Tải bản đầy đủ (.pdf) (30 trang)

Slide điện tử từ trường lecture 13 mosfet differential amplifiers

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.18 MB, 30 trang )

Lecture 13
MOSFET Differential
Amplifiers

1

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

topics
• Ideal characteristics of differential
amplifier





Input differential resistance
Input common-mode resistance
Differential voltage gain
CMRR

• Non-ideal characteristics of differential
amplifier
– Input offset voltage
– Input biasing and offset current

• Differential Amplifier with active load


• Frequency response
Microelectronic circuits by
Meiling CHEN

CuuDuongThanCong.com

/>
2


MOS differential pair

Figure 7.1 The basic MOS differential-pair configuration.

3

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Common mode operation

Q Q1 = Q2

BJT’s differential pair VCM no bound

∴ I D1 = I D 2 =


I
2

vs = vCM − VGS
I 1 'W
= k n (VGS − Vt ) 2
2 2 L
vD1 = vD 2 = VDD − I D RD
ID =

Q1 and Q2 in saturation mode
vDS > vGS − Vt
(VDD − I D RD ) − vS > vCM − vs − Vt

+

I
vCM (max) = Vt + VDD − RD
2
vCM (min) = −Vss + VCS + Vt + (VGS − Vt )

VCS

Figure 7.2 The MOS differential pair with a common-mode input voltage vCM.

vGS − Vt = vCM − vs − Vt
= vCM − (VCS − VSS ) − Vt
vCM = VCS − VSS + vGS

Make sure current source is working

4

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Exercise 7.1

ID =

VDD = VSS = 1.5V , k n'

1 'W
k n (VGS − Vt ) 2
2 L

I
= 0.2 = 2m(VGS − 0.5) 2
2
VGS = 0.816V

W
= 4mA / V 2 , Vt = 0.5V , I = 0.4mA, RD = 2.5k
L

VCM = 1V
VDS > VGS − Vt
VD − VS > VG − VS − Vt


VDS = 1.5 − 0.2m × 2.5k = 1V

VD > VG − Vt ⇒ VD > VCM − Vt

VDS > VGS − Vt = 0.816 − 0.5

⇒ VD = 1 > 1 − 0.5

Saturation mode

Saturation mode

VCM (max) = 1.5V
5

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

+
0.48

VCS (min) = 0.48



VCM (min) = 0.82 + 0.48 − 1.5 = −0.2V


Figure 7.3 (Continued)

6

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

vid = vGS 1 − vGS 2 = vG1 − vG 2

Large signal operation

iD1 − iD 2 =

1 'W
k n vid
2 L

i D1 +iD 2 = I
1 W 2
2 iD!iD 2 = I − k n'
vid
2 L








2





/
2
v
1 ' W ⎛ vid ⎞
I

iD1 = −
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W ⎟
2
2 L ⎝ 2 ⎠
kn


2
L



2




v /2
1 ' W ⎛ vid ⎞
I
iD1 = +
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W
2
2 L ⎝ 2 ⎠
kn

⎝ 2 L
Figure 7.5 The MOSFET differential pair for the purpose of deriving the
transfer characteristics, iD1 and iD2 versus vid = vG1 – vG2.

1 'W
iD1 = kn (vGS1 − Vt ) 2
2 L
1 'W
iD 2 = kn (vGS 2 − Vt ) 2
2 L

7

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>


Figure 7.6 Normalized plots of the currents in a MOSFET differential pair. Note that VOV is
the overdrive voltage at which Q1 and Q2 operate when conducting drain currents equal to
I/2.

8

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>



I
v /2
1 ' W ⎛ vid ⎞
iD1 = +
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W
2
2 L ⎝ 2 ⎠
kn

⎝ 2 L









2

More k is bigger more linear
range of vid

Figure 7.7 The linear range of operation of the MOS differential pair can
be extended by operating the transistor at a higher value of VOV.

9

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

7-2.1 Small signal operation (differential gain)
1
vG1 = vCM + vid
2
1
vG 2 = vCM − vid
2

v1 + v2
vCM =

2
vid = v1 − v2

Figure 7.8 Small-signal analysis of the MOS differential amplifier: (a) The circuit with
a common-mode voltage applied to set the dc bias voltage at the gates and with vid
applied in a complementary (or balanced) manner. (b) The circuit prepared for smallsignal analysis. (c) An alternative way of looking at the small-signal operation of the
circuit.

