Tải bản đầy đủ (.pdf) (4 trang)

Công thức trường điện từ

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (61.82 KB, 4 trang )

MIDTERM FORMULA SHEET
SOME INTEGRALS OFTEN MET IN EM PROBLEMS
1
∫ x dx = ln | x | +C
1
x
∫ (a 2 ± x 2 )3 / 2 dx = ± a 2 a 2 ± x 2 + C
x
1
∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + C

VECTOR IDENTITIES
G G G
G G G
G G G
A ⋅ ( B × C ) = C ⋅ ( A × B ) = B ⋅ (C × A)
G G G
G G G
G G G
A × ( B × C ) = B( A ⋅ C ) − C ( A ⋅ B)

.c
om

∇(Φ + Ψ ) = ∇Φ + ∇Ψ
G G
G
G
∇ ⋅ ( A + B) = ∇ ⋅ A + ∇ ⋅ B
G G
G


G
∇ × ( A + B) = ∇ × A + ∇ × B
∇(ΦΨ ) = Φ∇Ψ + Ψ∇Φ
 Φ  Ψ∇Φ − Φ∇Ψ
∇  =
Ψ2
Ψ

ng

co
an
th

ng

∇Φ n = nΦ n−1∇Φ
G
G
G
∇ ⋅ (ΦA) = A ⋅∇Φ + Φ∇ ⋅ A
G G
G G
G
G
∇ ⋅ ( A × B ) = B ⋅∇ × A − A ⋅∇ × B
G
G
G
∇ × (ΦA) = ∇Φ × A + Φ∇ × A

G G
G G G G G
G G
G
∇ × ( A × B ) = A∇ ⋅ B − B∇ ⋅ A + ( B ⋅∇) A − ( A ⋅∇) B
G G
G
G
G
G
G
G
G G
∇( A ⋅ B ) = A × (∇ × B ) + B × (∇ × A) + ( A ⋅∇) B + ( B ⋅∇) A

cu

u

du
o

∇ ⋅∇Φ = ∇ 2Φ
G
∇ ⋅∇ × A = 0
∇ × ∇Φ = 0
G
G
G
∇ ×∇ × A = ∇∇ ⋅ A − ∇ 2 A


VECTOR INTEGRAL THEOREMS
G
G G
∫∫∫ (∇ ⋅ A)dv = w
∫∫ A ⋅ ds (Divergence theorem, Gauss identity)
v

S[ v ]

G G
∫∫ (∇ × A) ⋅ ds =
S

v∫

G G
A ⋅ dl (Curl theorem 1, Stokes’ theorem)

C[ S ]

G
G
G G
ˆ

×
A
dv
=

ds
×
A

n
×
A
(
)
(
)ds (Curl theorem 2)
∫∫∫
w
∫∫
w
∫∫
v

S[ v ]

(

(

)

S[ v ]

CuuDuongThanCong.com


)

x2
x
2
2
∫ (a 2 + x 2 )3 / 2 dx = − a 2 + x 2 + ln x + a + x + C
1
1
x
∫ a 2 + x 2 dx = a arctan a + C
1
 1 a−x
 x
 2a ln  a + x  = − a arctanh  a  ,| x |< a
1



 
∫ x 2 − a 2 dx =  1
 − arccoth  x 
,| x |> a
 
 a
a
x
1
2
2

∫ a 2 + x 2 dx = 2 ln a + x + C
x
2
2
∫ a 2 + x 2 dx = a + x + C
1
2
2
∫ a 2 + x 2 dx = ln( x + a + x ) + C
1
1  a + a 2 + x2 
+C
ln 
dx
=

∫ x a2 + x2

a 
x


1
∫ x sin(ax)dx = a 2 [sin(ax) − ax cos(ax)]
1
∫ x cos(ax)dx = a 2 [cos(ax) + ax sin(ax)]

/>

MIDTERM FORMULA SHEET

 x ag − bf
1

=
arctan
∫ (ax 2 + b) fx 2 + g b ag − bf
 b fx 2 + g

dx


, (ag > bf )



.c
om

 x

Rectangular ↔ Spherical

∫ sin x dx = ln tan  2  + C
1

x = R sin θ cos φ
y = R sin θ sin φ
z = R cos θ

x π


ng

∫ cos x dx = ln tan  2 + 4  + C
SOME USEFUL DEFINITE INTGERALS

0 , m ≠ n
∫ sin mx ⋅ sin nx dx = π , m = n ≠ 0
0



sin mx ⋅ cos nx dx = 0
, m≠n
m=n≠0

0

, m≠n
m=n≠0

∫ cos mx ⋅ cos nx dx = π / 2,
0

,
0

∫ sin mx ⋅ cos nx dx =  2m ,
 m 2 − n 2
0

π
π
(a − b cos x)
 ,
∫ (a 2 + b2 − 2ab cos x) dx =  a
 0,
0
π

m + n = even number

cu

0

π

u

0

∫ sin mx ⋅ sin nx dx = π / 2,

du
o

0

π


co

, m≠n
m=n≠0

an

0


r = R sin θ
φ =φ
z = R cos θ

th

0

∫ cos mx ⋅ cos nx dx =  π ,

m + n = odd number

a>b>0
b>a>0

CuuDuongThanCong.com

R = x2 + y 2 + z 2

(


θ = arccos z / x 2 + y 2 + z 2
φ = arctan( y / x)

