MIDTERM FORMULA SHEET
SOME INTEGRALS OFTEN MET IN EM PROBLEMS
1
∫ x dx = ln | x | +C
1
x
∫ (a 2 ± x 2 )3 / 2 dx = ± a 2 a 2 ± x 2 + C
x
1
∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + C
VECTOR IDENTITIES
G G G
G G G
G G G
A ⋅ ( B × C ) = C ⋅ ( A × B ) = B ⋅ (C × A)
G G G
G G G
G G G
A × ( B × C ) = B( A ⋅ C ) − C ( A ⋅ B)
.c
om
∇(Φ + Ψ ) = ∇Φ + ∇Ψ
G G
G
G
∇ ⋅ ( A + B) = ∇ ⋅ A + ∇ ⋅ B
G G
G
G
∇ × ( A + B) = ∇ × A + ∇ × B
∇(ΦΨ ) = Φ∇Ψ + Ψ∇Φ
Φ Ψ∇Φ − Φ∇Ψ
∇ =
Ψ2
Ψ
ng
co
an
th
ng
∇Φ n = nΦ n−1∇Φ
G
G
G
∇ ⋅ (ΦA) = A ⋅∇Φ + Φ∇ ⋅ A
G G
G G
G
G
∇ ⋅ ( A × B ) = B ⋅∇ × A − A ⋅∇ × B
G
G
G
∇ × (ΦA) = ∇Φ × A + Φ∇ × A
G G
G G G G G
G G
G
∇ × ( A × B ) = A∇ ⋅ B − B∇ ⋅ A + ( B ⋅∇) A − ( A ⋅∇) B
G G
G
G
G
G
G
G
G G
∇( A ⋅ B ) = A × (∇ × B ) + B × (∇ × A) + ( A ⋅∇) B + ( B ⋅∇) A
cu
u
du
o
∇ ⋅∇Φ = ∇ 2Φ
G
∇ ⋅∇ × A = 0
∇ × ∇Φ = 0
G
G
G
∇ ×∇ × A = ∇∇ ⋅ A − ∇ 2 A
VECTOR INTEGRAL THEOREMS
G
G G
∫∫∫ (∇ ⋅ A)dv = w
∫∫ A ⋅ ds (Divergence theorem, Gauss identity)
v
S[ v ]
G G
∫∫ (∇ × A) ⋅ ds =
S
v∫
G G
A ⋅ dl (Curl theorem 1, Stokes’ theorem)
C[ S ]
G
G
G G
ˆ
∇
×
A
dv
=
ds
×
A
≡
n
×
A
(
)
(
)ds (Curl theorem 2)
∫∫∫
w
∫∫
w
∫∫
v
S[ v ]
(
(
)
S[ v ]
CuuDuongThanCong.com
)
x2
x
2
2
∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + ln x + a + x + C
1
1
x
∫ a 2 + x 2 dx = a arctan a + C
1
1 a−x
x
2a ln a + x = − a arctanh a ,| x |< a
1
∫ x 2 − a 2 dx = 1
− arccoth x
,| x |> a
a
a
x
1
2
2
∫ a 2 + x 2 dx = 2 ln a + x + C
x
2
2
∫ a 2 + x 2 dx = a + x + C
1
2
2
∫ a 2 + x 2 dx = ln( x + a + x ) + C
1
1 a + a 2 + x2
+C
ln
dx
=
−
∫ x a2 + x2
a
x
1
∫ x sin(ax)dx = a 2 [sin(ax) − ax cos(ax)]
1
∫ x cos(ax)dx = a 2 [cos(ax) + ax sin(ax)]
/>
MIDTERM FORMULA SHEET
x ag − bf
1
=
arctan
∫ (ax 2 + b) fx 2 + g b ag − bf
b fx 2 + g
dx
, (ag > bf )
.c
om
x
Rectangular ↔ Spherical
∫ sin x dx = ln tan 2 + C
1
x = R sin θ cos φ
y = R sin θ sin φ
z = R cos θ
x π
ng
∫ cos x dx = ln tan 2 + 4 + C
SOME USEFUL DEFINITE INTGERALS
2π
0 , m ≠ n
∫ sin mx ⋅ sin nx dx = π , m = n ≠ 0
0
∫
sin mx ⋅ cos nx dx = 0
, m≠n
m=n≠0
0
, m≠n
m=n≠0
∫ cos mx ⋅ cos nx dx = π / 2,
0
,
0
∫ sin mx ⋅ cos nx dx = 2m ,
m 2 − n 2
0
π
π
(a − b cos x)
,
∫ (a 2 + b2 − 2ab cos x) dx = a
0,
0
π
m + n = even number
cu
0
π
u
0
∫ sin mx ⋅ sin nx dx = π / 2,
du
o
0
π
co
, m≠n
m=n≠0
an
0
2π
r = R sin θ
φ =φ
z = R cos θ
th
0
∫ cos mx ⋅ cos nx dx = π ,
m + n = odd number
a>b>0
b>a>0
CuuDuongThanCong.com
R = x2 + y 2 + z 2
(
θ = arccos z / x 2 + y 2 + z 2
φ = arctan( y / x)
)
Cylindrical ↔ Spherical
ng
2π
r = x2 + y 2
y
φ = arctan
x
z=z
x = r cos φ
y = r sin φ
z=z
π
∫ tan xdx = − ln | cos x | +C , x ≠ (2k + 1) 2
∫ cot xdx = ln | sin x | +C , x ≠ 2kπ
1
COORDINATE TRANSFORMATIONS
Rectangular ↔ Cylindrical
R = r2 + z2
φ =φ
θ = arccos z / r 2 + z 2
(
)
VECTOR TRANSFORMATIONS
Rectangular Components ↔ Cylindrical Components
ax = ar cos φ − aφ sin φ
ar = ax cos φ + a y sin φ
a y = ar sin φ + aφ cos φ
aφ = − ax sin φ + a y cos φ
a z = az
az = az
Note: φ is the position angle of the point at which the vector exists.
