Tải bản đầy đủ (.pdf) (3 trang)

Bài tập CALCULUS 36

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (493.12 KB, 3 trang )

Created by T. Madas
Question 135

(***+)
y

L
N

R
C

O

M
A

x

The figure above shows the graph of the curve C with equation

y = 6x − x2 , x ∈ » .
The curve meets the x axis at the origin O and at the point A . The straight line L is
the tangent to C at A .

a) Find an equation of L .
The point M is the maximum point of C . The point N lies on L so that MN is
parallel to the y axis. The finite region R , shown shaded in the figure above, is
bounded by C , L and the straight line segment MN .

b) Determine the area of R .


MP1-I , y = 36 − 6 x , 9

Created by T. Madas


Created by T. Madas
Question 136

(***+)

The curve C has equation

y=

( x + 4 )2 ,
x

x >0.

a) Show that the gradient function of C is
dy 3 12
−1
−3
= x + 4 x 2 − 8x 2 .
dx 2
The point P lies on C where x = 4 .
The straight line L is the tangent to C at the point P .

b) Find an equation of L .
c) Find the area of the triangle OAB , where A and B are the points where L

crosses the coordinate axes, and O is the origin.
y = 4 x + 16 , area = 32

Created by T. Madas


Created by T. Madas
Question 137

(***+)

The figure below shows a large tank in the shape of a cuboid with a rectangular base
and no top.
Two of the vertical opposite faces of the cuboid are square and the height of the cuboid
is x metres.

x

a) Given that the surface area of the tank is 54 m 2 , show that the capacity of the
tank, V m3 , is given by
V = 18 x − 2 x3 .
3

b) Find the maximum value for V , fully justifying the fact that it is indeed the
maximum value.
Vmax = 36

Created by T. Madas




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×