Lecture 05
BJTs Circuits
1
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
topics
• Large-signal operation
• BJT circuits at DC
• BJT biasing schemes
2
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Large-signal Ỉ Bias (DC) + signal (AC)
Bias + signal
vo = Vcc − iC Rc = Vcc − Rc I S e
vBE
VT
vBE = VBE + vi
3
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
DC load line : VBB = I B × RB + VBE
4
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
VCC = I C × RC + VCE
5
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
head room (small)
Leg room (small)
VCC = I C × RCA + VCE → QA
VCC = I C × RCB + VCE → QB
RCB > RCA
6
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
BJT operate as a switch
Switch off:
vI < 0.5V →i B = 0 →i C = 0 →v C = VCC
Switch on:
vC = 0.2V ≈ 0V
Switch on Ỉ saturation mode
Switch off Æ cut-off mode
7
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.3
BJT work in saturation mode
VC = VCE ( sat ) = 0.2V
50 < β
10 − 0.2
I C ( sat ) =
= 9.8mA
1k
I C ( sat ) 9.8m
I B (max) =
=
= 0.196mA
50
β min
< 150
I C ( sat ) 9.8m
I B (min) =
=
= 0.0653mA
150
β max
I B = I B (max) × overdrive
RB =
factor
5 − 0.7 4.3
=
= 2.2k
IB
1.96
8
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.4 (DC analysis)
Reverse bias
β = 100
forward bias
Assume BJT in active mode :
VE = 4 − 0.7V = 3.3V
IE =
VE
3.3
=
= 1mA
RE 3.3k
100
×1mA = 0.99mA
I C = αI E =
100 + 1
I B = I E − I C= 0.01mA
Active mode check
VC = 10 − I C × 4.7 k = 5.3V
9
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.5 (DC analysis)
Assume BJT in active mode :
VE = 6 − 0.7V = 5.3V
β = 100
VE
5 .3
IE =
=
= 1.6mA
RE 3.3k
100
×1.6mA = 1.584mA
I C = αI E =
100 + 1
I B = I E − I C= 0.016mA
VC = 10 − I C × 4.7 k = 2.48V
JC : forward bias Not in active mode
JE : forward bias
10
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Assume BJT in saturation mode :
VE = 6 − 0.7V = 5.3V
VC = VE + VCE ( sat ) = 5.3 + 0.2 = 5.5V
IE =
5 .3
VE
=
= 1.6mA
I E 3.3m
10 − 5.5
IC =
= 0.96mA
4 .7
I B = I E − I C= 0.64mA
11
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.6 (DC analysis)
VBE = 0V
I B = 0mA
β = 100
I E = 0mA
I C = 0mA
VC = Vcc = 10V
12
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.7 (DC analysis)
forward bias
Active mode check
β = 100
reverse bias
VE = 0.7V
10 − 0.7
= 4.65mA
2k
Assume BJT in active mode :
100
I C = αI E =
× 4.65m = 4.6mA
101
VC = I C × RC − 10V = 4.6m × 1k − 10 = −5.4V
IE =
I B = I E − I C = 0.05mA
13
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.8 (DC analysis)
Reverse bias
forward bias
β = 100
Assume BJT in active mode :
5V = 100k × I B + VBE = 100k × I B + 0.7
⇒ I B = 0.043mA
I C = βI B = 4.3mA
VC = 10 − I C RC = 10 − 4.3m × 2k = 1.4V
14
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.9 (DC analysis)
β = 30
Assume BJT in active mode :
VE = VEB + VB
RB
l arg e → I B ≈ 0
5 − 0.7
= 4.3mA
