Lecture 13
MOSFET Differential
Amplifiers
1
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
topics
• Ideal characteristics of differential
amplifier
–
–
–
–
Input differential resistance
Input common-mode resistance
Differential voltage gain
CMRR
• Non-ideal characteristics of differential
amplifier
– Input offset voltage
– Input biasing and offset current
• Differential Amplifier with active load
• Frequency response
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
2
MOS differential pair
Figure 7.1 The basic MOS differential-pair configuration.
3
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Common mode operation
Q Q1 = Q2
BJT’s differential pair VCM no bound
∴ I D1 = I D 2 =
I
2
vs = vCM − VGS
I 1 'W
= k n (VGS − Vt ) 2
2 2 L
vD1 = vD 2 = VDD − I D RD
ID =
Q1 and Q2 in saturation mode
vDS > vGS − Vt
(VDD − I D RD ) − vS > vCM − vs − Vt
+
I
vCM (max) = Vt + VDD − RD
2
vCM (min) = −Vss + VCS + Vt + (VGS − Vt )
VCS
−
Figure 7.2 The MOS differential pair with a common-mode input voltage vCM.
vGS − Vt = vCM − vs − Vt
= vCM − (VCS − VSS ) − Vt
vCM = VCS − VSS + vGS
Make sure current source is working
4
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Exercise 7.1
ID =
VDD = VSS = 1.5V , k n'
1 'W
k n (VGS − Vt ) 2
2 L
I
= 0.2 = 2m(VGS − 0.5) 2
2
VGS = 0.816V
W
= 4mA / V 2 , Vt = 0.5V , I = 0.4mA, RD = 2.5k
L
VCM = 1V
VDS > VGS − Vt
VD − VS > VG − VS − Vt
VDS = 1.5 − 0.2m × 2.5k = 1V
VD > VG − Vt ⇒ VD > VCM − Vt
VDS > VGS − Vt = 0.816 − 0.5
⇒ VD = 1 > 1 − 0.5
Saturation mode
Saturation mode
VCM (max) = 1.5V
5
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
+
0.48
VCS (min) = 0.48
−
VCM (min) = 0.82 + 0.48 − 1.5 = −0.2V
Figure 7.3 (Continued)
6
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
vid = vGS 1 − vGS 2 = vG1 − vG 2
Large signal operation
iD1 − iD 2 =
1 'W
k n vid
2 L
i D1 +iD 2 = I
1 W 2
2 iD!iD 2 = I − k n'
vid
2 L
⎞
⎟
⎟
⎟
⎟
⎠
2
⎛
⎞
⎜
⎟
/
2
v
1 ' W ⎛ vid ⎞
I
⎟
iD1 = −
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W ⎟
2
2 L ⎝ 2 ⎠
kn
⎜
⎟
2
L
⎝
⎠
2
⎛
⎜
v /2
1 ' W ⎛ vid ⎞
I
iD1 = +
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W
2
2 L ⎝ 2 ⎠
kn
⎜
⎝ 2 L
Figure 7.5 The MOSFET differential pair for the purpose of deriving the
transfer characteristics, iD1 and iD2 versus vid = vG1 – vG2.
1 'W
iD1 = kn (vGS1 − Vt ) 2
2 L
1 'W
iD 2 = kn (vGS 2 − Vt ) 2
2 L
7
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Figure 7.6 Normalized plots of the currents in a MOSFET differential pair. Note that VOV is
the overdrive voltage at which Q1 and Q2 operate when conducting drain currents equal to
I/2.
8
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
⎛
⎜
I
v /2
1 ' W ⎛ vid ⎞
iD1 = +
k n I ⎜ ⎟ 1 − ⎜ id
⎜ 1 'W
2
2 L ⎝ 2 ⎠
kn
⎜
⎝ 2 L
⎞
⎟
⎟
⎟
⎟
⎠
2
More k is bigger more linear
range of vid
Figure 7.7 The linear range of operation of the MOS differential pair can
be extended by operating the transistor at a higher value of VOV.
9
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
7-2.1 Small signal operation (differential gain)
1
vG1 = vCM + vid
2
1
vG 2 = vCM − vid
2
v1 + v2
vCM =
2
vid = v1 − v2
Figure 7.8 Small-signal analysis of the MOS differential amplifier: (a) The circuit with
a common-mode voltage applied to set the dc bias voltage at the gates and with vid
applied in a complementary (or balanced) manner. (b) The circuit prepared for smallsignal analysis. (c) An alternative way of looking at the small-signal operation of the
circuit.
