Tải bản đầy đủ (.pdf) (69 trang)

Luận văn thạc sĩ VNU UET dự báo chuỗi dữ liệu phụ thuộc thời gian theo mùa vụ bằng mô hình holt winters luận văn ths công nghệ thông tin 1 01 10

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.34 MB, 69 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
-----***-----

Tạ Mạnh Cường

DỰ BÁO CHUỖI DỮ LIỆU PHỤ
THUỘC THỜI GIAN THEO MÙA VỤ
BẰNG MƠ HÌNH HOLT-WINTERS

LUẬN VĂN THẠC SĨ

Hà nội - 2006

LUAN VAN CHAT LUONG download : add


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
-----***-----

Tạ Mạnh Cường

DỰ BÁO CHUỖI DỮ LIỆU PHỤ
THUỘC THỜI GIAN THEO MÙA VỤ
BẰNG MƠ HÌNH HOLT-WINTERS

Ngành: Cơng nghệ thơng tin
Mã số: 1.01.10

LUẬN VĂN THẠC SĨ



Người hướng dẫn khoa học: TS Đỗ Văn Thành

Hà nội - 2006

LUAN VAN CHAT LUONG download : add


-i-

Mục lục
Lời cảm ơn ......................................................................................... 1
Mở đầu ............................................................................................... 2
Chương 1: Chuỗi thời gian và phân tích dự báo chuỗi thời gian ..... 5
1. Chuỗi thời gian và dự báo chuỗi thời gian .................................... 5
1.1. Định nghĩa chuỗi thời gian ................................................................ 5
1.2. Dự báo chuỗi thời gian....................................................................... 6

2. Đại lượng đặc trưng chuỗi thời gian ............................................. 7
2.1. Các đại lượng thống kê đặc trưng cho chuỗi thời gian...................... 7
2.2. Các đại lượng mô tả mối quan hệ giữa các phần tử trong chuỗi ....... 8

3. Phân tích, dự báo chuỗi thời gian ................................................ 10
4. Các mơ hình chuỗi thời gian đơn giản ........................................ 12
4.1. Nhiễu trắng ...................................................................................... 12
4.2. Mơ hình bước ngẫu nhiên ............................................................... 12
4.3. Bước ngẫu nhiên có bụi ................................................................... 12

5. Một số phép toán và kiểm định thống kê .................................... 13
5.1. Kiểm định T ..................................................................................... 13

5.2. Toán tử trễ ....................................................................................... 13

6. Kết luận chương 1 ....................................................................... 14
Chương 2: Mô hình làm trơn hàm mũ Holt-Winters ..................... 15
1. Một số khái niệm cơ bản ............................................................. 15
1.1. Mơ hình mùa vụ cộng và mơ hình mùa vụ nhân ............................. 15
1.2. Xu thế tuyến tính, hàm mũ hoặc kết hợp cả hai .............................. 18
1.3. Chỉ số mùa vụ SI (Seasonal Index).................................................. 18

LUAN VAN CHAT LUONG download : add


- ii -

2. Làm trơn hàm mũ (Exponential smoothing) ............................... 18
2.1. Làm trơn hàm mũ dạng đơn giản (single exponential smoothing) . 18
2.2. Làm trơn hàm mũ bậc hai (double exponential smoothing)............ 20
2.3. Làm trơn hàm mũ bậc ba (triple exponential smoothing) ............... 21

3. Mơ hình mùa vụ nhân .................................................................. 21
3.1. Khái qt .......................................................................................... 21
3.2. Ứng dụng mơ hình ........................................................................... 22
3.3. Chi tiết .............................................................................................. 22
3.3.1. Các ký hiệu sử dụng .............................................................. 22
3.3.2. Thủ tục cho việc cập nhật các ước lượng tham số mơ hình .. 22
3.3.3. Giá trị dự báo ......................................................................... 23
3.3.4. Khởi tạo giá trị của các tham số trong mơ hình .................... 24

4. Mơ hình mùa vụ cộng .................................................................. 25
4.1. Khái quát .......................................................................................... 25

4.2. Ứng dụng mô hình ........................................................................... 26
4.3. Chi tiết .............................................................................................. 26
4.3.1. Các ký hiệu sử dụng .............................................................. 26
4.3.2. Thủ tục cho việc cập nhật các ước lượng tham số mơ hình .. 26
4.3.3. Giá trị dự báo ......................................................................... 27

5. Xây dựng mơ hình làm trơn hàm mũ HW .................................. 28
5.1. Các bước xây dựng và lựa chọn các tham số .................................. 28
5.2. Đánh giá dự báo và sai số của dự báo.............................................. 29
5.3. So sánh các bước xây dựng mơ hình Holt-Winters và ARIMA:..... 30
5.4. Chuyển đổi mơ hình HW sang mơ hình ARIMA ............................ 31
5.5. Lựa chọn đặc tính chuỗi phù hợp với mơ hình Holt-Winters.......... 32

