Tải bản đầy đủ (.pdf) (40 trang)

Slide điện tử từ trường lecture 12 bjts differential pair

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.32 MB, 40 trang )

Lecture 12
BJT’s Differential Pair

1

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

topics
• Ideal characteristics of differential
amplifier





Input differential resistance
Input common-mode resistance
Differential voltage gain
CMRR

• Non-ideal characteristics of differential
amplifier
– Input offset voltage
– Input biasing and offset current

• Differential Amplifier with active load
2



Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Differential pair

Figure 7.12 The basic BJT differential-pair configuration.

3

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Common mode operation

Q Q1 = Q2
∴ vB1 = vB 2 = vCM
⇒ iE1 = iE 2

I
=
2

⇒ vC1 = vC 2 = VCC


I
− α RC
2

vC1 − vC 2 = 0

Reject common mode input

Figure 7.13 Different modes of operation of the BJT differential pair: (a) The differential pair with a common-mode input signal vCM.

4

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

The differential pair with a “large” differential input
signal

(1)VB1 >> VB 2
VB1 = +1V , VB 2 = 0
Q1 on → VE1 = 0.3V = VE 2 → Q2

off

VC1 = VCC − αIRC , VC 2 = VCC
VC1 − VC 2 = −αIRC


Figure 7.13 Different modes of operation of the BJT differential pair:. (b) The differential pair with a “large” differential input signal.

5

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

(2)VB1 << VB 2
VB1 = −1V , VB 2 = 0
Q2
+
0.7

on → VE 2 = −0.7V = VE 2 → Q1 off

VC 2 = VCC − αIRC , VC1 = VCC
VC1 − VC 2 = αIRC



Figure 7.13 (Continued) (c) The differential pair with a large differential input signal of polarity opposite to that in .

6

Microelectronic Circuits by
Meiling CHEN

CuuDuongThanCong.com

/>

(3)VB1 > VB 2
VB1 = small , VB 2 = 0
I
I
I E1 = + ΔI , I E 2 = − ΔI
2
2
I
VC1 = VCC − α RC − αΔIRC
2
I
VC 2 = VCC − α RC + αΔIRC
2
VC1 − VC 2 = vo = −2αΔIRC
⇒ vo = f (ΔI )
Figure 7.13 (Continued) (d) The differential pair with a small differential input signal vi. Note that we have assumed the bias current source I
to be ideal (i.e., it has an infinite output resistance) and thus I remains constant with the change in vCM.

7

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>


Exercise 7.7

let α ≈ 1, vBE = 0.7V
find vE , vC1 and vC 2
5 − 0.7
I=
= 4.3mA
1k
+
0.7


8

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Large signal operation

iE 1 =

IS

e ( vB1 −vE ) / VT

iE 2 =


IS

e ( vB 2 −vE ) / VT

α

α

iE 1
= e ( vB1 −vB 2 ) / VT
iE 2
iE1
1
=
iE1 + iE 2 1 + e ( vB 2 −vB1 ) / VT
iE 2
1
=
iE1 + iE 2 1 + e ( vB1 −vB 2 ) / VT
iE 1 + iE 2 = I
iE 1 =
iE 2

I

1 + e −vid / VT
I
=
1 + e vid / VT


9

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

iC1
1

I 1 + e −vid / VT
1 + e −vid / VT
iC 2
I
1
=


vid / VT
I 1 + e vid / VT
1+ e
I

iE 1 =
iE 2



How to enhance linear

region?
Figure 7.14 Transfer characteristics of the BJT differential pair of Fig. 7.12 assuming α . 1.

10

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Re ↑→vE ↑→vBE ↓→iC ↓

Figure 7.15 The transfer characteristics of the BJT differential pair (a) can be linearized (b) (i.e., the linear range of
operation can be extended) by including resistances in the emitters.