)

Cylindrical ↔ Spherical

ng



r = x2 + y 2
 y
φ = arctan  
 x
z=z

x = r cos φ
y = r sin φ
z=z

π

∫ tan xdx = − ln | cos x | +C , x ≠ (2k + 1) 2
∫ cot xdx = ln | sin x | +C , x ≠ 2kπ
1

COORDINATE TRANSFORMATIONS
Rectangular ↔ Cylindrical


R = r2 + z2
φ =φ
θ = arccos z / r 2 + z 2

(

)

VECTOR TRANSFORMATIONS
Rectangular Components ↔ Cylindrical Components
ax = ar cos φ − aφ sin φ
ar = ax cos φ + a y sin φ
a y = ar sin φ + aφ cos φ
aφ = − ax sin φ + a y cos φ
a z = az
az = az

Note: φ is the position angle of the point at which the vector exists.
Rectangular Components ↔ Spherical Components
ax = aR sin θ cos φ + aθ cosθ cos φ − aφ sin φ
a y = aR sin θ sin φ + aθ cos θ sin φ + aφ cos φ
az = aR cos θ − aθ sin θ
aR = ax sin θ cos φ + a y sin θ sin φ + az cos θ
aθ = ax cos θ cos φ + a y cos θ sin φ − a z cos θ
aφ = − ax sin φ + a y cos φ

Note: φ and θ are the position angles of the point at which the
vector exists.


/>

MIDTERM FORMULA SHEET

cu

u

du
o

ng

th

.c
om

an

DERIVATIVES OF ELEMENTARY FUNCTIONS
(const.)′ = 0
1
(arctan x)′ =
( x)′ = 1
1 + x2
1
( x k )′ = kx k −1
(arc cot x)′ = −
1 + x2

(e x )′ = e x
(sinh x)′ = cosh x
(a x )′ = a x ln a
(cosh x)′ = sinh x
1
1
(ln x)′ =
(tanh x)′ =
= 1 − tanh 2 x
x
cosh 2 x
1
(log a x)′ =
, a ≠ 1, x > 0
1
(coth x)′ = −
= 1 − coth 2 x
x ln a
2
sinh
x
(sin x)′ = cos x
1
(cos x)′ = − sin x
(arcsinh x)′ =
1 + x2
1
(tan x)′ =
, x ≠ (2k + 1)π
1

cos 2 x
(arccosh x)′ = ±
, x >1
x2 − 1
1
(cot x)′ = − 2 , x ≠ kπ
1
sin x
(arctanh x)′ =
,| x |< 1
1
1 − x2
(arcsin x)′ =
,| x |< 1
1
1 − x2
(arccoth x)′ =
,| x |> 1
2
1

x
1
(arccos x)′ = −
,| x |< 1
1 − x2

ng

Note: θ is the position angle of the point at which the vector exists.


G ∂F ∂Fy ∂Fz
∇⋅F = x +
+
∂x
∂y
∂z
G
 ∂F ∂Fy 
 ∂Fx ∂Fz   ∂Fy ∂Fx 
∇ × F = xˆ  z −


 + yˆ 

 + zˆ 
∂z 
∂x   ∂x
∂y 
 ∂z
 ∂y
∂ 2Φ ∂ 2Φ ∂ 2Φ
∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ = 2 + 2 + 2
∂x
∂y
∂z
G
2
2
2

2
∇ F = xˆ∇ Fx + yˆ∇ Fy + zˆ∇ Fz
Cylindrical Coordinates
∂Φ
1 ∂Φ
∂Φ
ϕˆ +
∇Φ =
rˆ +

r ∂ϕ
∂r
∂z
G 1 ∂
1 ∂Fϕ ∂Fz
(rFr ) +
∇⋅F =
+
r ∂r
r ∂ϕ
∂z
G
 1 ∂Fz ∂Fφ  ˆ  ∂Fr ∂Fz   1 ∂ (rFφ ) 1 ∂Fr 
∇ × F = rˆ 



 +φ 

 + zˆ 

∂z 
∂r   r ∂r
r ∂φ 
 ∂z
 r ∂φ
1 ∂  ∂Φ  1 ∂ 2 Φ ∂ 2 Φ
∇ ⋅ (∇Φ ) ≡ ∇ 2 Φ ≡ ∆Φ =
+
r
+
r ∂r  ∂r  r 2 ∂φ 2 ∂z 2
G
 ∂ 2 A 1 ∂Ar Ar 1 ∂ 2 Ar 2 ∂Aφ ∂ 2 Ar 
∇ 2 A = rˆ  2r +