LUAN VAN CHAT LUONG download : add


- iii -

6. Kết luận chương 2 ....................................................................... 33
Chương 3: Ứng dụng mơ hình Holt-Winters cho mùa vụ ............. 34
1. Bài toán 1 - Dự báo chỉ số giá tiêu dùng ..................................... 34
1.1. Bước 1: Nhận dạng chuỗi ................................................................ 36
1.1.1. Nhận dạng thành phần xu thế ................................................ 36
1.1.2. Nhận dạng thành phần mùa vụ .............................................. 37
1.2. Lựa chọn mơ hình Holt-Winters theo mùa vụ ................................. 38
1.3. Kiểm định các tham số ước lượng mơ hình ..................................... 40
1.4. Dự báo .............................................................................................. 41

2. Bài toán 2 - Dự báo giá trị hàng hoá xuất khẩu của Việt nam .... 43
2.1. Bước 1: Nhận dạng chuỗi ................................................................ 44

2.1.1. Nhận dạng thành phần xu thế ................................................ 44
2.1.2. Nhận dạng thành phần mùa vụ .............................................. 45
2.2. Lựa chọn mơ hình Holt-Winters theo mùa vụ ................................. 47
2.3. Kiểm định các tham số ước lượng mơ hình ..................................... 48
2.4. Dự báo .............................................................................................. 49

3. So sánh, nhận xét giữa mơ hình Holt-Winters và SARIMA....... 51
4. Kết luận chương 3 ....................................................................... 54
Kết Luận .......................................................................................... 55
Tài Liệu Tham Khảo ....................................................................... 58

LUAN VAN CHAT LUONG download : add


- iv -

Danh mục hình vẽ
Hình 1 - Chuỗi nhiễu trắng.............................................................................. 12
Hình 2 - Đồ thị của chuỗi thời gian theo mơ hình mùa vụ cộng..................... 17
Hình 3 - Đồ thị của chuỗi thời gian theo mơ hình mùa vụ nhân..................... 17
Hình 4 - Các bước xây dựng mơ hình Holt-Winters ....................................... 28

LUAN VAN CHAT LUONG download : add


-v-

Danh mục bảng biểu
Bảng 1 - So sánh các bước xây dựng mơ hình HW và ARIMA ..................... 31
Bảng 2 - Chuyển đổi một số mơ hình làm trơn hàm mũ sang ARIMA .......... 31

Bảng 3 - Lựa chọn mô hình HW theo đặc tính chuỗi ..................................... 33
Bảng 4 - Số liệu chỉ số giá tiêu dùng (nguồn dữ liệu: Tổng cục thống kê; đơn
vị tính 1/10.000) .............................................................................................. 35
Bảng 5 – Giá trị xuất khẩu của Việt nam (nguồn: tổng cục thống kê; đơn vị:
triệu USD) ....................................................................................................... 44
Bảng 6 - Một số kết quả so sánh dự báo giữa mô hình HW & ARIMA ........ 53
Bảng 7 - Một số đánh giá, nhận xét giữa mơ hình HW & ARIMA ................ 54

LUAN VAN CHAT LUONG download : add


- vi -

Bảng từ ngữ, thuật ngữ viết tắt
Từ hoặc cụm từ

Từ viết

Từ tiếng Anh

tắt
Hàm tự tương quan

ACF

AutoCorrelation Function

Kiểm định DF

ADF


Argumented Dickey-Fuller

Tiêu

chuẩn

thông

tin AIC/SIC

AIC/SIC

Akaike

Information

Criteria,

Schwarz Information Criteria

Sai số phần trăm tuyệt đối

APE

Absolute Percent Error

Tự hồi qui

AR


AutoRegression

Tích hợp trung bình trượt tự ARIMA

AutoRegressive

hồi qui

Moving Average

Trung bình trượt tự hồi qui

ARMA

AutoRegressive

Integrated

Moving

Average
Kiểm định DW

DW

Durbin-Watson

Mơ hình làm trơn hàm mũ HW


Exponential Smoothing (Holt-

Holt-Winters

Winters)