Rectangular Components ↔ Spherical Components
ax = aR sin θ cos φ + aθ cosθ cos φ − aφ sin φ
a y = aR sin θ sin φ + aθ cos θ sin φ + aφ cos φ
az = aR cos θ − aθ sin θ
aR = ax sin θ cos φ + a y sin θ sin φ + az cos θ
aθ = ax cos θ cos φ + a y cos θ sin φ − a z cos θ
aφ = − ax sin φ + a y cos φ
Note: φ and θ are the position angles of the point at which the
vector exists.
/>
MIDTERM FORMULA SHEET
cu
u
du
o
ng
th
.c
om
an
DERIVATIVES OF ELEMENTARY FUNCTIONS
(const.)′ = 0
1
(arctan x)′ =
( x)′ = 1
1 + x2
1
( x k )′ = kx k −1
(arc cot x)′ = −
1 + x2
(e x )′ = e x
(sinh x)′ = cosh x
(a x )′ = a x ln a
(cosh x)′ = sinh x
1
1
(ln x)′ =
(tanh x)′ =
= 1 − tanh 2 x
x
cosh 2 x
1
(log a x)′ =
, a ≠ 1, x > 0
1
(coth x)′ = −
= 1 − coth 2 x
x ln a
2
sinh
x
(sin x)′ = cos x
1
(cos x)′ = − sin x
(arcsinh x)′ =
1 + x2
1
(tan x)′ =
, x ≠ (2k + 1)π
1
cos 2 x
(arccosh x)′ = ±
, x >1
x2 − 1
1
(cot x)′ = − 2 , x ≠ kπ
1
sin x
(arctanh x)′ =
,| x |< 1
1
1 − x2
(arcsin x)′ =
,| x |< 1
1
1 − x2
(arccoth x)′ =
,| x |> 1
2
1
−
x
1
(arccos x)′ = −
,| x |< 1
1 − x2
ng
Note: θ is the position angle of the point at which the vector exists.
G ∂F ∂Fy ∂Fz
∇⋅F = x +
+
∂x
∂y
∂z
G
∂F ∂Fy
∂Fx ∂Fz ∂Fy ∂Fx
∇ × F = xˆ z −
−
−
+ yˆ
+ zˆ
∂z
∂x ∂x
∂y
∂z
∂y
∂ 2Φ ∂ 2Φ ∂ 2Φ
∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ = 2 + 2 + 2
∂x
∂y
∂z
G
2
2
2
2
∇ F = xˆ∇ Fx + yˆ∇ Fy + zˆ∇ Fz
Cylindrical Coordinates
∂Φ
1 ∂Φ
∂Φ
ϕˆ +
∇Φ =
rˆ +
zˆ
r ∂ϕ
∂r
∂z
G 1 ∂
1 ∂Fϕ ∂Fz
(rFr ) +
∇⋅F =
+
r ∂r
r ∂ϕ
∂z
G
1 ∂Fz ∂Fφ ˆ ∂Fr ∂Fz 1 ∂ (rFφ ) 1 ∂Fr
∇ × F = rˆ
−
−
−
+φ
+ zˆ
∂z
∂r r ∂r
r ∂φ
∂z
r ∂φ
1 ∂ ∂Φ 1 ∂ 2 Φ ∂ 2 Φ
∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ =
+
r
+
r ∂r ∂r r 2 ∂φ 2 ∂z 2
G
∂ 2 A 1 ∂Ar Ar 1 ∂ 2 Ar 2 ∂Aφ ∂ 2 Ar
∇ 2 A = rˆ 2r +
−
+
−
+ 2 +
r ∂r r 2 r 2 ∂φ 2 r 2 ∂φ
∂z
∂r
∂ 2 Aφ 1 ∂Aφ Aφ 1 ∂ 2 Aφ 2 ∂Ar ∂ 2 Aφ
ˆ
φ 2 +
− 2 + 2
+ 2
+
+
2
2
∂r
r
r
φ
∂
∂
r
r
r
z
φ
∂
∂
2
2
2
