Piping Systems Manual
About the Author
Brian Silowash, PE, CEM, LEED AP, is president of
Innovative Design Engineering of America, LLC, a
Pittsburgh-based engineering consulting firm special-
izing in facilities engineering, energy management, in-
surance consulting, and building inspections. He has
worked as a maintenance foreman, a plant engineer,
and an engineering consultant. Mr. Silowash has ex-
tensive experience in design, construction, and com-
missioning.
Piping Systems Manual
Brian Silowash
New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan
Seoul Singapore Sydney Toronto
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in
a database or retrieval system, without the prior written permission of the publisher.
ISBN: 978-0-07-159277-2
MHID: 0-07-159277-6
The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159276-5, MHID: 0-07-159276-8.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in
corporate training programs. To contact a representative please e-mail us at
Information contained in this work has been obtained by The McGraw-Hill Companies, Inc. (“McGraw-Hill”) from sources
believed to be reliable. However, neither McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and neither McGraw-Hill nor its authors shall be responsible for any errors, omissions, or
damages arising out of use of this information. This work is published with the understanding that McGraw-Hill and its authors
are supplying information but are not attempting to render engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be sought.
TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and
to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work
is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.
THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-
RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circum-
stances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.
In memory of my parents, George and Juliana Silowash
“Deep waters cannot quench love, nor floods sweep it away.”
—Song of Songs 8:7
This page intentionally left blank
vii
Contents
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Chapter 1 Introduction 1
Some Miscellaneous Thoughts on Piping . . . . . . . . . 2
Chapter 2 Terminology 3
Chapter 3 Reference Materials 15
Chapter 4 Piping Codes 17
ASME B31.1 Power Piping . . . . . . . . . . . . . . . . . . . . . 21
100.1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
100.1.3 Not in Scope . . . . . . . . . . . . . . . . . . . . . . . 22
102.3.2 Limits for Sustained and
Displacement Stresses . . . . . . . . . . . . . . . . . . . 22
104.1 Pressure Design of Straight Pipe . . . . . . . 22
104.3 Branch Connections . . . . . . . . . . . . . . . . . . 25
104.3.3 Miters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
119 Expansion and Flexibility . . . . . . . . . . . . . . . 35
137 Pressure Tests . . . . . . . . . . . . . . . . . . . . . . . . . 37
137.4 Hydrostatic Testing . . . . . . . . . . . . . . . . . . . 38
137.5 Pneumatic Testing . . . . . . . . . . . . . . . . . . . . 38
ASME B31.3 Process Piping . . . . . . . . . . . . . . . . . . . . 38
300.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
300.2 Defi nitions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
301 Design Conditions . . . . . . . . . . . . . . . . . . . . . 40
301.3.2 Uninsulated Components . . . . . . . . . . . . 40
302 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . 40
302.2.4 Allowances for Pressure and
Temperature Variations . . . . . . . . . . . . . . . . . . 40
304.1.1 Pressure Design of Straight Pipe . . . . . . 41
304.3 Branch Connections . . . . . . . . . . . . . . . . . . 43
305.2 Specifi c Requirements . . . . . . . . . . . . . . . . 50
319.4 Flexibility Analysis . . . . . . . . . . . . . . . . . . . 51
345 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ASME B31.9 Building Services Piping . . . . . . . . . . . . 53
904 Pressure Design of Components . . . . . . . . . 53
Summary of Code Comparisons . . . . . . . . . . . . . . . . 54
Chapter 5 Specifi cations and Standards 55
viii
Contents
Chapter 6 Materials of Construction 83
Casting versus Forging . . . . . . . . . . . . . . . . . . . . 84
Cast Iron Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 85
Manufacture of Cast Iron Pipe . . . . . . . . . . . . . . 86
Ductile Iron Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 92
Manufacture of DI Pipe . . . . . . . . . . . . . . . . . . . . 93
Fabrication and Assembly of Ductile
Iron Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Carbon Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Applicable Standards . . . . . . . . . . . . . . . . . . . . . . 97
Manufacture of Carbon Steel Pipe . . . . . . . . . . . 100
Wall Thicknesses of Carbon Steel Pipe . . . . . . . 101
Sizes of Carbon Steel Pipe . . . . . . . . . . . . . . . . . . 102
Fabrication and Assembly of Carbon Steel
Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Stainless Steel Piping . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 104
Manufacture of Stainless Steel Pipe . . . . . . . . . . 105
Fabrication and Assembly of Stainless
Steel Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Copper Tubing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 108
Manufacture of Copper Tubing . . . . . . . . . . . . . 109
Fabrication and Assembly of Copper Tubing . . 109
Brass Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 114
Titanium Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 114
Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Fabrication and Assembly of Titanium Pipe . . . 115
Aluminum Piping and Tubing . . . . . . . . . . . . . . . . . . 115
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 115
Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Fabrication and Assembly of Aluminum Pipe . 116
PVC (Polyvinyl Chloride) Piping . . . . . . . . . . . . . . . . 116
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 117
Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Fabrication and Assembly of PVC Pipe . . . . . . . 120
CPVC (Chlorinated PolyVinyl Chloride) Piping . . . 122
Contents
ix
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 122
Manufacture of CPVC Pipe . . . . . . . . . . . . . . . . . 123
Fabrication and Assembly of CPVC Pipe . . . . . 123
Polybutylene (PB) Piping . . . . . . . . . . . . . . . . . . . . . . 124
Polyethylene (PE) and High-Density Polyethylene
(HDPE) Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 125
Manufacture of PE pipe . . . . . . . . . . . . . . . . . . . . 128
Fabrication and Assembly of PE Pipe . . . . . . . . 130
Acrylonitrile-Butadiene-Styrene (ABS) Piping . . . . 132
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 132
Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Fabrication and Assembly of ABS Pipe . . . . . . . 133
Cross-Linked Polyethylene (PEX) Piping . . . . . . . . . 133
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 134
Manufacture of PEX Tubing . . . . . . . . . . . . . . . . 135
Fabrication and Assembly of PEX Tubing . . . . . 135
Fiberglass Reinforced Plastic (FRP) Piping . . . . . . . . 136
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 137
Manufacture of FRP . . . . . . . . . . . . . . . . . . . . . . . 137
Fabrication and Assembly of FRP Pipe . . . . . . . 137
Concrete Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . 138
Manufacture of Concrete Pipe . . . . . . . . . . . . . . 138
Fabrication and Assembly of Concrete Pipe . . . 139
Asbestos Cement Pipe . . . . . . . . . . . . . . . . . . . . . . . . . 139
Other Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Centrifugally Cast Glass-Fiber Reinforced, Polymer
Mortar Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Lined Piping Systems . . . . . . . . . . . . . . . . . . . . . . 145
Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Polyvinylidene Fluoride (PVDF) . . . . . . . . . . . . 145
Polytetrafl uoroethylene (PTFE) . . . . . . . . . . . . . 145
Nitrile Rubber, or Buna-N . . . . . . . . . . . . . . . . . . 145
Ethylene Propylene Diene Monomer (EPDM)
Rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Polychloroprene . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Fluoropolymer . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Polyetheretherketone (PEEK) or
Polyketones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Insulating Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Fiberglass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Calcium Silicate . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
x
Contents
Cellular Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Foam Synthetic Rubber . . . . . . . . . . . . . . . . . . . . 147
Polyisocyanurate . . . . . . . . . . . . . . . . . . . . . . . . . 147
Mineral Wool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Extruded Polystyrene . . . . . . . . . . . . . . . . . . . . . . 148
Chapter 7 Fittings 149
Applicable Specifi cations . . . . . . . . . . . . . . . . . . . . . . 151
Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Flange Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Flange Facings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Types of Flanges . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Dielectric Connections . . . . . . . . . . . . . . . . . . . . . 166
Gaskets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Other Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Elbows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Tees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Cleanouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Laterals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Threaded Fittings . . . . . . . . . . . . . . . . . . . . . . . . . 172
Reducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Bushings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Caps and Plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Bull Plugs and Swaged Nipples . . . . . . . . . . . . . 180
Couplings and Half-Couplings . . . . . . . . . . . . . 180
Integrally Reinforced Forged Branch Outlet
Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Wyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Ratings of Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Chapter 8 Valves and Appurtenances 183
Valve Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Gate Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Globe Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Check Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Swing Check Valves . . . . . . . . . . . . . . . . . . . . . . . 188
Lift Check Valves . . . . . . . . . . . . . . . . . . . . . . . . . 189
Ball Check Valves . . . . . . . . . . . . . . . . . . . . . . . . . 189
Silent Check Valves . . . . . . . . . . . . . . . . . . . . . . . . 189
Foot Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Ball Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Butterfl y Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Wafer-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Lug-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
High-Performance Butterfl y Valves (HPBV) . . 194
Fluid Velocities through Control Valves . . . . . . . . . . 194
Needle Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Pressure Regulating Valves . . . . . . . . . . . . . . . . . . . . . 195
Pressure Relief Valves (PRVs) . . . . . . . . . . . . . . . . . . . 196
Contents
xi
ASME Boiler and Pressure Vessel Code –
Section I Requirements . . . . . . . . . . . . . . . . . . 198
