Tải bản đầy đủ (.pdf) (29 trang)

Slide điện tử từ trường lecture 3 diode circuits

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.38 MB, 29 trang )

Lecture 03
Diode circuits

1

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

topics
• Rectifier circuit
• Limiting and clamping circuits
• Small signal model

2

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Diode logic gates (ideal diode)

Y = A+ B +C

Y = ABC

3



Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Example (ideal diode)
Assume D1 and D2 are ideal diodes and conducting

10 − 0
I D2 =
= 1mA
10k
0 = 5k × ( I + I D 2 ) − 10v
⇒ I = 1mA

4

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Example (ideal diode)
Assuming that D1 and D2 are ideal diodes and conducting

10 − 0
I D2 =

= 2mA
5k
0 = 10k × ( I + I D 2 ) − 10v
⇒ I = −1mA

Contradictory result

Assuming that D1 is off and D2 is on

10 − (−10)
I D2 =
= 1.33mA
15k
VB = 10k × I D 2 − 10v = 3.3v

5

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

ACỈDC Rectifier

6

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com


/>

Rectifier parameters:
• Crest factor (C.F.)
• Form factor (F.F.)
• Ripple factor (R.F.)

Vmax
C .F . =
Vrms
Vrms
F .F . =
Vaverage
R.F . =

Vripple − rms

1 T
Vaverage = ∫ Vo (t )dt
T 0
1 T 2
Vrms =
V o (t )dt

T 0
Root-mean-square

Vaverage
7


Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Vaverage

Vrms



π



π

0

0

1
=
T



T


0

v(t )dt =

1

π∫

π

0

1 T 2
1
v (t )dt =
=

0
T
π

Vmax sin θdθ =
π

2Vmax v(t )

π

Vmax


Vmax
∫0 V max sin θdθ = 2
2

2

π

π

sin θdθ = − cos θ 0 = 2
sin θdθ = ∫
2

π

0

π
1 − cos 2θ
dθ =
2
2

Full-wave rectifier

Vaverage =
Vrms


Half-wave rectifier

2Vmax

Vaverage =

π

Vmax
=
2

Vrms

Vmax

π

Vmax
=
2
8

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Using ideal model


Half-wave rectifier
9

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Using piecewise-linear model

Transfer curve

R
R
vo =
vs −
VD 0
R + rD
R + rD
vs

PIV (peak inverse voltage) =

vs
10

Microelectronic Circuit by
meiling CHEN

CuuDuongThanCong.com

/>

Using piecewise-linear model (center-tapped Rectifier)
Transfer curve

PIV (peak inverse voltage) =

2vs − VD
11

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Bridge rectifier

PIV (peak inverse voltage) =

vs − 2VD + VD = vs − VD
12

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>


Half-wave

Centertapped

bridge

vi

vmax sin ωt

vmax sin ωt

vmax sin ωt

v0

Vmax − VD

Vmax − VD

Vmax − 2VD

Vaverage

Vmax −VD

2 (Vmax −VD )

2 (Vmax −VD )


Vrms

Vmax −VD
2

Vmax −VD

Vmax −VD

PIV

Vmax

F .F .
R.F .

π

π

π

2

2Vmax − VD

2

Vmax − VD


π

π

π

2

2 2

2 2

( 2 ) −1
π 2

( 2π 2 ) 2 − 1

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

( 2π 2 ) 2 − 1

13

/>

Filter


14

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

iD = iC + iL = C

dvo vo
+
dt R

dvo vo
+ =0
dt R
dvo (t )
vo (t )
=−
, vo (0) = V p
dt
RC

C

vo (t ) = ke

t
− RC


vo (t ) = V p e

, k = Vp

t
− RC

RC >> T

V p − Vr = V p e




T
RC

Average diode current iD max

T
RC

T
≈ 1−
RC
Vp
T
Vr ≈ V p
=

RC fRC
e

iD max = I L (1 + 2π

2V p

Half wave

Average diode current iDav
iDav = I L (1 + π

2V p
Vr

)

next page
15

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

Vr

/>
)



Diode on

V p − Vr = V p e


T
2 RC



T
2 RC

T
2 RC
full wave
Vp
T
Vr ≈ V p
=
RC 2 fRC

Δt

e

≈ 1−

Average diode current iDav
V p cos(ωΔt ) = V p − Vr


iDav =

1
⇒ V p [1 − (ωΔt ) 2 ] = V p − Vr
2
Vp
2Vr
(ωΔt ) 2 = Vr ⇒ ωΔt =
2
Vp

R

(1 + π

Vp
2Vr

)

Maximum diode current iD max

Qc = ic Δt = (iDav − I L )Δt
⇒ iDav = I L +

Vp

Qc
CVr

= IL +
Δt
Δt

iD max =

Vp
R

(1 + 2π

Vp
2Vr

16

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

)

/>

Limiter circuits

vs − 12
iD =
100


17

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Basic limiting circuits

18

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

vo

example
zone A
D1

zone B

zone C

D2
− 5v


+ 5v

vi

zone A : D2 off, D1 on
10k
10k
(−5v)
vi +
10k + 10k
10k + 10k
1
vo = vi − 2.5v
2

vo =

zone B : D2 off, D1 off

vo = vi

zone C : D2 on, D1 off
10k
10k
(5v)
vi +
10k + 10k
10k + 10k
1

vo = vi + 2.5v
2

vo =

19

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

example

Ideal diodes

+
Vi

R

D1



D2
Vy

Vx


Vo

+
Vo


Vx
Vy
Vx

Vi

Vy

zone A : D1 off, D2 on

Vi < V y ⇒ Vo = V y

zone C : D1 on, D2 off

Vi > Vx ⇒ Vo = Vx

zone B : D2 off, D1 off

Vx > Vi > V y ⇒ Vo = Vi
20

Microelectronic Circuit by
meiling CHEN

CuuDuongThanCong.com

/>

example

+
Vi


Vi >> VA
15k

D1

D1on, D2 off

+
5k V
o
10V −

D2
10k

2.5V

⇒ Vo = 10V
Vi << VB


D1off , D2 on
⇒ Vo = 7.5V

VA > Vi > VB ⇒ D1on, D2 on

Vo = V

(10 // 5 )
i 15 + (10 // 5 )

=

1
11

+ 2. 5

(2Vi + 67.5)

(15 // 5 )
10 + (15 // 5 )

+ 10

(10 // 15 )
5 + (10 // 15 )

1
(2VB + 67.5)
11

1
Vo = 10V = (2VA + 67.5)
11
21
Microelectronic Circuit by
Vo = 7.5V =

meiling CHEN

CuuDuongThanCong.com

/>

DC restoration (clamping circuit)

DC restoration with load

22

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Voltage doubler

D1 on
D2 off


D1 off
D2 on

D1 off
D2 on

D1 off
D2 off
23

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Voltage doubler
+

+

Vm

Vm




+
Vm



+

+



+

Vm

Vm


Vm
+

Vm




+

+

Vm



Vm


24

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com

/>

Voltage doubler

+ Vm



+
Vm

+ 2Vm
+ Vm





+ 2Vm
+ Vm


+

+

Vm


Vm






+ 2Vm
+ Vm



+ 2Vm



+ Vm





+ 2Vm




+

+
Vm


Vm

+ 2Vm



+ 2Vm



+ 2Vm

25

Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com



/>


×