Phân phối đồng nhất độc lập

I.I.D

Independent

Identical

Distribution
Trung bình trượt

MA

Moving Average

Sai số tuyệt đối trung bình

MAE

Mean Absolute Error

Sai số bình phương trung MSE

Mean Square Error


bình

LUAN VAN CHAT LUONG download : add


- vii -

Ước lượng bình phương nhỏ OLS

Ordinary Least Square

nhất
Hàm tự tương quan từng PACF

Partial

phần

Function

Tự hồi qui theo mùa vụ

SAR

AutoCorrelation

Seasonal AutoRegressive

Tích hợp trung bình trượt tự SARIMA


Seasonal

hồi qui theo mùa vụ

Integrated Moving Average

Trung bình trượt theo mùa SMA

Seasonal Moving Average

AutoRegressive

vụ
Tổng bình phương sai số

SSE

Sum of Square Error

Nhiễu trắng

WN

White Noise

LUAN VAN CHAT LUONG download : add


-1-


Lời cảm ơn
Luận văn thạc sĩ chuyên ngành CNTT: “Dự báo chuỗi dữ liệu phụ
thuộc thời gian theo mùa vụ bằng mơ hình Holt-Winters” được TS. Đỗ Văn
Thành cơng tác tại Trung tâm thông tin và dự báo Kinh tế - Xã hội Quốc gia Bộ kế hoạch và đầu tư, người đã tận tình hướng dẫn và giúp đỡ tác giả rất
nhiều trong quá trình thực hiện luận văn này, người đã mở ra cho tác giả
những cách tiếp cận mới của công nghệ thông tin vào trong đời sống thực tế.
Qua đây, tác giả xin gửi tới TS. Đỗ Văn Thành lời cảm ơn chân thành và sâu
sắc nhất.
Tác giả cũng xin bày tỏ lời cảm ơn tới các thầy TS. Hà Quang Thụy,
GS.TSKH. Phan Đình Diệu, PGS.TS. Trịnh Nhật Tiến, PGS.TS. Đoàn Văn
Ban, TS. Nguyễn Việt Hà, TS. Hồng Xn Huấn, PGS.TS. Nguyễn Ngọc
Bình, PGS TS. Đinh Mạnh Tường ... những người đã truyền cho tác giả nhiều
kiến thức và kinh nghiệm quý báu trong thời gian tác giả theo học cao học tại
Trường Đại học Công nghệ - Đại học Quốc gia Hà nội.
Tác giả cũng xin gửi lời cảm ơn chân thành đến một số cán bộ thuộc
Tổng cục Thống kê Việt nam, những người đã giúp đỡ nhiệt tình trong việc
cung cấp số liệu đầy đủ, trung thực phục vụ cho luận văn này.
Cuối cùng, tác giả xin gửi lời cảm ơn đến bạn Trần Văn Thái, người đã
giúp đỡ tác giả hoàn thành luận văn này đồng thời cũng xin gửi lời cám ơn tới
tất cả người thân trong gia đình, bạn bè trong q trình học tập và cơng tác.
Tác giả

Tạ Mạnh Cường

LUAN VAN CHAT LUONG download : add


-2-


Mở đầu
Vấn đề dự báo phát triển kinh tế - xã hội luôn là vấn đề quan tâm của
mọi quốc gia, nhất là đối với nước ta đang trong quá trình xây dựng nền kinh
tế thị trường trong bối cảnh tồn cầu hố kinh tế phát triển ngày càng sâu,
rộng và cạnh tranh gay gắt. Trong nền kinh tế thị trường chức năng quản lý
nhà nước về kinh tế chủ yếu được thực hiện thơng qua cơng cụ chính sách
phát triển kinh tế - xã hội. Kinh nghiệm của các nước có nền kinh tế thị
trường cho thấy để cơng cụ chính sách phát huy được hiệu quả điều rất quan
trong là phải thực hiện tốt cơng tác phân tích và dự báo phát triển kinh tế - xã
hội.
Với sự bùng nổ về thông tin và dữ liệu về kinh tế - xã hội, để dự báo
chính xác và kịp thời tình hình biến động của kinh tế - xã hội Việt Nam và thế
giới phục vụ công tác chỉ đạo, điều hành về kinh tế của Chính phủ thì việc
ứng dụng các phương tiện kỹ thuật và công nghệ của CNTT nhằm phát hiện
tri thức mới từ dữ liệu kinh tế - xã hội hiện tại và quá khứ là cách tiếp cận
đang được các nhà nghiên cứu và ứng dụng Việt Nam hết sức quan tâm. Luận
văn này nằm trong hướng nghiên cứu ứng dụng đó.
Như đã biết các dữ liệu phát triển kinh tế - xã hội là phụ thuộc thời
gian, được thu thập định kỳ theo tháng, q, năm và có tính mùa vụ rất rõ.
Hiện đã có nhiều phương pháp dự báo kinh tế - xã hội khác nhau, mỗi phương
pháp thường phù hợp với một số vấn đề dự báo kinh tế - xã hội nhất định
trong một nền kinh tế cụ thể, bởi vậy việc nghiên cứu xác định phương pháp
dự báo hiệu quả, phù hợp với thực tiễn phát triển kinh tế - xã hội Việt nam là
vấn đề đòi hỏi phải được quan tâm nghiên cứu ứng dụng.
Trong phân tích và dự báo dữ liệu chuỗi thời gian về kinh tế - xã hội,
hiện có bốn mơ hình đang được đặc biệt quan tâm, đó là mơ hình hồi quy