10
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
vid
vo1 = − g m
( RD // ro1 )
2
vid
vo 2 = g m
( RD // ro 2 )
2
vo1
v
1
1
= − g m ( RD // ro1 ), o 2 = g m ( RD // ro 2 )
vid
2
vid
2
vo 2 − vo1
= g m ( RD // ro )
Ad ≡
vid
vid
2
vo1
+
v gs
−
g m v gs
Rid = ∞
Ro 1 = ro // RD
2
ro R
D
11
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
ro effects
vo1 = − g m ( RD // ro )(vid / 2)
vo 2 = g m ( RD // ro )(vid / 2)
vo = vo 2 − vo1 = g m ( RD // ro )vid
12
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
vo1 = − g m ( RD // ro )(vid / 2)
vo 2 = g m ( RD // ro )(vid / 2)
vo = vo 2 − vo1 = g m ( RD // ro )vid
Ad =
vo 2 − vo1
= g m ( RD // ro )
vid
Differential-mode equivalent circuit
V id
2
V o1
−
Vo 2
+
V gs
gm
Vid
2
ro1 R D
RD
ro 2
−
gm
−Vid
2
V id
2
+
V gs
−
13
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
id
Common-mode gain et CMRR
vicm
1
gm
id
vo1
RD
2 Rss
2 Ricm
(1) Half circuit of differential pair
Acm 1 = RD / 2 Rss , Ad
2
CMRR ≡
1
g m RD
2
Ad
= g m Rss
Acm
(2) Full circuit
vo1 vo 2
RD
=
=−
vicm vicm
1 / g m + 2 RSS
Q RSS >> 1 / g m ⇒
1
2
=
vo1
v
R
= o1 = − D
vicm vicm
2 RSS
Acm = (vo2 −vo1) / vicm = 0, Ad = (vo2 −vo1) / vid = gm RD
CMRR≡
Ad
=∞
Acm
14
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
+ VDD
+ VDD
1 'W
I D = k n (vGS − Vt ) 2
2 L
vGS1 = vGS 2 ⇒ I D1 = I D 2 = I ref
I Re f
I D2
VDD + VSS − VGS
I D1 =
R
I D1
Ro = ro = RSS
− VSS
g m v gs
ro
vo1
+
v gs
−
+
R
v gs
−
g m v gs
ro
15
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Non zero common gain due to RD mismatch
id
vicm
id
consider
vo1
RD
vicm
vo1 ≅ −
2 Rss
RD
1
gm
RD1 ≠ RD 2
RD + ΔRD
vicm
vo 2 ≅ −
2 Rss
2 Rss
2 Ricm
vo 2 − vo1 = −
vo1
v
RD
= o1 = −
vicm vicm
1 / g m + 2 RSS
Q RSS >> 1 / g m ⇒
Acm = −
vo1
v
R
= o1 = − D
vicm vicm
2 RSS
ΔRD
vicm
2 Rss
R ΔRD
ΔRD
=− D
2 Rss
2 Rss RD
Ad = − g m RD
CMRR ≡
Ad
ΔR
= 2 g m Rss / D
RD
Acm
16
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Non zero common gain due to gm mismatch
id =
consider g m1 ≠ g m 2
id 1 g m1
Q vgs1 = vgs 2 ⇒
=
id 2 g m 2
μCoxW
(v gs − Vt ) 2
2L
μCoxW
gm =
(v gs − Vt )
L
vs
vs = (id 1 + id 2 ) Rss ⇒ (id 1 + id 2 ) =
Rss
vs ≈ vicm ⇒ (id 1 + id 2 ) =
id 1 =
g m1vicm
( g m1 + g m 2 ) Rss
id 2 =
g m 2vicm
( g m1 + g m 2 ) Rss
Figure 7.11 Analysis of the MOS differential amplifier to determine the
common-mode gain resulting from a mismatch in the gm values of Q1 and
Q2.
vicm
Rss
let Δg m = g m1 − g m 2
17
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
⇒ id 1 =
⇒ id 2
g m1vicm
2 g m Rss
g m 2 vicm
=
2 g m Rss
Δg m RD vicm
vo 2 − vo1 = −id 2 RD + id 1 RD =
2 g m Rss
Acm =
RD Δg m
Rss 2 g m
Ad = − g m RD
CMRR ≡
Ad
Δg
= 2 g m Rss / m
Acm
gm
18
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Input offset voltage
1. RD1 ≠ RD 2
W1
W2
2. Q1 ≠ Q2
≠
L1
L2
3. Q1 ≠ Q2 Vt1 ≠ Vt 2
Figure 7.25 (a) The MOS differential pair with both inputs grounded. Owing to device and
resistor mismatches, a finite dc output voltage VO results. (b) Application of a voltage equal to the
input offset voltage VOS to the terminals with opposite polarity reduces VO to zero.