ASME Boiler and Pressure Vessel Code –
Section VIII Requirements . . . . . . . . . . . . . . . 198
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Pilot-Operated Valves . . . . . . . . . . . . . . . . . . . . . 199
Design Considerations . . . . . . . . . . . . . . . . . . . . . 201
Temperature and Pressure (T&P) Valves . . . . . . 202
Rupture Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
ASME Requirements for Rupture Disks . . . . . . 205
Design Considerations . . . . . . . . . . . . . . . . . . . . . 205
Valve Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Plug Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Diaphragm Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Triple-Duty Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Backfl ow Preventers . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
ASSE Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
ASSE 1016 Control Valves . . . . . . . . . . . . . . . . . . 212
ASSE 1017 Control Valves . . . . . . . . . . . . . . . . . . 212
ASSE 1062 Temperature Actuated Flow Reduction
(TAFR) Valves . . . . . . . . . . . . . . . . . . . . . . . . . 212
ASSE 1066 Pressure Balancing In-Line
Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
ASSE 1070 Water Temperature Limiting
Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Steam Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Float Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Inverted Bucket Traps . . . . . . . . . . . . . . . . . . . . . 213
Liquid Expansion Trap . . . . . . . . . . . . . . . . . . . . . 213
Balanced Pressure Trap . . . . . . . . . . . . . . . . . . . . 214
Bimetallic Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Thermodynamic Traps . . . . . . . . . . . . . . . . . . . . . 215
Strainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Temperature Elements and Indicators . . . . . . . . 217
Pressure Transmitters and Indicators . . . . . . . . 217
Flow Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Annubar® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Turbine Flow Meters . . . . . . . . . . . . . . . . . . . . . . 218
Magnetic Flow Meter . . . . . . . . . . . . . . . . . . . . . . 218
Ultrasonic Flow Meters . . . . . . . . . . . . . . . . . . . . 219
Hoses and Expansion Joints . . . . . . . . . . . . . . . . . . . . 219
Hoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Expansion Joints . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Chapter 9 Pipe Supports 221
Reference Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Pipe Routings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Support Considerations . . . . . . . . . . . . . . . . . . . . . . . 222
Degrees-of-Freedom . . . . . . . . . . . . . . . . . . . . . . . 223
Types of Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Rack Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
xii
Contents
Structural Supports . . . . . . . . . . . . . . . . . . . . . . . 226
Support Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Shoes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Trapezes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Rollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Spring Hangers . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Stress Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Stress Analysis Software . . . . . . . . . . . . . . . . . . . 235
Chapter 10 Drafting Practice 245
The Purpose of Piping Drawings . . . . . . . . . . . . . . . . 245
The Contractor . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
The Owner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Drawing Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Drawing Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Symbology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Valves and Piping . . . . . . . . . . . . . . . . . . . . . . . . 250
Process Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Drafting Practices for Piping . . . . . . . . . . . . . . . . . . . 255
Piping Plans and Elevations . . . . . . . . . . . . . . . . 255
Piping Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Chapter 11 Pressure Drop Calculations 261
Concepts Involved in Pressure Drop . . . . . . . . . . . . . 262
Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Pressure Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Velocity Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Elevation Head . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Friction Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Major Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Darcy Weisbach Equation . . . . . . . . . . . . . . . . . . 271
Hazen-Williams Formula . . . . . . . . . . . . . . . . . . . 278
Fanning Friction Factor . . . . . . . . . . . . . . . . . . . . 280
Tabulated or Graphic Solutions . . . . . . . . . . . . . 280
Minor Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Resistance Coeffi cient K . . . . . . . . . . . . . . . . . . . . 281
Equivalent Length Method . . . . . . . . . . . . . . . . . 281
Flow Coeffi cient C
v
. . . . . . . . . . . . . . . . . . . . . . . . 282
Pump Head Terminology . . . . . . . . . . . . . . . . . . . . . . 285
Total Suction Head . . . . . . . . . . . . . . . . . . . . . . . . 285
Static Discharge Head . . . . . . . . . . . . . . . . . . . . . 286
Total Static Head . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Total Discharge Head . . . . . . . . . . . . . . . . . . . . . . 286
Total Dynamic Head . . . . . . . . . . . . . . . . . . . . . . . 286
Contents
xiii
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Suction Piping and Cavitation . . . . . . . . . . . . . . . . . . 293
Chapter 12 Piping Project Anatomy 297
An Archetypical Project . . . . . . . . . . . . . . . . . . . . . . . . 297