LUAN VAN CHAT LUONG download : add



-3-

chuỗi thời gian, mơ hình tích hợp trung bình trượt tự hồi quy ARIMA, mơ
hình tự hồi quy véc tơ VAR và mơ hình làm trơn hàm mũ Holt-Winters. Cùng
với mơ hình ARIMA, mơ hình Holt-Winters cũng đang được xem là rất thích
hợp cho dự báo ngắn hạn một số vấn đề về kinh tế - xã hội từ dữ liệu chuỗi
thời gian có tính mùa vụ.
Luận văn ”Dự báo chuỗi dữ liệu phụ thuộc thời gian theo mùa vụ bằng
mơ hình Holt-Winters” sẽ tập trung khảo cứu và ứng dụng mơ hình làm trơn
hàm mũ Holt-Winters để dự báo biến động về chỉ số giá tiêu dùng và giá cả
một số mặt hàng theo tháng, tổng giá trị xuất khẩu của Việt nam theo tháng
trên những số liệu chính thống do Tổng cục Thống kê thu thập. Việc dự báo
những nội dung trên đã được thực hiện bằng việc ứng dụng mơ hình ARIMA
đã được trình bầy trong một luận văn cao học, khoa CNTT - Đại học Công
nghệ thực hiện, trong luận văn này sẽ tập trung nghiên cứu làm rõ sự giống và
khác nhau của hai mô hình này, so sánh kết quả dự báo bằng việc ứng dụng cả
hai mơ hình trên cùng tập dữ liệu thử nghiệm.
Luận văn gồm 3 chương nội dung, không kể phần mở đầu, phần kết
luận, phần phụ lục và tài liệu tham khảo.
Chương 1: Chuỗi thời gian và Phân tích chuỗi thời gian, sẽ giới thiệu
một cách tóm tắt những khái niệm chủ yếu liên quan đến chuỗi thời gian và
các bước tiến hành phân tích và dự báo chuỗi thời gian, giới thiệu một số mơ
hình chuỗi thời gian đơn giản và một số kiểm định thống kê sử dụng cho phân
tích, dự báo dữ liệu chuỗi thời gian. Chi tiết của những khái niệm này có thể
được tham khảo trong phần phụ lục.
Chương 2: Mơ hình làm trơn hàm mũ Holt-Winters. Nội dung chính
của chương là trình bày một cách có hệ thống mơ hình làm trơn hàm mũ đơn,
mơ hình làm trơn hàm mũ bậc hai và mơ hình làm trơn hàm mũ bậc ba (HoltWinters) để dự báo dữ liệu chuỗi thời gian có tính chất xu thế và tính chất

LUAN VAN CHAT LUONG download : add



-4-

mùa vụ. Việc lựa chọn mơ hình làm trơn hàm mũ nào phụ thuộc vào tính chất
dữ liệu chuỗi thời gian cụ thể.
Chương 3: Ứng dụng mơ hình Holt-Winters. Chương này tập trung
trình bày qui trình ứng dụng mơ hình Holt-Winters theo mùa vụ để dự báo
một số chỉ số kinh tế vĩ mô quan trọng phản ánh mức độ tăng trưởng kinh tế
Việt nam như dự báo chỉ số giá tiêu dùng theo tháng (CPI), tổng giá trị hàng
hóa xuất khẩu của Việt nam theo tháng. Dữ liệu được sử dụng để dự báo là số
liệu thực tế của nền kinh tế do Tổng cục Thống kê công bố. Các kết quả dự
báo theo mơ hình Holt-Winters sẽ được so sánh với các kết quả dự báo theo
mơ hình ARIMA.
Phần kết luận: Tổng kết những công việc đã thực hiện và kết quả đạt
được trong luận văn này, đồng thời đề xuất một số hướng nghiên cứu tiếp
theo.
Phụ lục: Gồm hai phần, Phần 1 của phụ lục sẽ giới thiệu chi tiết hơn
một số khái niệm quan trọng liên quan đến chuỗi thời gian và phân tích, dự
báo dữ liệu chuỗi thời gian, Phần 2 của phụ lục sẽ giới thiệu mơ hình ARIMA
cho mùa vụ.

LUAN VAN CHAT LUONG download : add


-5-

Chương 1:
Chuỗi thời gian và phân tích dự báo chuỗi thời
gian

Phân tích, dự báo chuỗi thời gian có thể được chia làm hai loại: Phân
tích, dự báo theo mức thời gian và phân tích mối liên hệ nguyên nhân - kết
quả. Phương pháp dự báo theo mức thời gian liên quan đến việc dự báo các
giá trị tương lai của yếu tố được nghiên cứu dựa trên sự tương quan với các
quan sát trong quá khứ và hiện tại. Trong khi đó phân tích mối liên hệ nhân
quả liên quan đến việc xác định các nhân tố khác ảnh hưởng đến yếu tố muốn
dự báo, như dùng phương pháp phân tích hồi qui bội xem xét GDP phụ thuộc
vào lượng đầu tư trong nước, lượng đầu tư nước ngoài, dân số…
Luận văn này chỉ tập trung vào phân tích, dự báo theo mức thời gian
dựa trên giả định cơ bản là các yếu tố ảnh hưởng đến biến động của hiện
tượng trong quá khứ và hiện tại sẽ còn tiếp tục tồn tại trong tương lai.
Chương này sẽ trình bày sơ lược một số vấn đề chủ yếu liên quan đến
chuỗi thời gian bao gồm khái niệm, dự báo cho chuỗi thời gian và các đại
lượng đặc trưng của nó, tiếp đó trình bày về các mơ hình chuỗi thời gian đơn
giản, đưa ra một số phương pháp kiểm định thống kê cho mơ hình chuỗi thời
gian. Chi tiết xin tham khảo ở phần Phụ lục.

1. Chuỗi thời gian và dự báo chuỗi thời gian
1.1. Định nghĩa chuỗi thời gian
Chuỗi dữ liệu phụ thuộc thời gian được chia làm hai loại:
- Chuỗi dữ liệu phụ thuộc thời gian được quan sát, đo đạc trong khoảng
thời gian rời rạc: Các quan sát được thực hiện tại các thời điểm tách

LUAN VAN CHAT LUONG download : add


-6-

biệt, chúng thường là các quan sát được đo tại các mốc thời gian cách
đều nhau, ví dụ chuỗi thời gian được đo theo tuần, quý, tháng, năm, ….