10

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

vid
vo1 = − g m
( RD // ro1 )
2
vid
vo 2 = g m
( RD // ro 2 )
2
vo1
v
1
1
= − g m ( RD // ro1 ), o 2 = g m ( RD // ro 2 )
vid

2
vid
2
vo 2 − vo1
= g m ( RD // ro )
Ad ≡
vid

vid
2

vo1
+
v gs


g m v gs

Rid = ∞
Ro 1 = ro // RD
2

ro R
D

11

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com


/>

ro effects

vo1 = − g m ( RD // ro )(vid / 2)
vo 2 = g m ( RD // ro )(vid / 2)
vo = vo 2 − vo1 = g m ( RD // ro )vid
12

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

vo1 = − g m ( RD // ro )(vid / 2)
vo 2 = g m ( RD // ro )(vid / 2)
vo = vo 2 − vo1 = g m ( RD // ro )vid
Ad =

vo 2 − vo1
= g m ( RD // ro )
vid

Differential-mode equivalent circuit
V id
2

V o1




Vo 2

+

V gs

gm

Vid
2

ro1 R D

RD

ro 2



gm

−Vid
2

V id
2


+

V gs


13

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

id

Common-mode gain et CMRR
vicm
1
gm

id

vo1
RD

2 Rss
2 Ricm

(1) Half circuit of differential pair
Acm 1 = RD / 2 Rss , Ad

2

CMRR ≡

1
g m RD
2

Ad
= g m Rss
Acm

(2) Full circuit

vo1 vo 2
RD
=
=−
vicm vicm
1 / g m + 2 RSS
Q RSS >> 1 / g m ⇒

1
2

=

vo1
v
R

= o1 = − D
vicm vicm
2 RSS

Acm = (vo2 −vo1) / vicm = 0, Ad = (vo2 −vo1) / vid = gm RD
CMRR≡

Ad
=∞
Acm

14

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

+ VDD

+ VDD

1 'W
I D = k n (vGS − Vt ) 2
2 L
vGS1 = vGS 2 ⇒ I D1 = I D 2 = I ref

I Re f
I D2


VDD + VSS − VGS
I D1 =
R

I D1

Ro = ro = RSS
− VSS

g m v gs
ro

vo1

+
v gs


+
R

v gs


g m v gs

ro

15


Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Non zero common gain due to RD mismatch
id

vicm

id

consider

vo1

RD
vicm
vo1 ≅ −
2 Rss

RD

1
gm

RD1 ≠ RD 2


RD + ΔRD
vicm
vo 2 ≅ −
2 Rss

2 Rss
2 Ricm

vo 2 − vo1 = −

vo1
v
RD
= o1 = −
vicm vicm
1 / g m + 2 RSS
Q RSS >> 1 / g m ⇒

Acm = −

vo1
v
R
= o1 = − D
vicm vicm
2 RSS

ΔRD
vicm
2 Rss


R ΔRD
ΔRD
=− D
2 Rss
2 Rss RD

Ad = − g m RD
CMRR ≡

Ad
ΔR
= 2 g m Rss / D
RD
Acm
16

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Non zero common gain due to gm mismatch
id =

consider g m1 ≠ g m 2
id 1 g m1
Q vgs1 = vgs 2 ⇒
=

id 2 g m 2

μCoxW

(v gs − Vt ) 2

2L
μCoxW
gm =
(v gs − Vt )
L

vs
vs = (id 1 + id 2 ) Rss ⇒ (id 1 + id 2 ) =
Rss
vs ≈ vicm ⇒ (id 1 + id 2 ) =
id 1 =

g m1vicm
( g m1 + g m 2 ) Rss

id 2 =

g m 2vicm
( g m1 + g m 2 ) Rss

Figure 7.11 Analysis of the MOS differential amplifier to determine the
common-mode gain resulting from a mismatch in the gm values of Q1 and
Q2.


vicm
Rss

let Δg m = g m1 − g m 2
17

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

⇒ id 1 =
⇒ id 2

g m1vicm
2 g m Rss

g m 2 vicm
=
2 g m Rss

Δg m RD vicm
vo 2 − vo1 = −id 2 RD + id 1 RD =
2 g m Rss
Acm =

RD Δg m
Rss 2 g m


Ad = − g m RD
CMRR ≡

Ad
Δg
= 2 g m Rss / m
Acm
gm

18

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Input offset voltage

1. RD1 ≠ RD 2
W1
W2
2. Q1 ≠ Q2

L1
L2
3. Q1 ≠ Q2 Vt1 ≠ Vt 2

Figure 7.25 (a) The MOS differential pair with both inputs grounded. Owing to device and
resistor mismatches, a finite dc output voltage VO results. (b) Application of a voltage equal to the

input offset voltage VOS to the terminals with opposite polarity reduces VO to zero.