11

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

large signal analysis (AC+DC)

αI

iC 1 =


L (1)
1 + e − v id / VT
αI
iC 2 =
1 + e v id / VT
α Ie v id / 2VT
e v id / 2VT
(1) × v id / 2VT ⇒ iC 1 = v id / 2VT
e
+ e − v id / 2VT
e
let
v id << 2VT
v id
)
2VT

v
v
1 + id + 1 − id
2VT
2VT

α I (1 +

⇒ iC 1

⇒ iC 1 =
⇒ iC 2 =
ic =

Figure 7.16 The currents and voltages in the differential amplifier when a
small differential input signal vid is applied.

αI
2

αI
2

α I v id
2VT 2

+

α I v id
2VT 2


=

α I v id
2VT 2
gm
v id
2

v BE

Q1 = V BE +


v id
2

v BE

Q 2 = V BE −

v id
2

Taylor
series

= IC +

I C v id
VT 2

= IC −

I C v id
VT 2

AC

12

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com


/>

Small signal analysis (AC)

g m = I C / VT =

vid
2re

ic = αie =
ie =

VT

VT
I /2

re = VT / I E =
ie =

αI / 2

αvid
2re

= gm

vid
2re


αie

αie

RC

+
Figure 7.17 A simple technique for determining the signal currents in a
differential amplifier excited by a differential voltage signal vid; dc quantities
are not shown.

vid
2

ie

re

id

vid

RC


ie

re
13


Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

vc1

vo = vc1 − vc 2

vc2

RC

RC
g m vπ

+

+



re

vid

id


g m vπ


+



re

vid
2reie
=
= 2(1 + β )re Input differential resistance
Rid =
i
id
e
1+ β

v id
I C αI E α
2
gm =
=
=
VT
VT
re
v id
v C 2 = + g m RC

2
v c1 − v c 2
= − g m RC Differential voltage gain
Ad =
v id
Microelectronic Circuits by
v C 1 = − g m RC

14

Meiling CHEN

CuuDuongThanCong.com

/>

Common mode

vc1

vc2

vo = vc1 − vc 2

αie 2

αie1

RC
g m vπ

+



RC

g m vπ

ib1
ie1
re

DC

vicm ib 2

+

ie 2




re

vc1 = −αie1 RC

if

RC1 ≠ RC 2 ⇒ vo ≠ 0


vc 2 = −αie2 RC
vo = vc1 − vc 2 = −αRc (ie1 − ie2 )
∴ ie1 = ie2 = 0 ⇒ vo = −αRc (ie1 − ie2 ) = o
15

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

External emitter resistance

vc1
RC1

vo = vc1 − vc 2

αie
g m vπ

ie

re

RE

vc2


vid

ib

RE



RC 2
g m vπ

RE ↑⇒ Ad ↓
CuuDuongThanCong.com

ie
v /( 2re + 2 RE )
= id
β +1
β +1
v
Rid = id = ( β + 1)(2re + 2 RE )
ib

Input differential resistance
re
RE

Differential voltage gain

RE ↑⇒ Rid ↑


vid
2re + 2 RE

ib =

αie

+

ie =

vid
2
v
v C 2 = + g m RC id
2
Ic α
gm =
=
VT re
v C1 = − g m RC

Ad =

vc1 − vc 2
= − g m RC
vid
16


Microelectronic Circuits by
Meiling CHEN
/>

Bartlett Bisection theorem
+
v1

N



1. v1 = v2 → I = 0

+
v2

+
v1





I
1
N
2

1

N
2

M

2. v1 = −v2 → V = 0
Differential Mode

+
v1

+
v1



M

I=0 open circuit
Common-mode



1
N
2

M

V=0 short circuit

Differential-mode
17

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com



V

Common Mode

1
N
2

+
v2

/>

Differential Mode

Common Mode

18

Microelectronic Circuits by
Meiling CHEN

CuuDuongThanCong.com

/>

Equivalence of the differential amplifier to a CE amplifier

Figure 7.19 Equivalence of the BJT differential amplifier in (a) to the two common-emitter amplifiers in (b). This equivalence applies
only for differential input signals. Either of the two common-emitter amplifiers in (b) can be used to find the differential gain,
differential input resistance, frequency response, and so on, of the differential amplifier.