- Chuỗi dữ liệu liên tục theo thời gian: Các quan sát được đo trong
khoảng thời gian liên tục, ví dụ chuỗi dữ liệu đo nhiệt độ trong ngày
(nhiệt kế).
Luận văn này tập trung vào chuỗi dữ liệu phụ thuộc thời gian được đo
trong khoảng thời gian rời rạc và cách đều nhau, gọi là chuỗi thời gian (series
time data)
Như vậy: Chuỗi thời gian là một tập giá trị các quan sát của biến ngẫu
nhiên, ký hiệu là {zt } , t  1,...,n là số các quan sát, đo được trong các khoảng
thời gian t như nhau (hàng năm, quý, tháng, tuần, ngày …) và được xếp theo
thứ tự thời gian.
Ví dụ:
- Chuỗi giá trị tổng sản phẩm quốc nội (GDP) được đo theo từng quý.
- Chuỗi giá trị đo lượng mưa trung bình hàng năm.
- Chuỗi giá trị chỉ số thị trường chứng khoán đo theo ngày.
- Chuỗi giá trị đo sản lượng điện năng tiêu thụ của Việt Nam đo theo
từng tháng, từng quí trong nhiều năm.
- Chuỗi giá trị về chỉ số giá tiêu dùng của Việt Nam theo từng tháng, quý
trong năm.

1.2. Dự báo chuỗi thời gian
Dự báo chuỗi thời gian là ước lượng các giá trị của biến ngẫu nhiên
chuỗi thời gian zt  h (h  1) , ký hiệu là zˆt ( h) , dựa trên sự tương quan với các
giá trị của biến ngẫu nhiên {zt } đã được quan sát trong quá khứ.
Chất lượng của dự báo phụ thuộc vào nhiều yếu tố chẳng hạn sự phức
tạp của chuỗi thời gian khi thực hiện phân tích, tác động của nhiều yếu tố bất

LUAN VAN CHAT LUONG download : add


-7-


thường không thể lường trước được khi tiến hành dự báo, ngồi ra độ chính
xác cũng cịn phụ thuộc phần lớn vào khoảng cách xa gần của dự báo (dự báo
gần thì cho độ chính xác của dự báo tốt hơn so với dự báo xa).

2. Đại lượng đặc trưng chuỗi thời gian
Giả sử có chuỗi thời gian {zt } gồm n các quan sát, t  1,...,n .

2.1. Các đại lượng thống kê đặc trưng cho chuỗi thời
gian
Kỳ vọng: Đại diện cho giá trị trung tâm trong chuỗi:
E ( zt )  

(1.1)

Kỳ vọng của tổng thể được tính dựa trên mẫu các quan sát gọi là kỳ vọng
mẫu, như sau:
1 n
z   zt
n t 1

(1.2)

Phương sai: Đại diện cho mức độ phân tán các giá trị trong chuỗi xung
quanh kỳ vọng của nó:
var (zt )  σ z2  E[(zt  μ)2 ]

(1.3)

Tương tự, phương sai mẫu được tính:


ˆ z2 

1 n
( zt  z ) 2

n t 1

(1.4)

Độ lệch chuẩn: là căn bậc hai của phương sai mẫu:

ˆ z  ˆ z2

(1.5)

LUAN VAN CHAT LUONG download : add


-8-

2.2. Các đại lượng mô tả mối quan hệ giữa các phần tử
trong chuỗi
Tự hiệp phương sai: Tự hiệp phương sai giữa hai z t và z t  k , giữa
chúng có k  1 quan sát gọi là k độ trễ, được xác định như sau:

 z (k )  cov zt , zt  k   E ( zt   )( zt  k   )

(1.6)


Trong đó,  là kỳ vọng chung của z t và z t  k . Tự hiệp phương sai khi
độ trễ k  0 chính là phương sai của z t :  z (0)  covzt , zt    z2 .
Tương tự, tự hiệp phương sai mẫu được tính:

1 nk
ˆ z (k )   ( zt  z )( zt  k  z ) , k  1,...,n  1
n t 1

(1.7)

Trong đó, z là kỳ vọng mẫu của z t và z t  k .
Hàm tự tương quan (ACF): Mô tả tương quan tại trễ k giữa các giá
trị trong chuỗi thời gian, được xác định:

k 

cov( zt , zt k )

 zt  zt k



E( zt   )( zt k   )
 z (k )

 zt  zt k
E ( zt   ) 2 E ( zt  k   ) 2








(1.8)

Trong đó,  z (k ) là tự hiệp phương sai,  zt ,  zt  k lần lượt là độ lệch
chuẩn của z t và z t  k .
Tự tương quan mẫu được tính theo cơng thức:

ˆ k 

ˆ z (k )
ˆ z (0)

(1.9)

Nếu như z t và z t  k khơng tương quan với nhau thì tự tương quan

ˆ k  0 , do khi đó cov( zt , zt  k )  0 . Nhưng điều ngược lại chưa hẳn đã đúng.
Hàm tự tương quan từng phần (PACF): Tự tương quan giữa hai biến
z t và z t  k gồm k  1 biến trung gian z t 1 , z t  2 , … , zt  k 1 :

LUAN VAN CHAT LUONG download : add


-9-

k 1


kk 

 k   k 1, j  k  j
j 1
k 1

1   k 1, j  j

, độ trễ k  2,3,...

