Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 40

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (582.75 KB, 3 trang )

Created by T. Madas
Question 149

(***+)

(

)

f ( x ) = x 18 x 2 + 35 x − 45 , x ≥ 0 .

a) Find a simplified expression for f ′ ( x ) .
b) Show clearly that

f ′( x) =

15 ( 3 x − 1)( 2 x − 3)
2 x

.

3

f ′ ( x ) = 45 x 2 +

Created by T. Madas

105 12 45 − 12
x − x
2
2




Created by T. Madas
Question 150

(***+)
y
y = 2x +

1
x

B
A

x
O

The figure above shows part of the curve C , with equation
y = 2x +

1
, x≠0
x

The point A lies on C where x = 1 .
2

a) Find an equation of the normal to C at A .
The normal meets the curve again at the point B .


b) Determine the exact coordinates of B .

(

C1N , 2 x − 4 y + 11 = 0 , B 4 , 41
3 12

Created by T. Madas

)


Created by T. Madas
Question 151

(***+)

y
B

O
A

x

The figure above show the graph of the curve C with equation
2
y = x 1 − x 3  , x ∈ » , x ≥ 0 .




The curve meets the coordinate axes at the origin and at the point A (1,0 ) .
The two tangents to C at the origin O and at the point A , meet at the point B .

a) Calculate the value of

dy
at O , and hence write down an equation of the
dx

tangent to C at O .

b) Show that an equation of the tangent to C at A is
2x + 3 y = 2

c) Determine the area of the finite region bounded by C and the tangents to C at
O and at A .
SYN-H , y = x , area = 3
40

Created by T. Madas



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×