19

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

consider

RD1 ≠ RD 2

ΔR
RD1 = RD + D
2
ΔR
RD 2 = RD − D
2
I
ΔR
VD1 = VDD − ( RD + D )
2
2
I
ΔR
VD 2 = VDD − ( RD − D )
2
2

I
VO = VD 2 − VD1 = ΔRD
2
I
ΔRD
VO
VO
Vos =
=
=2
Ad g m RD g m RD
μCoxW

consider

VOV ΔRD
)(
)
RD
2
CuuDuongThanCong.com

W
W
W
1
+ Δ( )
)1 =
L
L

L
2
W
W
W
1
− Δ( )
( )2 =
L
L
L
2
I
I Δ (W / L )
I1 = +
2 2 (W / L )
I
I Δ (W / L )
I2 = −
2 2 (W / L )
I Δ (W / L )
ΔI =
2 2 (W / L )
V
Δ (W / L )
V os = ( OV )(
)
2
(W / L )
(


VoV

2
V
V
(
)

(VGS − Vt ) ΔRD
ΔRD
GS
t
2L
)(
)
= μCoxW
=(
R
R
2
(VGS − Vt ) D
D
L

Vos = (

Q1 ≠ Q 2

20


Microelectronic circuits by
Meiling CHEN
/>

consider Vt1 ≠ Vt 2
ΔVt
2
ΔVt
Vt 2 = Vt −
2
ΔV
ΔVt
1 W
1 W
(VGS − Vt − t ) 2 = k n'
(VGS − Vt ) 2 [1 −
]2
I1 = k n'
2 L
2
2 L
2(VGS − Vt )
Vt1 = Vt +

I1 ≈

ΔVt
1 'W
)

k n (VGS − Vt ) 2 (1 −
2 L
VGS − Vt

ΔVt
1 'W
2
)
I12 ≈ k n (VGS − Vt ) (1 +
2 L
VGS − Vt
I
1 'W
2
k n (VGS − Vt ) =
2
2 L
I 2ΔVt
I 2ΔVt
ΔI =
=
2 VGS − Vt 2 VOV
Vos = ΔVt
CuuDuongThanCong.com

Vos = (

VOV ΔRD 2 VOV Δ (W / L) 2
) +(
) + (ΔVt ) 2

2 RD
2 (W / L)

21

Microelectronic circuits by
Meiling CHEN
/>

Differential amplifier with active load
Active load

1. Differential gain
2. Common-mode gain et CMRR

22

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

23

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>


Differential-mode equivalent circuit with active load
Vo
Vid
2

Q4

Q1
V
g m id
2

ro1

ro3 //

1
gm

− Vid
2

Q2

gmVgs4 ro 4

ro 2

gm (


− Vid
)
2

Q3

Ro = ro 2 // ro 4
active load

Ro = ro = RSS
Passive load

active load

vo = − g m ( − v2id + v gs 4 )(ro 2 // ro 4 )
v gs 4 = − g

vid
m 2

1
(ro1 // ro 3 // ) ≈ − g m
gm

vid
2

1
= − v2id

gm

vo − g m ( −v2id + −v2id )(ro 2 // ro 4 )
Ad ≡
=
= g m (ro 2 // ro 4 )
vid
vid
when ro 2 = ro 4 = ro
Ad =

gm
ro
2

Passive load

Ad = g m ( RD // ro )
24

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>

Common-mode equivalent circuit with active load

id


ViCM

id

Vo
i1

1
gm

2 R ss

ro 1

ro 3 //

1
gm

gmVgs4

ro 4

id
ro 2

i1

vo = −ro 4 ( g m v gs 4 + i2 )
v gs 4


i2

V gs 4

1
= −i1 (ro 4 // )
gm

vicm ≈ i1 2 RSS
vicm ≈ i2 2 RSS

i2
v
vo = −ro 4 ( g m v gs 4 + icm )
2 RSS
v gs 4

ViCM
1
gm

2 R ss


(Rss ≈ ro )

vicm
1
(ro 3 // )

=−
gm
2 RSS

vo = −ro 4 [−
Acm =

g m vicm
v
1
(ro 3 // ) + icm ]
gm
2 RSS
2 RSS

vo
r
1
= − o4
vicm
2 RSS 1 + ro 3 g m
25

Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com

/>


×