(1.10)

j 1

kj  k 1, j  kk k 1,k  j , j  1,2,...,k  1

(1.11)

Giá trị ban đầu, 11  1
Bằng tính tốn tương tự trên các quan sát mẫu có được tự tương quan
từng phần mẫu ˆkk . Khảo sát tự tương quan từng phần như một hàm với tham
số biến thiên theo độ trễ k được gọi là hàm tự tương quan từng phần.
Hệ số R2: Được sử dụng để đo độ thích hợp của mơ hình ước lượng.
Giả sử cho mơ hình hồi qui chuỗi thời gian y t  1   2 z t  at . Hệ số R 2
được tính:
n

R2 

( ( z i  z )( y i  y )) 2

i 1

n

n

 ( zi  z )  ( yi  y )
i 1

2

(1.12)
2

i 1

Trong đó, n là số các quan sát, z là kỳ vọng mẫu của biến độc lập z t , y là
kỳ vọng mẫu của biến phụ thuộc y t . Dễ dàng thấy 0  R 2  1 nếu R 2 tiến
đến 1 thì mơ hình hồi qui được lựa chọn là hợp lý, ngược lại nếu R 2 tiến về 0
thì mơ hình được lựa chọn là chưa hợp lý.
Hệ số điều chỉnh R 2 : Đôi khi hệ số R 2 không phản ánh trung thực
mức độ hợp lý của mơ hình, chẳng hạn khi thêm các tham biến được cho là
không hợp lý vào mơ hình thì R 2 khơng những khơng giảm mà ngược lại cịn
tăng lên. Vì thế hệ số điều chỉnh R 2 được xem xét để thẩm định rõ sự phù
hợp của mơ hình:

LUAN VAN CHAT LUONG download : add


- 10 -


R 2  1  (1  R 2 )

n 1
nk

(1.13)

ở đây n là số các quan sát của chuỗi thời gian, k là số các tham biến trong
mơ hình. R 2 ln nhỏ hơn R 2 , và giảm nếu bổ sung thêm biến hồi qui không
hợp lý vào mơ hình.

3. Phân tích, dự báo chuỗi thời gian
Q trình phân tích, dự báo chuỗi thời gian {zt } là để tìm ra các mơ
hình, luật ẩn trong nó, việc này được thực hiện trên các quan sát mẫu, gồm có
những bước sau:
Bước 1: Nhận dạng các thành phần ẩn tồn tại trong chuỗi thời gian [4]
- Thành phần xu thế (Trend - T): Thể hiện chiều hướng biến động tăng
hoặc giảm của các hiện tượng nghiên cứu trong thời gian dài.
- Thành phần chu kỳ (Period - P): Thể hiện biến động của hiện tượng
được lặp lại với chu kỳ nhất định, thường kéo dài từ 2 đến 10 năm.
- Thành phần mùa vụ (Seasonal - S): Biểu hiện sự tăng hoặc giảm mức
độ của hiện tượng ở một số thời điểm (tháng, quý, năm) nào đó được
lặp đi lặp lại qua nhiều năm.
- Thành phần ngẫu nhiên (Irregular - I): Thể hiện những biến động khơng
có qui luật và hầu như không dự báo hoặc quan sát được trong của hiện
tượng đang nghiên cứu.
Những thành phần này kết hợp với nhau trong chuỗi thời gian bằng
nhiều cách thức khác nhau, chẳng hạn chuỗi thời gian z t được mơ tả là tích
các thành phần, zt  T  P  S  I gọi là mô hình tích, hoặc zt  T  P  S  I

gọi là mơ hình tổng, hoặc kết hợp cả hai zt  T  P  S  I . Do vậy, để phân
tích và nghiên cứu hành vi cũng như dự báo biến động của chuỗi thời gian thì

LUAN VAN CHAT LUONG download : add


- 11 -

cần thiết phải ước lượng được các thành phần nói trên trong chuỗi thời gian
và cách thức kết hợp chúng với nhau trong chuỗi.
Bước 2: Làm trơn số liệu
Tuỳ theo mơ hình dự báo áp dụng mà cần thiết tiến hành bước làm trơn
số liệu hay không ?. Trong trường hợp mơ hình dự báo áp dụng cần quá trình
làm trơn số liệu ta tiến hành loại trừ được thành phần xu thế và mùa vụ trong
chuỗi thời gian. Chuỗi thu được sau cùng khơng cịn chứa các thành phần đó
(chuỗi được làm trơn) sẽ khiến cho việc phân tích dễ dàng hơn.
Bước 3: Chọn lựa, ước lượng và đánh giá mơ hình
Chọn lựa mơ hình trong lớp các mơ hình, sao cho mơ hình được lựa
chọn là “tốt nhất” trong số các mơ hình ứng cử và nó cũng phải đơn giản và
có thể hiểu được dễ dàng. Sau đó thực hiện ước lượng các tham số, phần dư
cho mơ hình vừa chọn lựa và chúng phải thỏa mãn các tiêu chí kiểm định,
đánh giá. Mơ hình ước lượng được đánh giá là hợp lý khi đó sẽ sinh ra chuỗi
“gần giống” với chuỗi dữ liệu quan sát thực.
Bước 4: Dự báo
Dựa trên mơ hình thực hiện dự báo giá trị tương lai cho chuỗi thời gian,
phân tích sự phù hợp của giá trị dự báo cả về mặt thực nghiệm và lý thuyết.
Xác định độ chệch giữa giá trị dự báo với giá trị quan sát thực và khoảng tin
cậy của dự báo tức là giới hạn mà giá trị quan sát thực sẽ nằm trong.
Ứng dụng kết quả dự báo vào thực tế
Trên cơ sở các dự báo về các giá trị tương lai của hiện tượng nghiên