1k
I C ≈ I E = 4.3V → VC = 10k × 4.3m − 5V = 38V (impossible)
VE ≈ 0.7V → I E =
I C (max) = 0.5mA → VC = 0V
15
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.10 (DC analysis)
Reverse bias
β = 100
forward bias
Thevenin’s equivalent circuit
VBB = I B RBB + VBE + I E RE
VBB = 15V
VBB = I B RBB + VBE + ( βI B + I B ) RE
RBB
⇒ I B = 0.0128mA
50k
= 5V
100k + 50k
= 100k // 50k = 33.3k
Assume BJT in active mode :
⇒ I E = 101× I B = 1.29mA
⇒ I C = 1.28mA
16
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.11 (DC analysis)
β = 100
β = 100
15V = ( I C1 + I B 2 ) RC1 + VC1 ≈ I C1 RC1 + VC1
⇒ VC1 ≈ 8.6V
start
VE 2 = VC1 + 0.7V ≈ 9.3V
15 − 9.3
≈ 2.85mA
2k
= αI E 2 ≈ 2.82mA
IE2 =
IC 2
with I B 2 = 0.028mA
Find correct current
by iteration
VC 2 = I C 2 × 2.7 k ≈ 7.62V
I B2 =
IE2
≈ 0.028mA
101
CuuDuongThanCong.com
17
Microelectronic Circuit by
meiling CHEN
/>
Exercise 5.30 (DC analysis)
β = 100
β = 100
IC3
VC 2
18
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.12 (DC analysis)
β = 100
β = 100
Q1 and Q2 cannot be conducting at same time.
If Q1 ON than Q2 OFF, and vice versa.
Assume Q1 on and Q2 off :
19
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
BJT’s biasing schemes
1.
2.
3.
4.
5.
self-bias
Base fixed bias
Collector-feedback bias
Two power supply version bias
Constant current bias
20
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Why we need good biasing scheme?
1.Temperature change ỈCollector biasing current change
2.Device change Ỉ biasing current change
iC
T1 T2 T3
iC1
iC 2
vBE
iC = I S e
VBE
VT
KT 1.38 ×10 − 23 ( o K )
VT =
=
q
1.6 × 10 −19
21
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
VBB − VBE
IE =
RE + 1R+Bβ
1. Self-Bias
Insensitive to T and β
Constrains:
VBB >> VBE
RE >>
Voltage-divider :
RB
1+ β
RR
Q RB = 1 2
R1 + R2
RE >>
Suggestion:
( R1 + R2 ) × 0.1× I E = VCC
CuuDuongThanCong.com
The rule of thumb :
(經驗法則)
VBB = 13 VCC
I C RC = 13 VCC
∴ R1 , R2 small → I B ↑
Trade-off
RB
1+ β
VCE (orVCB ) = 13 VCC
22
Microelectronic Circuit by
meiling CHEN
/>
1. Self-Bias (emitter feedback bias)
VCC
VCC − VBE
IE =
RB
RE + 1+ β
RC
RB
VE
RE
The rule of thumb :
VBB = 13 VCC
I C RC = 13 VCC
VCE (orVCB ) = 13 VCC
23
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Example 5.13 design the following self bias circuit
VBB − VBE
IE =
RB
RE + 1+ β
The rule of thumb :
VB = 13 12 = 4V
VE = 4 − VBE = 3.3V
given
I E = 1mA
VCC = 12V
β = 100
( R1 + R2 ) × 0.1× I E = VCC
RE =
VE 3.3
=
= 3.3k
I E 1m
1
3
4
⇒ ( R1 + R2 ) × 0.1× 1 = 12 L (a ) RC = 12 =
≈ 4k
αI E 0.99 ×1m
R2
VCC L (b)
VB = 4V ⇒
R1 + R2
R1 = 80k
(a ), (b) ⇒
R2 = 40k
24
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
2. Base fixed bias
VCC
RC
RB
Type 1
IC =
β (VBB − VBE )
RB
Type 3
Type 2
IC =
β (VCC − VBE )
RB
IC =
RB
RB = RB1 // RB 2
VBB
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
β (VBB − VBE )
RB 2
=
VCC
RB1 + RB 2
25
/>