Utility Consumption Table . . . . . . . . . . . . . . . . . . . . . 298
Diversity Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Utility Quality Spreadsheets . . . . . . . . . . . . . . . . . . . . 300
Block Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 301
P&IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
General Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Recommended Data . . . . . . . . . . . . . . . . . . . . . . . 306
Optional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Inappropriate Data . . . . . . . . . . . . . . . . . . . . . . . . 307
General Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . 307
Design and Construction Schedules . . . . . . . . . . . . . 308
Flow Maps or Utility Distribution Diagrams . . . . . . 308
Equipment Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Piping Plans, Sections, and Details . . . . . . . . . . . . . . 309
Pipe Support Plans and Instrument Location Plans 309
Isometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Checklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Document Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
After IFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Field Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 312
Chapter 13 Specifi cations 315
Types of Specifi cations . . . . . . . . . . . . . . . . . . . . . . . . . 315
Specifi cation Formats . . . . . . . . . . . . . . . . . . . . . . 315
Equipment Specifi cations . . . . . . . . . . . . . . . . . . . . . . 316
Sample Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Bid Tabulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Pipe Specifi cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
CSI Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Outlined Narrative . . . . . . . . . . . . . . . . . . . . . . . . 322
Tabulated Piping Specifi cations . . . . . . . . . . . . . 324
Chapter 14 Field Work and Start-up 329
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Walkdowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Pipe Cleanliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Sample Bearing Lube Oil System Cleaning
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Sample Hydraulic Oil System Cleaning
Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
xiv
Contents
Venting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Steam Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Compressed Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Chapter 15 What Goes Wrong 337
Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Floods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Earthquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Unanticipated Thermal Growth . . . . . . . . . . . . . . . . . 339
Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Damage to Underground Utilities . . . . . . . . . . . . . . . 339
One Call and 811 . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Underground Markers . . . . . . . . . . . . . . . . . . . . . 340
Legionella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Cooling Towers . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Hot Water Systems . . . . . . . . . . . . . . . . . . . . . . . . 341
Operator Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Signage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Protection from Physical Damage . . . . . . . . . . . 343
Freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Design and Construction Errors . . . . . . . . . . . . . . . . . 345
Drawing Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Interferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Contractor Errors . . . . . . . . . . . . . . . . . . . . . . . . . 346
Chapter 16 Special Services 347
Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Capacity of Natural Gas Pipelines . . . . . . . . . . . 348
Sealing Natural Gas Threaded Connections . . . 348
Purging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Compressed Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Instrument Air . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Oxy-Fuel Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Pigging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Chapter 17 Infrastructure 355
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Diagnostic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Rehabilitation and Replacement of Pipelines . . 357
Energy Considerations . . . . . . . . . . . . . . . . . . . . . . . . 359
Centrifugal Machines . . . . . . . . . . . . . . . . . . . . . . 359
Compressed Air Systems . . . . . . . . . . . . . . . . . . . 359
Water Conservation . . . . . . . . . . . . . . . . . . . . . . . 360
Contents
xv
Chapter 18 Strategies for Remote Locations 361
Motive Power Technologies . . . . . . . . . . . . . . . . . . . . 362
Solar Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Hydraulic Ram Pump . . . . . . . . . . . . . . . . . . . . . 362
Water Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Chemical Disinfection . . . . . . . . . . . . . . . . . . . . . 364
Ultraviolet Radiation . . . . . . . . . . . . . . . . . . . . . . 366
Appendix 1 Carbon Steel Pipe Schedule 368
Appendix 2 PVC Pipe Schedules 373
Appendix 3 Copper Tubing Schedules 375
Appendix 4 Material Properties of Some Common Piping Materials 377
Appendix 5 NEMA Enclosures 379
Appendix 6 IP Codes for Electrical Enclosures 381
Appendix 7 Steam Tables, English Units 383
Appendix 8 Steam Tables, SI Units 391
Appendix 9 Friction Losses 397
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
xvi
Acknowledgments
T
he author wishes to thank R. Dodge Woodson of Lone Wolf Enterprises, Ltd., and
Larry Hager of McGraw-Hill for providing the opportunity to prepare this work.