cứu đề ra các quyết định kinh doanh hoặc chính sách. Đồng thời gộp thêm các
giá trị quan sát mới vào chuỗi dữ liệu quan sát nhằm mục đích hiệu chỉnh lại
mơ hình để đưa ra dự báo tốt hơn.

LUAN VAN CHAT LUONG download : add


- 12 -

4. Các mơ hình chuỗi thời gian đơn giản
4.1. Nhiễu trắng [2]
Chuỗi thời gian là nhiễu trắng nếu nó hầu như khơng thể hiện một cấu
trúc, hình mẫu rõ rệt nào cũng như khơng có bất kỳ sự tự tương quan nào
trong chuỗi. Chuỗi nhiễu trắng, ký hiệu a t , là dãy các biến ngẫu nhiên có
phân phối đồng nhất độc lập (Independent Identical Distribution - i.i.d)
Nhiễu trắng a t được ký hiệu at ~ WN (0,  a2 )

Hình 1 - Chuỗi nhiễu trắng.
Trong thực tế, rất hiếm chuỗi thời gian là nhiễu trắng, nhưng nó lại là
cơng cụ cơ bản để tạo ra mơ hình phức tạp.

4.2. Mơ hình bước ngẫu nhiên [9] [3]
Mơ hình bước ngẫu nhiên là mơ hình mà giá trị sinh ra từ nó được xác
định bằng giá trị của quan sát ngay trước nó cộng thêm nhiễu trắng:
zt  zt 1  at

(1.14)

trong đó, t  1,2... a t là nhiễu trắng, a t và z t không tương quan với nhau.


4.3. Bước ngẫu nhiên có bụi
Mơ hình bước ngẫu nhiên có bụi là mơ hình bước ngẫu nhiên cộng
thêm một hằng số α:

LUAN VAN CHAT LUONG download : add


- 13 -

z t    z t 1  at

(1.15)

5. Một số phép toán và kiểm định thống kê
Xét mơ hình tổng qt:
y t  1   2 z t  a t

(1.16)

trong đó, giả định a t là nhiễu trắng,  1 là hệ số chặn và  2 là hệ số góc. Một
số phép tốn và kiểm định thống kê cho mơ hình trên gồm:

5.1. Kiểm định T
Do các hệ số  1 ,  2 là tổng thể, chúng chỉ có thể ước lượng được qua
từng mẫu cụ thể, gọi là hệ số ước lượng mẫu ˆ1 , ˆ 2 . Khi thực hiện các ước
lượng này, điều được quan tâm hơn cả là hệ số ước lượng này có bằng 0 hay
khơng ? Kiểm định T còn được gọi là kiểm định ý nghĩa của hệ số ước lượng
trong mơ hình, với giả thiết kiểm định thống kê H0 :  j  0 để kiểm chứng
điều đó. Thống kê:


T

ˆ j   j
ˆ ˆ

j



ˆ j
ˆ ˆ

(1.17)
j

trong đó, ˆ j là hệ số ước lượng mẫu j và ˆ ˆ là phương sai ước lượng của
j

hệ số ước lượng mẫu j , thống kê T tuân theo phân phối chuẩn T với n  1
bậc tự do.

5.2. Tốn tử trễ [1]
Giả sử có chuỗi các quan sát {zt } , t  1,...,n
Toán tử B được gọi là tốn tử trễ nếu nó thực hiện phép biến đổi:
Bz t  zt 1

(1.18)

LUAN VAN CHAT LUONG download : add



- 14 -

Tốn tử trễ có các tính chất điển hình sau:
-

B k zt  zt  k

-

B 0 zt  zt B 0

Bên cạnh tốn tử trễ, cũng có thêm toán tử sai phân được dùng để thao
tác trên chuỗi thời gian được định nghĩa:
- Sai phân bậc 1:   zt  zt 1  (1  B ) zt

(1.19)

- Sai phân bậc 2: 2 z  (zt )  zt  2 zt 1  zt 2

(1.20)

- Sai phân bậc d : d z  (d  1zt )

(1.21)

t

t


- Sai phân theo trễ mùa vụ bậc 1:
s
 z  zt  zt  s  (1  B ) zt
s t

(1.22)

- Sai phân theo trễ mùa vụ bậc D : D z  (1  B s ) D zt
s t

(1.23)

6. Kết luận chương 1
Trong chương 1 đã trình bày tóm lược một số khái niệm liên quan đến
chuỗi thời gian, dự báo chuỗi thời gian và giới thiệu một số lĩnh vực trong
thực tế có ứng dụng việc phân tích, dự báo chuỗi thời gian. Các bước chủ yếu
để tiến hành phân tích, dự báo chuỗi thời gian và một số mơ hình chuỗi thời
gian đơn giản cũng như các đại lượng đặc trưng như trung bình, phương sai,
tự tương quan, tự tương quan từng phần… cho chuỗi thời gian và công thức
xác định chúng cũng được đề cập đến trong chương này. Chi tiết xin tham
khảo ở phần Phụ lục.
Trong chương tiếp theo của luận văn sẽ trình bày mơ hình dự báo dữ
liệu chuỗi thời gian mang tính mùa vụ đang được quan tâm nghiên cứu ứng
dụng: mơ hình làm trơn hàm mũ Holt-Winters.

