Tải bản đầy đủ (.pdf) (50 trang)

Slide điện tử từ trường lecture 10 frequency response

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.03 MB, 50 trang )

Lecture 10
Frequency response

1

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

topics
• Bode diagram
• BJT’s Frequency response
• MOSFET Frequency
response

2

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

vi (t ) = Vi sin ω t

Amplifier

Vo
Magnitude:


Vi
Vo ( s )
T ( s) =
Vi ( s )

Magnitude:

Vi ( jω )

Phase:

φ

s = σ + jω ⇒ s = jω

Vo (ω )
T (ω ) =
Vi (ω )

Vo ( jω )

v o (t ) = Vo sin( ω t + φ )

Steady-state response

∠Vo ( jω )
Phase: ∠V ( jω )
i
3


Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

dB (decibel)= Decimal + Bell

dB ≡ 10 log10

p1
p2

2
v
Q p = i2z =
z

⇒ dB = 20 log10

v1
i
= 20 log10 1
v2
i2

Human hearing frequency zone : 10Hz~24kHz
Most Sensitive frequency zone : 2kHz~5kHz

圖表來自 />

4

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

Logarithmic coordinate
Decade : dec = log10

ω2
ω1

Octave : oct = log 2 ω 2
ω1

dB

ω
ω0
1

2

3 4

10

20


Log scale

100

5

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

Example(low pass)
+
Vi


+

R

C

Vo


1

1

sC V ⇒ T (ω ) =
i
1 + ( jω ) RC
R+ 1
sC
1
1
1
let ω 0 =
⇒ T (ω ) =
=
RC
1 + ( jω ) RC 1 + ( jω )

Vo =

ω0

1
2
⇒ ∠T (ω ) = 0 − tan −1 1 = −450

if

ω = ω 0 ⇒ T (ω ) =

6

Microelectric Circuit by
Meiling CHEN

CuuDuongThanCong.com

/>

T (ω ) =

1
1+ (

Magnitude:
ω
ω
(1 + j ) −1 = −20 log 1 + ( ) 2
ω0 dB
ω0
= −10 log[1 + (

ω 2
) ]
ω0

ω
ω << ω 0 ⇒
≈0
ω0
⇒ dB = −10 log 1 = 0
Phase:

s


ω0

=
)

1

1+ ( )

ω0

ω ω
ω >> ω 0 ⇒ 1 + j

ω0 ω0
ω
⇒ dB ≈ −20 log
ω0
dB = −[20 log ω − 20 log ω 0 ]

ω = ω 0 ⇒ 1 + j1 ⇒ dB = −10 log 2 = −3.01

ω
−1 ω
0
∠(1 + j ) = 0 − tan
ω0
ω0

ω

ω << ω 0 ⇒
≈ 0 ⇒ ∠T (ω ) ≈ tan −1 0 = 0o
ω0
ω
ω >> ω 0 ⇒
≈ ∞ ⇒ ∠T (ω ) ≈ − tan −1 ∞ = −90o
ω 0 Microelectric Circuit by
Meiling CHEN

CuuDuongThanCong.com

/>
7


T (ω ) ( dB )

0dB

T (ω ) =

0 .1

1

ω0
ω0 + s

ω
ω0


10

− 20dB / decade
∠ T (ω )

180 0

ω = ω 0 ⇒ − 45 0

90 0

ω
ω0

− 90 0
− 180 0

8

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

9

Microelectric Circuit by
Meiling CHEN

CuuDuongThanCong.com

/>

Example(high pass)
+
Vi

Vo =

+
Vo


C
R
R
R+ 1

Vi ⇒ T (ω ) =
sC

jωRC
1 + ( jω ) RC
(



)


ω0
jωRC
1
let ω 0 =
⇒ T (ω ) =
=
RC
1 + ( jω ) RC 1 + ( jω )

1
2
⇒ ∠T (ω ) = 90 − tan −1 1 = 450

if

ω0

ω = ω 0 ⇒ T (ω ) =

10

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

s
T ( s) =
s + ω0



T (ω ) =
jω + ω 0

Magnitude:

= 20 log ω − 20 log ω 2 + ω 02
jω + ω 0 dB

ω
ω0
dB = 20 log ω − 20 log ω 0
ω = 0.1ω 0 ⇒ dB = 20 log 0.1 = −20

= 20 log ω − 10 log[ω 2 + ω 02 ]
ω >> ω0 ⇒ 20 log

ω << ω 0 ⇒ dB ≈ 20 log

1
1 + ωjω0

⇒ −20 log(1 + ωjω0 )
⇒ dB = −20 log 1 = 0

Phase:

ω


= 90 − tan −1
jω + ω 0
ωo
ω >> ω 0 ⇒
ω << ω 0 ⇒

ω = ω0 ⇒

1
⇒ dB = −20 log 2 = −3.01
1 + j1

ω
≈ ∞ ⇒ ∠T (ω ) ≈ 90 − tan −1 ∞ = 0o
ω0

ω
≈ 0 ⇒ ∠T (ω ) ≈ 90 − tan −1 0 = 90o
ω0

11

Microelectric Circuit by
Meiling CHEN

CuuDuongThanCong.com

/>

T (ω ) ( dB )


s
T ( s) =
s + ω0

+ 20dB / decade

0dB

0 .1

∠ T (ω )

180

0

1

10

ω
ω0

ω = ω 0 ⇒ 45 0

90 0

ω
ω0


− 90 0

− 180 0
12

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

13

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

dB ≡ 20 log T (ω )
The bandwidth represents the distance between the two
points in the frequency domain where the signal is 1 2
of the maximum signal strength.