Dodge’s advice and knowledge of the publishing business were always welcome,
and Larry was agreeable to the concept of this text. Without them, this work may never
have been published. Thanks also to the entire team at McGraw-Hill who were always
available to answer questions. Editorial Coordinator Alexis Richard was particularly
helpful throughout the process. Copyeditor Jacquie Wallace’s attention to detail was
much appreciated. Production Manager Virginia Howe was always gracious, and I
delighted in her ability to turn my raw manuscript into a book.
The support and encouragement of family and friends is not to be underestimated,
especially in consideration of the need to execute engineering projects while
simultaneously preparing a manuscript. Beyond that, tangible assistance was rendered
by my brother George Silowash, who reviewed selected chapters for readability; my
friend Mary McGrellis who prepared many of the illustrations; my nephew Ryan
Silowash, who assisted with data entry; and my friend Dave Schwemmer, PE, who
offered his expert insight into structural engineering.
The technical reviewers for this work included George Dorogy, PE, of Hatch; Chester
Kos, PE of Hatch; Stephen N. Koslasky of Hatch; Norman Hunt, PE of Power Engineers,
Inc.; and James S. McKinney, PE. I have had the special privilege of working closely
with each of them, and aside from having enormous respect for their technical
knowledge as mechanical engineers, I cherish their friendship.
Of the manufacturers and associations that offered the use of technical data,
information, or artwork, those deserving special thanks are:
• American Concrete Pipe Association
• American Society of Mechanical
Engineers
• American Welding Society
• Anvil International
• Association of Energy Engineers
• Bonney Forge Corporation
• Crane Energy Flow Solutions
• Dresser Piping Specialties
• Farris Engineering, division of Curtiss-
Wright Flow Control Corporation
• Fiberglass Tank and Pipe Institute
• Fike Corporation
• Flexitallic
• Flowline Corporation
• Garlock
• Innovative Design Engineering of
America, LLC
• ITT Goulds Pumps
• McGraw-Hill
• Pipeline Seal & Insulator, Inc.
• Ridgid Tool Company
• Victaulic Company
• Watts Regulator Company
Individuals who offered valuable
technical expertise included:
• Ronald W. Haupt, P.E., Pressure Piping
Engineering Associates, Inc., San
Mateo, California
• David Diehl, COADE, Inc., Houston,
Texas
My sincere apologies to anyone I may have overlooked.
Brian Silowash, PE, CEM, LEED AP
Innovative Design Engineering of America, LLC
1
CHAPTER
1
Introduction
I
have for many years wanted to compile some thoughts about piping design. As a
young engineer, I was often confronted with a problem that was new to me. Older
engineers and superiors would often advise me to “check the Corinth job,” or “see
what we did five years ago on the XYZ project.” I would dig through stacks of files and
dozens of drawings, only to find that the problems were not the same, or what they had
imagined as an existing solution existed only in their failing memories. Nothing was on
paper that could be applied to the problem at hand. I suppose this sort of thing applies
not just to piping design, but to every other aspect of engineering as well.
In any case, I would waste a lot of time looking for answers in the existing reference
materials, only to discover that many texts were silent on the topic under investigation.
I would then be forced to do a lot of research and draw my own conclusions.