19
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
consider
RD1 ≠ RD 2
ΔR
RD1 = RD + D
2
ΔR
RD 2 = RD − D
2
I
ΔR
VD1 = VDD − ( RD + D )
2
2
I
ΔR
VD 2 = VDD − ( RD − D )
2
2
I
VO = VD 2 − VD1 = ΔRD
2
I
ΔRD
VO
VO
Vos =
=
=2
Ad g m RD g m RD
μCoxW
consider
VOV ΔRD
)(
)
RD
2
CuuDuongThanCong.com
W
W
W
1
+ Δ( )
)1 =
L
L
L
2
W
W
W
1
− Δ( )
( )2 =
L
L
L
2
I
I Δ (W / L )
I1 = +
2 2 (W / L )
I
I Δ (W / L )
I2 = −
2 2 (W / L )
I Δ (W / L )
ΔI =
2 2 (W / L )
V
Δ (W / L )
V os = ( OV )(
)
2
(W / L )
(
VoV
2
V
V
(
)
−
(VGS − Vt ) ΔRD
ΔRD
GS
t
2L
)(
)
= μCoxW
=(
R
R
2
(VGS − Vt ) D
D
L
Vos = (
Q1 ≠ Q 2
20
Microelectronic circuits by
Meiling CHEN
/>
consider Vt1 ≠ Vt 2
ΔVt
2
ΔVt
Vt 2 = Vt −
2
ΔV
ΔVt
1 W
1 W
(VGS − Vt − t ) 2 = k n'
(VGS − Vt ) 2 [1 −
]2
I1 = k n'
2 L
2
2 L
2(VGS − Vt )
Vt1 = Vt +
I1 ≈
ΔVt
1 'W
)
k n (VGS − Vt ) 2 (1 −
2 L
VGS − Vt
ΔVt
1 'W
2
)
I12 ≈ k n (VGS − Vt ) (1 +
2 L
VGS − Vt
I
1 'W
2
k n (VGS − Vt ) =
2
2 L
I 2ΔVt
I 2ΔVt
ΔI =
=
2 VGS − Vt 2 VOV
Vos = ΔVt
CuuDuongThanCong.com
Vos = (
VOV ΔRD 2 VOV Δ (W / L) 2
) +(
) + (ΔVt ) 2
2 RD
2 (W / L)
21
Microelectronic circuits by
Meiling CHEN
/>
Differential amplifier with active load
Active load
1. Differential gain
2. Common-mode gain et CMRR
22
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
23
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Differential-mode equivalent circuit with active load
Vo
Vid
2
Q4
Q1
V
g m id
2
ro1
ro3 //
1
gm
− Vid
2
Q2
gmVgs4 ro 4
ro 2
gm (
− Vid
)
2
Q3
Ro = ro 2 // ro 4
active load
Ro = ro = RSS
Passive load
active load
vo = − g m ( − v2id + v gs 4 )(ro 2 // ro 4 )
v gs 4 = − g
vid
m 2
1
(ro1 // ro 3 // ) ≈ − g m
gm
vid
2
1
= − v2id
gm
vo − g m ( −v2id + −v2id )(ro 2 // ro 4 )
Ad ≡
=
= g m (ro 2 // ro 4 )
vid
vid
when ro 2 = ro 4 = ro
Ad =
gm
ro
2
Passive load
Ad = g m ( RD // ro )
24
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>
Common-mode equivalent circuit with active load
id
ViCM
id
Vo
i1
1
gm
2 R ss
ro 1
ro 3 //
1
gm
gmVgs4
ro 4
id
ro 2
i1
vo = −ro 4 ( g m v gs 4 + i2 )
v gs 4
i2
V gs 4
1
= −i1 (ro 4 // )
gm
vicm ≈ i1 2 RSS
vicm ≈ i2 2 RSS
i2
v
vo = −ro 4 ( g m v gs 4 + icm )
2 RSS
v gs 4
ViCM
1
gm
2 R ss
⇓
(Rss ≈ ro )
vicm
1
(ro 3 // )
=−
gm
2 RSS
vo = −ro 4 [−
Acm =
g m vicm
v
1
(ro 3 // ) + icm ]
gm
2 RSS
2 RSS
vo
r
1
= − o4
vicm
2 RSS 1 + ro 3 g m
25
Microelectronic circuits by
Meiling CHEN
CuuDuongThanCong.com
/>