20 log T (ω )
if

1
ω = ω 0 ⇒ T (ω ) =

2

1
if T (ω ) =
2
⇒ 20 log T (ω ) = 10 log 2 = 3dB

14

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

Y ( s)
k ( s + z1 )( s + z 2 ) L
=
2
R( s ) ( s + p1 )( s + p2 )( s + as + b) L
GH (dB)

Case I : k

ω

Magnitude:
0. 1

1


10

k dB = 20 log k (dB)
∠GH

1800

Phase:

⎧ 0
∠k = ⎨ o
⎩180
o

,k f 0
,k p 0

900

ω
15

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

Case II :


1
sp

Magnitude:
1
( jω ) p

0. 1

dB

1
( jω ) p

p=2

p =1

= −20 p log ω (dB)

ω
1

10

∠GH

Phase:



GH (dB)

= (−90 o ) × p

900
− 90

0

− 1800

ω

p =1
p=2

16

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

Case III : s p
p=2

GH (dB)


Magnitude:
( jω ) p

dB

ω

= 20 p log ω (dB)
0. 1

∠GH

Phase:
∠( jω ) = (90 ) × p
p

p =1

180

0

90

0

1

10


p=2
p =1

ω

o

− 900
− 1800
17

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

a
1
−1
or
(
s
+
1
)
Case IV : ( s + a)
a

Magnitude:

(1 + j

ω
a

a =1

GH (dB)

ω

) −1
dB

= −20 log 1 + ( ) 2
a

ω

ω

= −10 log[1 + ( ) 2 ]
a
ω
ω pp a ⇒ ≈ 0 ⇒ dB = −10 log1 = 0
a
ω ω
ω
ω ff a ⇒ 1 + j ≈ ⇒ dB ≈ −20 log
∠GH

a a
a

1800

dB = −[20 log ω − 20 log a]

ω = a ⇒ 1 + j1 ⇒ dB = −10 log 2 = −3.01

Phase:
ω

∠(1 + j

a

) = 0 0 − tan

0. 1

1

10

ω = a ⇒ −450

900

−1 ω


− 900

a

− 1800

ω

ω
ω pp a ⇒ ≈ 0 ⇒ ∠GH ≈ tan −1 0 = 0o
a
ω
Circuit by
ω ff a ⇒ ≈ ∞ ⇒ ∠GH ≈ − tan −1 ∞ =Microelectric
−90o

18

Meiling CHEN

a

CuuDuongThanCong.com

/>

Case V : ( s + a) or ( 1 s + 1)
a

Magnitude:

(1 + j

ω
a

a =1

a

GH (dB)

ω

)
dB

= 20 log 1 + ( ) 2
a

ω

ω

= 10 log[1 + ( ) 2 ]
a
ω
ω pp a ⇒ ≈ 0 ⇒ dB = 10 log1 = 0
a
ω ω
ω

ω ff a ⇒ 1 + j ≈ ⇒ dB ≈ 20 log
a a
dB = 20 log ω − 20 log a

a

ω = a ⇒ 1 + j1 ⇒ dB = 10 log 2 = 3.01

Phase:
∠(1 + j
ω pp a ⇒
ω ff a ⇒

ω
a

ω
a

ω
a

) = tan

0. 1

∠GH

1800


10

ω = a ⇒ 450

900

−1 ω

− 900

a

− 1800

≈ 0 ⇒ ∠GH ≈ tan −1 0 = 0o

1

ω

19

Circuit by
≈ ∞ ⇒ ∠GH ≈ tan −1 ∞ =Microelectric
90o
Meiling CHEN

CuuDuongThanCong.com

/>


20

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

ω n2
T (s) = 2
s + 2ξω n s + ω n2

Case VI :
T ( jω ) =

T ( jω ) =

ω n2
(ω n − ω 2 ) + 2 jξω nω
2

1

ω 2
ω
(1 − ( ) ) + j 2ξ
ωn
ωn


∠ T ( jω ) = − tan −1

2ξωω n
2
(ω n − ω 2 )

ω

ωn
−1
∠ T ( jω ) = − tan
ω 2
1− ( )
ωn

ω

ω
pp 1
,
0
,
pp
1

0
ωn
ω

0

n

ω

ω

0
=1
T ( jω ) = ⎨ − 20 log(2ξ ) ,
= 1 ∠T ( jω ) = ⎨ − 90 ,
ωn

⎪− 180o ω n
ω
ω


ω

40
log(
)
,
ff
1
,
ff 1

ω
ω

n
n

ωn

21

Microelectric Circuit by
Meiling CHEN

CuuDuongThanCong.com

/>

ω = ωn

22

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

BJT high frequency model

Splitting resistance (refinement the lumped-component circuit)
Depletion capacitance

Cπ >> Cμ


Emitter-base capacitance
= diffusion capacitance + Base-Emitter junction capacitance

23

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

KTC9013 Technical data

How to find

Cπ by datasheet ?

24

Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com

/>

1
sC μ

h fe ≡


T (ω ) =

Ic
I
⇔β= C
Ib
IB

1+ (


I c = g mVπ −
= ( g m − sC μ )Vπ
1
sCμ
Ib =

1
)

1
ωβ =
(Cπ + Cμ )rπ

β 0 = g m rπ

g m − sC μ

⇒ h fe ≈


ω0

3-dB frequency


(rπ // Cπ // C μ )

Ic
h fe ≡ =
I b 1 rπ + s (Cπ + Cμ )

s

Low frequency ß

β0
g m rπ
=
1 + s (Cπ + Cμ )rπ Microelectric
1 + s (Cπ +Circuit
Cμ )rby
π

25

Meiling CHEN

CuuDuongThanCong.com


/>

×