Mức đầy đủ:
Mã 2: Các phương pháp được tính điểm:
Vẽ một hình lưới vuông bao lấy hình vẽ, sau đó đếm số ô mà phần hình chiếm
diện tích hơn một nửa ô.
Tách các phần thừa của hình ra, và sắp xếp lại các mảnh để vừa vào một ô sau đó
đo các cạnh hình vuông.
Xây dựng một hình trụ đứng, đáy bằng hình C và đổ đầy nước. Đo lượng nước
được sử dụng và độ sâu nước có trong hình. Suy ra được diện tích từ các thông
tin trên.
Mức không đầy đủ:
Mã 1: Câu trả lời chưa đẩy đủ:
Học sinh đưa ra phương hướng tìm diện tích của hình tròn và trừ đi diện tích
những phần lõm. Tuy nhiên, học sinh không nói tới cách tính diện tích của những
phần này.
22
Bớt đi phần diện tích của mỗi phần lõm vào của hình.
Không tính điểm
Mã 0: Câu trả lời khác

Mã 9: Không trả lời.
LƯU Ý:
Điểm quan trọng của câu hỏi này là cách học sinh đưa ra được PHƯƠNG
PHÁP để xác định diện tích. Các mã (2, 1, 0) là thang đo mức độ học sinh mô tả
các PHƯƠNG PHÁP.
Ví dụ các đáp án
Mã 2:
Nên sử dụng nhiều hình tròn, hình vuông và những hình cơ bản khác để lấp kín
khối hình sao cho không còn khoảng trống nào cả. Tính toán diện tích các hình
đó và cộng lại.
Vẽ lại hình vào một tờ giấy hình đồ thị/sơ đồ khác và đếm tất cả số hình vuông
mà nó chiếm.
Vẽ và tính kích cỡ của các ô hình tương đương. Hình hộp càng nhỏ thì tính chính
xác càng cao (Ở đây đề cập tới mô tả vắn tắt của học sinh và không quá chặt chẽ
đối với kỹ năng trình bày).
Dựng hình trụ và lấp đầy hình bằng 1cm nước, sau đó tính lượng nước cần thiết
để làm đầy hình này.
Mã 1:
Tính diện tích của B, sau đó tính diện tích của những phần lõm vào, lấy diện tích
hình B trừ đi diện tích những hình này.
Trừ các hình thừa khỏi hình tròn.
Cộng thêm diện tích của từng phần lồi ra ví dụ,
Sử dụng một hình như vậy và đổ chất lỏng vào.
Sử dụng biểu đồ/đồ thị.
Một nửa diện tích hình B.
Xác định được diện tích của mỗi phần lồi theo mm2 và nhân lên 8 lần.
Mã 0:
Dùng một sợi dây và đo đường kính của hình. Kéo dài sợi dây thành hình tròn và
đo diện tích của hình tròn sử dụng công thức π.r2.
(Phương pháp không đúng)

Câu hỏi 3: CÁC KIỂU HÌNH DẠNG M20Q03 - 0 1 9
Trình bày phương pháp tính chu vi hình C.
CÁC KIỂU HÌNH DẠNG: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 3
23
MỤC ĐÍCH CÂU HỎI: Đánh giá tư duy học sinh qua việc đề xuất phương pháp
đo chu vi của một hình “không tiêu chuẩn”
Mã 1: Phương pháp phù hợp:
Dùng một đoạn dây viền quanh đường viền vủa hình và đo độ dài đoạn dây.
Cắt hình này thành nhiều phần ngắn, gần như những đoạn thẳng, nối chúng lại
thành đường rồi đo độ dài đường này.
Đo độ dài của một số đoạn thừa ra, tính độ dài trung bình của mỗi đoạn đó, nhân
lên 8 (số lượng phần lồi ra) x 2.
Mã 0: Đáp án khác.
Mã 9: Không trả lời.
Ví dụ các đáp án
Mã 1:
Sử dụng một đoạn len hoặc dây!!!
(Câu trả lời ngắn gọn, nhưng học sinh đã đưa ra được PHƯƠNG PHÁP tính
đường kính.)
Cắt đường viền của hình thành nhiều đoạn nhỏ. Đo độ dài từng đoạn và cộng vào
nhau.
(Không cần chỉ rõ là các đoạn phải thẳng, nhưng vẫn nên tính điểm, vì đã đưa ra
được PHƯƠNG PHÁP và cắt hình thành nhiều đoạn, mỗi đoạn được xem là dễ
dàng để đo đếm)
Mã 0:
Đo xung quanh phía ngoài.
(Học sinh không đưa ra được PHƯƠNG PHÁP để đo và tính.Chỉ nói rằng “đo
nó” thì chưa đưa ra được bất cứ phương pháp nào để tiến hành.)
Kéo dãn hình sao cho nó thành một hình tròn
(Đưa ra được phương pháp nhưng phương pháp này sai)

bài 21: TÒA NHÀ DẠNG XOẮN
Trong kiến trúc hiện đại, những tòa nhà có rất nhiều hình dáng lạ. Dưới đây là
hình ảnh mô
phỏng trên
máy tính của
một “tòa nhà
dạng xoắn”
và cấu trúc
tầng trệt của
nó. Điểm la
bàn là định
hướng của
tòa nhà.
24
Tầng trệt của tòa nhà gồm có lối ra vào chính và các gian hàng.
Ở phía trên tầng trệt là 20 tầng căn hộ.
Cấu trúc mỗi tầng đều tương tự như cấu trúc tầng trệt, nhưng mỗi tầng có hướng
hơi khác một chút so với hướng của tầng dưới nó. Phần trục là thang máy và
khoảng không gian trống
với d là đường kính của nhóm địa y, đơn vị mi-li-mét (mm), t là số năm sau khi
băng tan.Source: acknowledgement text as necessary.
Câu hỏi 1: TÒA NHÀ DẠNG XOẮN M21Q01 – 0 1 2 9
Ước tính chiều cao của tòa nhà theo đơn vị mét. Hãy giải thích cách làm của em.
TÒA NHÀ DẠNG XOẮN: HƯỚNG DẪN CHẤM ĐIỂM CÂU HỎI 1
Mức đầy đủ
Mã 2: Chấp nhận các đáp án từ 50 đến 90 mét nếu lý giải hợp lý.
Mỗi tầng của tòa nhà cao khoảng 2,5 mét (có thể có phần đệm giữa các tầng) Do
đó, có thể ước tính khoảng 21 x 3 = 63 mét.
Cho rằng mỗi tầng cao 4m, thì 20 tầng cao 80 m. Cộng thêm 10 m tầng trệt thì
tổng khoảng 90 m.

Mức không đầy đủ
Mã 1: Tính đúng kèm theo giải thích, nhưng chỉ dùng 20 tầng thay vì 21 tầng.
Mỗi tầng căn hộ cao khoảng 3,5m, 20 tầng x 3,5 mét cho tổng chiều cao là 70 m.
Không tính điểm
Mã 0: Các câu trả lời khác, gồm cả câu trả lời không có lý giải, câu trả lời mà số
tầng sai, câu trả lời ước tính không hợp lý về chiều cao của mỗi tầng (coi như 4m
là chiều cao tối đa của mỗi tầng).
Mỗi tầng cao khoảng 5 m, thì 5 x 21 = 105 mét.
60 m.
Mã 9: Không trả lời.
Các hình sau biểu diễn các góc nhìn của tòa nhà
Góc nhìn 1 Góc nhìn 2
Câu hỏi 2: TÒA NHÀ DẠNG XOẮN M21Q02 -
0 1 9
25

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×