An example of this was when I was responsible for the start-up of a hot oil calender
system, circa 1984. The mill engineers and project managers were concerned over the
cleanliness of the piping. My initial reaction was that someone should be watching
what the contractors were doing as they fabricated and hung the pipe to ensure that the
pipe remained clean. And although this seems to be a reasonable approach, it would
not have assisted in this particular case. Nor is it common to bird-dog the fitters to
ensure that hard hats, wrenches, 2 x 4’s, etc. don’t get left inside pipes.
Cleanliness of piping is not often addressed in the reference books. While there are
standards for the cleanliness of hydraulic piping and piping found in the pharmaceutical
and food and beverage industries, there was not a lot to choose from in the general
arena of industrial service piping.
Many phone calls later, I was finally able to lay my hands on a copy of PFI Standard
ES-5, Cleaning of Fabricated Piping. This was a three-page document published by the
Pipe Fabrication Institute. At least now I had a starting point and was able to apply this
standard to the system that was causing so much heartburn among my managers. Back
in 1984, one had to rely on picking up a scent, persistence, and lots of phone calls and
trips to the library. Now that we have the Internet, the playing field has been leveled,
although a quick Internet search of “pipe cleanliness standards” proves that today the
process is still no picnic.
There are many excellent reference materials available. Some of these are referenced
in this manual, and no serious student of piping should be without the Piping Handbook
by Nayyar, or earlier editions by Crocker and King.
This is not a scholarly manual. I have tried to organize it in a logical manner and
make the information readable and easy to access. The reader will forgive me for
stating certain opinions (which should be obvious in the text, and not to be confused
with facts).
Further, this text is intended to be practical rather than comprehensive. I have tried to
highlight the items a piping engineer will most likely encounter, rather than to attempt
an encyclopedic volume. For example, while there is much wonderful information in
ASME B31.1, I have touched only on the portions one might encounter in a “typical”
2
Chapter 1
piping job. Throughout the preparation of this manuscript, I was faced with trying to
strike a balance between solving the tough problems we face every day, and overstating
the obvious. A review of online discussion sites indicated to me that there really was no
shortage of elementary questions out there, but in fairness to those who appear to be new
to the profession, the more you delve into an issue, the less you seem to know
1
. And
though I tried to remain practical, some subjects are irresistible, and so I couldn’t resist
footnoting that PTFE is the only known substance to which a gecko cannot stick.
The piping engineer for a project will encounter many issues outside of any strict
definition of “piping.” There will be process equipment such as tanks, heat exchangers,
pumps, structures, and so on. Early in a project, the piping engineer is asked to determine
the horsepower of the pumps, so that electrical equipment may be sized. This often occurs
before complete process information is available. As the project continues, it is most often
the piping engineer who becomes the focal point, the lightning rod, the bottle-neck.
Operating and maintenance issues must always be considered, and are often left to the
piping engineer to resolve. Broad knowledge of the other disciplines’ needs, as well as the
industry served, is often required. My task in writing this book was to concentrate on the
piping side, though I have made some minor excursions into some of the areas described
above. Perhaps if the publishers and the engineering community enjoy this book, they
may permit me an opportunity to examine a broader scope at some later date.
Some Miscellaneous Thoughts on Piping
1. The trades should always be made aware that piping cleanliness is of the utmost
importance. This certainly applies to the inside of the piping, valves, and fittings
but also to sumps as well. Stressing this point will save a lot of time on startups.
2. Take advantage of “non-traditional” piping materials such as HDPE for
underground applications. While these materials have been around for some
time, “old-timers” may be reluctant to use them.
3. Determining the size of piping is usually a function of its velocity. Keep in
mind that the installed cost of piping is primarily a function of labor costs and
it really doesn’t cost much more to increase one pipe size to reduce friction
and also to allow for future capacity. On the other hand, one has to be aware
of the application. Bigger is not always better, especially if you are dealing
with slurries.
4. Be aware of the possibility of back flowing through Y-type strainers since
these screens may be very flimsy and will collapse when the flow reverses
through them.
5. Don’t neglect startup considerations in the design of the piping system. Be sure
that you have high point vents and low point drains, and have the spares and
clearances to remove, clean, or replace strainer screens.
6. In some cases, you may have to consider the minimum and maximum flows
through a line over its life. This is particularly important for slurries and gravity
flow lines.
7. Nobody likes to pay for welders. This means that if you can minimize the
number of welds, everyone (except the welders) will be happier.