19

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

vc1
g
= − m (ro // Rc )
vid
2
vc 2 g m
=
(ro // Rc )
vid
2
vc1 vc 2 vc1 − vc 2


=
= − g m ( RC // ro )
Ad =
vid vid
vid

Differential half-circuit
i =
V

id

2
R
Figure 7.21 (a) The differential half-circuit and (b) its equivalent circuit model.

id



= V
=

V

2(1 + β )re

π
id


i

=

2V


π



Input differential resistance
20

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

= 2 rπ

/>

Common mode gain et CMRR (I=0Ỉ open circuit)
vc1 = −αie Rc
vicm = ie (re + 2 REE )
Acm

1
2


=−

αRC
(re + 2 REE )

≈−

αRC
(2 REE )

1
g m RC
2
A
CMRR 1 = d ≈ g m REE
2
Acm
Ad

1
2

=

Common-mode half-circuit
Figure 7.22 (a) The differential amplifier fed by a common-mode voltage signal vicm. (b) Equivalent “halfcircuits” for common-mode calculations.

21

Microelectronic Circuits by

Meiling CHEN
CuuDuongThanCong.com

/>

Common mode gain at CMRR ( Asymmetric case)
vc1 = −αie RC
vc 2 = −αie ( RC + ΔRC )

Last page

vo = vc1 − vc 2 = −αie ΔRC

αRC

vc1 = −vicm

vicm = ie (2 REE + re )

αRC ΔRC
− αΔRC
ΔRC
Acm =

=−
2 REE + re 2 REE
2 REE RC
v1 + v2
vicm ≡
2

vid ≡ v1 − v2

vc 2 ≈ −vicm

<<
Acm

1
2

=−

2 REE

αRC
2 REE

αRC
2 REE

=

22

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

αRC


1
g m RC
1
2
2
A
CMRR = d ≈ g m REE
Acm
Ad

v1 + v2
)
vo = Ad (v1 − v2 ) + Acm (
2

2 REE + re

≈ −vicm

/>

Common-mode input resistance

V = ie ( re + 2 REE )
ie
1+ β
≈ ( β + 1)( 2 REE // ro )

I = ib =
2 Ricm


Ricm ≈ ( β + 1)( REE //

ro
)
2

g m vπ

I

ro

+



RC

re

2 REE
Figure 7.23 (a) Definition of the input common-mode resistance
Ricm. (b) The equivalent common-mode half-circuit.

23

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com


/>

αie

ie − i − αie

g m vπ

ib

re



i

RC
ro

+

ie vπ

Ricm ≈ ( β + 1)( REE

ro
// )
2


ie − i

2 REE

2 Ricm =

V
,
ib

V = reie + 2 REE i

2 REE i = ro (ie − i ) + Rc (ie − i − αie )

2 Ricm

⇒ (2 REE + ro + Rc )i = roie + Rc (ie − αie ) = roib (1 + β ) + Rc ib
⇒i=

ro ib (1 + β ) + Rc ib
2 REE + ro + Rc

V = reie + 2 REE i = reib (1 + β ) + 2 REE
2 Ricm =

ro ib (1 + β ) + Rc ib
2 REE + ro + Rc

2 REE ro
2 REE Rc

V
= re (1 + β ) + (1 + β )
+
ib
2 REE + ro + Rc 2 REE + ro + Rc

2 Ricm ≈ ( β + 1)( 2 REE // ro )
24

Microelectronic Circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Example 7.1
1. Input differential resistance

β = 100

re1 = re 2 =

VA = 100

VT 25mV
=
= 50
I E 0.5mA

Rid = 2( β + 1)(re + RE ) = 40k


2. Differential voltage gain
Ad =

vo vid
Rid
= g m RC
= 40
vid vs
Rs + Rid

3. Common-mode gain in worst case
Acm =

4. Input common-mode resistance

2 REE

RC
ΔRC
+ (re + RE ) RC

ΔRC = 0.02 RC
VA
−4
ro =
= 200k
A
=
5

×
10
cm
I /2
1
A
Ricm ≈ ( β + 1)(2 REE // ro ) = 6.7 M
CMRR = 20 log d = 98dB
2
Acm
25
Microelectronic Circuits by
Meiling CHEN

CuuDuongThanCong.com

/>

×