∂ A 1 ∂Az 1 ∂ Az ∂ Az
zˆ 2z +
+ 2
+ 2
2
r
r
∂
dr
r
φ
∂
∂z
Spherical Coordinates
∂Φ ˆ 1 ∂Φ ˆ
1 ∂Φ
θ+
ϕˆ
R+
∇Φ =
R ∂θ
R sin θ ∂ϕ
∂R
G 1 ∂
1
1 ∂Fϕ
∂
( R 2 FR ) +
( Fθ sin θ ) +
∇⋅F = 2
R sin θ ∂θ
R sin θ ∂ϕ
R ∂R
co
Cylindrical Components↔ Spherical Components
ar = aR sin θ + aθ cos θ
aR = ar sin θ + az cos θ
aφ = aφ
aθ = ar cos θ − az sin θ
aφ = aφ
a z = aR cos θ − aθ sin θ
DIFFERENTIAL OPERATORS
Rectangular Coordinates
∂Φ
∂Φ
∂Φ
∇Φ = xˆ
+ yˆ
+ zˆ
∂x
∂y
∂z
CuuDuongThanCong.com
/>
MIDTERM FORMULA SHEET
∂
∂Aθ
∂θ ( Aϕ sin θ ) − ∂ϕ
1 1 ∂AR ∂
θˆ
( RAϕ ) +
−
R sin θ ∂ϕ ∂R
G
ˆ + θˆRdθ + ϕˆ R sin θ dϕ ;
dl = RdR
G ˆ 2
ds = RR
sin θ dθ dϕ + θˆR sin θ dRdϕ + ϕˆ RdRdθ ;
+
dv = R 2 sin θ dRdθ dϕ
1 ∂
∂A
( RAθ ) − R
R ∂R
∂θ
ng
∂ 2Φ
∂ϕ 2
+
ng
th
∂ 2 Aθ 2 ∂Aθ
Aθ
1 ∂ 2 Aθ cot θ ∂Aθ
ˆ
−
+
+ 2
+
θ 2 +
R ∂R R 2 sin 2 θ R 2 ∂θ 2
R ∂θ
∂R
∂ 2 Aθ
1
2 ∂AR 2 cot θ ∂Aϕ
+
−
+
R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ R 2 sin θ ∂ϕ
co
1 ∂ 2 ∂Φ
1
∂
∂Φ
1
R
+ 2
sin θ
+ 2 2
2
∂R R sin θ ∂θ
∂θ R sin θ
R ∂R
2
2
G
∂ AR 2 ∂AR 2
1 ∂ AR cot θ ∂AR
∇ 2 A = Rˆ
+
− 2 AR + 2
+ 2
+
2
R ∂R R
R ∂θ 2
R ∂θ
∂R
∂Aϕ
∂ 2 AR 2 ∂Aθ 2 cot θ
1
2
−
−
−
A
θ
R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ
R2
R 2 sin θ ∂ϕ
∇ 2Φ =
ELECTROMAGNETIC EQUATIONS
Coaxial line
2πε
µ
b µ
, F/m; L1 = 0 ln + 0 , H/m
C1 =
ln(b / a)
2π a 8π
Twin-lead line
2
πε
µ h
h
C1 =
F/m; L1 = ln + − 1 H/m
2
π r
h
r
h
ln + − 1
r
r
an
ϕˆ
1
R sin θ
.c
om
G
∇ × A = Rˆ
du
o
2
∂ 2 Aϕ 2 ∂Aϕ
Aϕ
1 ∂ Aϕ cot θ ∂Aϕ
+
−
+
+ 2
+
ϕˆ
∂R 2 R ∂R R 2 sin 2 θ R 2 ∂θ 2
∂
θ
R
cu
u
∂ 2 Aϕ
∂AR 2 cot θ ∂Aθ
1
2
+
+
R 2 sin 2 θ ∂ϕ 2 R 2 sin θ ∂ϕ R 2 sin θ ∂ϕ
DIFFERENTIAL ELEMENTS
Cartesian coordinates
G
G
ˆ + ydy
ˆ + zdz
ˆ
ˆ
ˆ ; ds = xdydz
ˆ
dl = xdx
+ ydxdz
+ zdxdy
; dv = dxdydz
Cylindrical coordinates
G
G
ˆ + ϕˆ rdϕ + zdz
ˆ ϕ dz + ϕˆ drdz + zrdrd
ˆ ; ds = rrd
ˆ
dl = rdr
ϕ ; dv = rdrdϕ dz
Spherical coordinates
CuuDuongThanCong.com
/>