8. Viton gaskets smell like cinnamon.
1
Someone once defined an “expert” as “one who knows more and more about less and less, until he
knows everything about nothing.”
3
CHAPTER
2
Terminology
Actuator
A device mounted on a valve stem that is used to change the size of the valve aperture.
Actuators may either be air-operated, motor-operated, or hydraulically-operated.
AHJ
Authority Having Jurisdiction (the code compliance officer).
Air Break
In a drainage system, an air break is a piping arrangement in which a drain discharges
into another fixture or receptacle, without a direct connection, and at a point below the
flood level rim and above the trap seal.
Air Gap
In a drainage system, an air gap is the unobstructed vertical distance that a liquid travels
through the air between the outlet of a waste pipe and the flood level rim of the
receptacle into which the waste pipe discharges.
In a water distribution system, the air gap is the unobstructed vertical distance that
a liquid travels through the air between the lowest opening of any pipe (or faucet)
supplying water to a tank, plumbing fixture, or other receptacle, and the flood level rim
of that receptacle.
Angle of Repose
The angle with the horizontal at which a granular material remains stable.
ASHRAE
Association of Heating, Refrigeration, and Air Conditioning Engineers.
See www.ashrae.org.
ASME
American Society of Mechanical Engineers. An organization that has developed codes
and standards for piping and many other items. The codes are in use throughout the
world. See www.asme.org.
4
Chapter 2
AWS
American Welding Society. An organization that has developed codes and standards
for welding. See www.aws.org.
Ball Valve
A type of quarter-turn valve used for on/off and sometimes throttling applications. It
consists of a ball mounted on the stem. The ball has a hole drilled through it, and is
seated firmly against a seal inside the body of the valve. When the ball is rotated, the
valve aperture is reduced because of the relative movement between the hole in the ball
and the valve seat.
Baseplate
A flat plate machined to accept the mounting holes of a piece of equipment. It is anchored
to the floor, and is usually, but not always, grouted. Grouting offers the best installation
for preventing deflection and minimizing vibration.
BEP
1. Boiler External Piping. BEP is the piping that begins where the boiler proper
ends, at the first circumferential weld, at the face of the first flange, or at the first
threaded joint, and ends downstream of the stop valve. Refer to ASME B31.1,
Paragraph 100.1.2
2. Best Efficiency Point. The Best Efficiency Point on a pump curve is that point at
which the capacity and head intersect at the highest efficiency of the pump.
Bid Tab
Contraction of “Bid Tabulation”, a table used to analyze the best choice of a set of
competing proposals.
Blank
See “Blind.”
Blind
A plate inserted between two flanges. There are three types: one with a hole in the plate,
the same size as the inside pipe diameter; one with no hole, used to prevent the flow of
fluid in the pipe; and a third which has both of the other types joined together by a short
piece of steel, which pivots around a bolt hole in the flange (known as a “spectacle
blind,” due to its resemblance to a pair of eyeglasses). It may be swung into either
position. Usually the open type first described has a handle through which a hole has
been drilled. This enables the observer to determine whether the blind is open or closed.
Open blinds are used to provide the spacing between the flanges for the occasions when
a closed blind is to replace the open blind. These are most often used to provide safe
access to a vessel. Sometimes also called a “blank.”
Block-and-Bleed
A valve configuration in which the pressure upstream of a valve (the “block” valve) is
able to be vented to atmosphere by another valve (the “bleed” valve). See also “double
Terminology
5
block and bleed.” These configurations are most often used where safe access must be
provided to a vessel, where blinds are not practical. See Figure 2.1.
BOP (Elevation)
Bottom-of-Pipe elevation.
Condensate
The liquid water that condenses out of a steam system as the steam loses its energy. It is
usually recycled back to the boiler to provide feedwater, but it is sometimes wasted
down the drain.
Contractor
The entity that installs the equipment or material, or that performs a specific service
(e.g., pipe cleaning).
Cross Connection
An actual or potential connection between a potable water system and a potential
source of contamination, which is not protected by an approved device designed to
prevent flow from the potential contamination to the potable water system.
DBOO
Design/Build/Own/Operate. A plan in which an entity provides all four services,
usually as a means of providing a service utility to a larger facility (e.g., a waste water
treatment plant).