+

+ 2 +
r ∂r r 2 r 2 ∂φ 2 r 2 ∂φ
∂z 
 ∂r
 ∂ 2 Aφ 1 ∂Aφ Aφ 1 ∂ 2 Aφ 2 ∂Ar ∂ 2 Aφ 
ˆ
φ 2 +
− 2 + 2
+ 2
+
+
2
2 

 ∂r
r
r
φ


r
r
r
z
φ




2
2
2
 ∂ A 1 ∂Az 1 ∂ Az ∂ Az 
zˆ  2z +
+ 2
+ 2 
2
r
r

dr
r
φ


∂z 

Spherical Coordinates
∂Φ ˆ 1 ∂Φ ˆ
1 ∂Φ
θ+
ϕˆ
R+
∇Φ =
R ∂θ
R sin θ ∂ϕ
∂R
G 1 ∂
1
1 ∂Fϕ

( R 2 FR ) +
( Fθ sin θ ) +
∇⋅F = 2
R sin θ ∂θ
R sin θ ∂ϕ
R ∂R

co

Cylindrical Components↔ Spherical Components
ar = aR sin θ + aθ cos θ
aR = ar sin θ + az cos θ
aφ = aφ
aθ = ar cos θ − az sin θ

aφ = aφ
a z = aR cos θ − aθ sin θ

DIFFERENTIAL OPERATORS
Rectangular Coordinates
∂Φ
∂Φ
∂Φ
∇Φ = xˆ
+ yˆ
+ zˆ
∂x
∂y
∂z

CuuDuongThanCong.com

/>

MIDTERM FORMULA SHEET
 ∂
∂Aθ
 ∂θ ( Aϕ sin θ ) − ∂ϕ


1  1 ∂AR ∂
θˆ 
( RAϕ )  +

R  sin θ ∂ϕ ∂R



G
ˆ + θˆRdθ + ϕˆ R sin θ dϕ ;
dl = RdR
G ˆ 2
ds = RR
sin θ dθ dϕ + θˆR sin θ dRdϕ + ϕˆ RdRdθ ;


+


dv = R 2 sin θ dRdθ dϕ

1 ∂
∂A 
( RAθ ) − R 

R  ∂R
∂θ 

ng

∂ 2Φ
∂ϕ 2


+



ng

th

 ∂ 2 Aθ 2 ∂Aθ

1 ∂ 2 Aθ cot θ ∂Aθ
ˆ

+
+ 2
+
θ 2 +
R ∂R R 2 sin 2 θ R 2 ∂θ 2
R ∂θ
 ∂R
∂ 2 Aθ
1
2 ∂AR 2 cot θ ∂Aϕ 
+

+
R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ R 2 sin θ ∂ϕ 

co

1 ∂  2 ∂Φ 
1
∂ 

∂Φ 
1
R
+ 2
 sin θ
+ 2 2
2
∂R  R sin θ ∂θ 
∂θ  R sin θ
R ∂R 
2
2
G
 ∂ AR 2 ∂AR 2
1 ∂ AR cot θ ∂AR
∇ 2 A = Rˆ 
+
− 2 AR + 2
+ 2
+
2
R ∂R R
R ∂θ 2
R ∂θ
 ∂R
∂Aϕ
∂ 2 AR 2 ∂Aθ 2 cot θ
1
2




A
θ
R 2 sin 2 θ ∂ϕ 2 R 2 ∂θ
R2
R 2 sin θ ∂ϕ

∇ 2Φ =

ELECTROMAGNETIC EQUATIONS
Coaxial line
2πε
µ
b µ
, F/m; L1 = 0 ln   + 0 , H/m
C1 =
ln(b / a)
2π  a  8π
Twin-lead line
2

πε
µ  h
h
C1 =
F/m; L1 = ln +   − 1  H/m
2
π r
h



r
h




ln +   − 1
r

r



an

ϕˆ

1
R sin θ

.c
om

G
∇ × A = Rˆ

du
o


2
 ∂ 2 Aϕ 2 ∂Aϕ

1 ∂ Aϕ cot θ ∂Aϕ
+

+
+ 2
+
ϕˆ 
 ∂R 2 R ∂R R 2 sin 2 θ R 2 ∂θ 2

θ
R


cu

u

∂ 2 Aϕ
∂AR 2 cot θ ∂Aθ 
1
2
+
+

R 2 sin 2 θ ∂ϕ 2 R 2 sin θ ∂ϕ R 2 sin θ ∂ϕ 


DIFFERENTIAL ELEMENTS
Cartesian coordinates
G
G
ˆ + ydy
ˆ + zdz
ˆ
ˆ
ˆ ; ds = xdydz
ˆ
dl = xdx
+ ydxdz
+ zdxdy
; dv = dxdydz
Cylindrical coordinates
G
G
ˆ + ϕˆ rdϕ + zdz
ˆ ϕ dz + ϕˆ drdz + zrdrd
ˆ ; ds = rrd
ˆ
dl = rdr
ϕ ; dv = rdrdϕ dz
Spherical coordinates

CuuDuongThanCong.com

/>



×