LUAN VAN CHAT LUONG download : add


- 15 -


Chương 2:
Mơ hình làm trơn hàm mũ Holt-Winters
Có rất nhiều dữ liệu chuỗi thời gian có tính chất mùa vụ, ví dụ số lượng
tiêu thụ quần áo hay doanh thu mặt hàng đồ chơi cho trẻ em, chỉ số giá tiêu
dung trong năm… Bài toán dự báo theo mùa vụ có một vị trí quan trọng trong
dự báo tình hình phát triển kinh tế - xã hội hay trong sản xuất kinh doanh của
bất kỳ đơn vị sản xuất kinh doanh nào. Chương này tập trung giới thiệu mơ
hình làm trơn hàm mũ Holt-Winters. Hai mơ hình trong kỹ thuật làm trơn
hàm mũ Holt-Winters được giới thiệu trong chương này là: mơ hình mùa vụ
nhân (Multiplicative Seasonal Model) và mơ hình mùa vụ cộng (Additive
Seasonal Model) cho chuỗi thời gian có tính chất xu thế và tính chất mùa vụ.

1. Một số khái niệm cơ bản
1.1. Mơ hình mùa vụ cộng và mơ hình mùa vụ nhân
Rất nhiều chuỗi thời gian trong thực tế thể hiện các mẫu, hành vi lặp lại
có tính mùa vụ. Có một sự khác biệt nhỏ trong khái niệm giữa tính chu kỳ và
tính mùa vụ, đó là tính chu kỳ thể hiện một hành vi, mẫu xuất hiện lặp lại
khơng ít thì nhiều trong một khoảng thời gian nào đó, chẳng hạn chu kỳ nhật
thực, chu kỳ tuần hồn… cịn tính mùa vụ chỉ ra rằng các hành vi, mẫu lặp đi
lặp lại đều đặn trong những khoảng thời gian cố định như hàng năm, hàng
ngày, hàng tuần, hàng thập kỷ. Thuật ngữ “mùa vụ” đã trở thành thông dụng
khi dữ liệu chuỗi thời gian được phân tích theo tháng, quý hoặc năm. Khoảng
thời gian của một mùa vụ được ký hiệu là s . Nếu dữ liệu được lấy theo tháng
thì khoảng thời gian cho một mùa vụ s là 12 (có 12 tháng/năm), nếu lấy theo
q thì khoảng thời gian cho một mùa vụ s là 4 (có 4 q/năm), theo ngày thì

LUAN VAN CHAT LUONG download : add


- 16 -


s là 24 (24 giờ/ngày), theo tuần thì s là 7; 6; 5 (7 ngày/tuần, 6 ngày/tuần, 5
ngày/tuần tuỳ theo số ngày thu thập dữ liệu).
Ví dụ, doanh thu từ một mặt hàng đồ chơi cho trẻ em nào đó thường lên
đến đỉnh điểm vào tháng 11, 12 trong năm và giảm thấp nhất vào mùa hè
trong năm. Doanh thu bán hàng của mặt hàng đồ chơi này có thể tăng đỉnh
điểm thêm khoảng 1 triệu dollar tháng 12 hàng năm. Vì vậy, chúng ta có thể
đưa vào phần dự báo cho tháng 12 doanh thu tăng thêm 1 triệu dollar (trên
doanh thu trung bình hàng năm) của việc bán hàng và doanh thu này diễn ra
đều đặn hàng năm. Trong trường hợp này, ta nói dữ liệu chuỗi thời gian này
có tính chất mùa vụ tăng trưởng theo cấp số cộng hay tn theo mơ hình mùa
vụ cộng (Additive Seasonal Model).
Một cách khác, trong tháng 12 doanh thu bán hàng của của một mặt
hàng đồ chơi cho trẻ em nào đó có thể tăng 40% (so với doanh thu trung bình
hàng năm) có nghĩa là hệ số tăng trưởng của doanh thu là 1,4. Vì vậy, doanh
thu bán hàng của mặt hàng đồ chơi trong tháng 12 có thể đạt cao hay thấp
nhưng mức độ tăng trưởng doanh thu của tháng sẽ tăng tỷ lệ theo một hệ số
cố định nào đó (trong trường hợp này là 1,4). Trong trường hợp này, ta nói dữ
liệu chuỗi thời gian có tính chất mùa vụ tăng trưởng theo cấp số nhân hay
tn theo mơ hình mùa vụ nhân (Multiplicative Seasonal Model)

LUAN VAN CHAT LUONG download : add


×