Dirt Leg
A vertical piece of pipe below a valve, with a horizontal tee that feeds a piece of
equipment (often a furnace or water heater on a gas system, or a control valve or steam
trap on a steam system). The bottom portion of the vertical leg is valved or capped so
that when the upper valve is closed, dirt (particles, scale) may be emptied from the
vertical leg. In natural gas service, the dirt leg may be used to trap condensation as well
as dirt particles.
FIGURE 2.1 Block and
bleed.
6
Chapter 2
Double Block and Bleed
A valve configuration in which the pressure upstream of a valve (the “block” valve)
may be vented to atmosphere by another valve (the “bleed” valve) which is located
upstream of yet another block valve. See Figure 2.2.
DWV
Drain, waste, vent piping, also known as soil pipe.
Elevation (drawing)
A drawing which shows a side view.
Engineer
The entity that provides the design services for a project.
Escutcheon
A circular cover plate with a hole in its center through which a pipe passes. It is used to
cover the rough opening in a surface through which a pipe passes, to provide a finished
appearance.
Expansion Joint
A device used to account for thermal expansion of pipes. It usually consists of a bellows,
which compresses when the adjoining pipes expand.
Expansion Loop
A U-shaped offset designed in a piping system to provide flexibility for the thermal
expansion of pipes.
Extra
An additional charge for work that is outside of the original scope of work.
Extrados
The outside radius of a bend.
Fabrication
A piece that is made in the shop or in the field, which may require welding, machining,
and/or assembly.
FIGURE 2.2 Double block
and bleed.
Terminology
7
Fire Loop
An underground water line outside the perimeter of a building. Part of the fire protection
system, it provides water to the hydrants and may also supply the interior fire sprinkler
system.
Fitting
A manufactured item that is used in a piping system to conveniently change the size or
direction of the pipe. Examples are elbows, reducers, plugs, caps, and bushings.
Flood Level Rim
The level of the edge of a receptacle from which water overflows.
Flow Diagram
A drawing that shows the general flow characteristics of a piping system, including
flowrate, temperature, and other parameters. Used to develop the P&IDs.
Fluid Dynamics
The study of how fluids behave in motion.
Gate Valve
A type of valve used for on/off applications. It consists of a plate that enters the fluid
stream, seating against the valve body interior to provide a tight seal.
Globe Valve
A type of valve used for throttling and on/off applications. It consists of a disc mounted
on the end of the valve stem. The disc rises and falls against a seat, effecting a seal or a
variable opening which can be used to throttle the flow.
Greenfield
An undeveloped site for new construction.
HAZOP
HAZard and Operability analysis. A systematic means of identifying potential hazards
so that they may be eliminated or mitigated.
Head
Pressure, converted into feet of water. Used for determining pressure requirements of
pumps.
Header
A pipe that contains branch connections. Also known as the “run” pipe.
HVAC
Heating Ventilation and Air Conditioning.
Hydraulics
The study of how liquids behave at rest or in motion.
8
Chapter 2
Hydronic
Piping that relates to hot and cold water in an HVAC system, and is used exclusively for
heat transfer.
ID
Inside Diameter
Indirect Connection
A waste pipe that does not attach to the receptacle that it discharges into.
Intrados
The inside radius of a bend.
Invert Elevation
The elevation of the bottom of a formed (concrete or otherwise) trench or inside of a
gravity drain pipe at the 6 o’clock position.
Lateral
A type of tee fitting in which the angle formed between the run pipe and the branch
pipe is less than 90 degrees.
Lavatory
A sink with hot and cold water fixtures, and a drain to a sanitary sewer system.
Make-Up
The critical dimension of a threaded fitting.
MAWP
“Maximum Allowable Working Pressure.” The MAWP is the maximum working
pressure of the weakest component of a vessel.
Mfg
“Manufacturing.” Not to be confused with “manufacturer.”
Mfr
“Manufacturer.”
MM
A designation for “million.” Since M is the Roman numeral for 1000, MM is one-
thousand thousands, or one million. For example a 2 MM tank has a capacity of
2 million gallons. Care should be exercised since some industries use M for million.
MOC
“Material of construction.”
NBEP
Nonboiler external piping.