Lecture 10
Frequency response
1
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
topics
• Bode diagram
• BJT’s Frequency response
• MOSFET Frequency
response
2
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
vi (t ) = Vi sin ω t
Amplifier
Vo
Magnitude:
Vi
Vo ( s )
T ( s) =
Vi ( s )
Magnitude:
Vi ( jω )
Phase:
φ
s = σ + jω ⇒ s = jω
Vo (ω )
T (ω ) =
Vi (ω )
Vo ( jω )
v o (t ) = Vo sin( ω t + φ )
Steady-state response
∠Vo ( jω )
Phase: ∠V ( jω )
i
3
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
dB (decibel)= Decimal + Bell
dB ≡ 10 log10
p1
p2
2
v
Q p = i2z =
z
⇒ dB = 20 log10
v1
i
= 20 log10 1
v2
i2
Human hearing frequency zone : 10Hz~24kHz
Most Sensitive frequency zone : 2kHz~5kHz
圖表來自 />
4
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Logarithmic coordinate
Decade : dec = log10
ω2
ω1
Octave : oct = log 2 ω 2
ω1
dB
ω
ω0
1
2
3 4
10
20
Log scale
100
5
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Example(low pass)
+
Vi
−
+
R
C
Vo
−
1
1
sC V ⇒ T (ω ) =
i
1 + ( jω ) RC
R+ 1
sC
1
1
1
let ω 0 =
⇒ T (ω ) =
=
RC
1 + ( jω ) RC 1 + ( jω )
Vo =
ω0
1
2
⇒ ∠T (ω ) = 0 − tan −1 1 = −450
if
ω = ω 0 ⇒ T (ω ) =
6
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
T (ω ) =
1
1+ (
Magnitude:
ω
ω
(1 + j ) −1 = −20 log 1 + ( ) 2
ω0 dB
ω0
= −10 log[1 + (
ω 2
) ]
ω0
ω
ω << ω 0 ⇒
≈0
ω0
⇒ dB = −10 log 1 = 0
Phase:
s
ω0
=
)
1
jω
1+ ( )
ω0
ω ω
ω >> ω 0 ⇒ 1 + j
≈
ω0 ω0
ω
⇒ dB ≈ −20 log
ω0
dB = −[20 log ω − 20 log ω 0 ]
ω = ω 0 ⇒ 1 + j1 ⇒ dB = −10 log 2 = −3.01
ω
−1 ω
0
∠(1 + j ) = 0 − tan
ω0
ω0
ω
ω << ω 0 ⇒
≈ 0 ⇒ ∠T (ω ) ≈ tan −1 0 = 0o
ω0
ω
ω >> ω 0 ⇒
≈ ∞ ⇒ ∠T (ω ) ≈ − tan −1 ∞ = −90o
ω 0 Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
7
T (ω ) ( dB )
0dB
T (ω ) =
0 .1
1
ω0
ω0 + s
ω
ω0
10
− 20dB / decade
∠ T (ω )
180 0
ω = ω 0 ⇒ − 45 0
90 0
ω
ω0
− 90 0
− 180 0
8
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
9
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Example(high pass)
+
Vi
−
Vo =
+
Vo
−
C
R
R
R+ 1
Vi ⇒ T (ω ) =
sC
jωRC
1 + ( jω ) RC
(
jω
)
ω0
jωRC
1
let ω 0 =
⇒ T (ω ) =
=
RC
1 + ( jω ) RC 1 + ( jω )
1
2
⇒ ∠T (ω ) = 90 − tan −1 1 = 450
if
ω0
ω = ω 0 ⇒ T (ω ) =
10
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
s
T ( s) =
s + ω0
jω
T (ω ) =
jω + ω 0
Magnitude:
jω
= 20 log ω − 20 log ω 2 + ω 02
jω + ω 0 dB
ω
ω0
dB = 20 log ω − 20 log ω 0
ω = 0.1ω 0 ⇒ dB = 20 log 0.1 = −20
= 20 log ω − 10 log[ω 2 + ω 02 ]
ω >> ω0 ⇒ 20 log
ω << ω 0 ⇒ dB ≈ 20 log
1
1 + ωjω0
⇒ −20 log(1 + ωjω0 )
⇒ dB = −20 log 1 = 0
Phase:
jω
ω
∠
= 90 − tan −1
jω + ω 0
ωo
ω >> ω 0 ⇒
ω << ω 0 ⇒
ω = ω0 ⇒
1
⇒ dB = −20 log 2 = −3.01
1 + j1
ω
≈ ∞ ⇒ ∠T (ω ) ≈ 90 − tan −1 ∞ = 0o
ω0
ω
≈ 0 ⇒ ∠T (ω ) ≈ 90 − tan −1 0 = 90o
ω0
11
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
T (ω ) ( dB )
s
T ( s) =
s + ω0
+ 20dB / decade
0dB
0 .1
∠ T (ω )
180
0
1
10
ω
ω0
ω = ω 0 ⇒ 45 0
90 0
ω
ω0
− 90 0
− 180 0
12
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
13
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
dB ≡ 20 log T (ω )
The bandwidth represents the distance between the two
points in the frequency domain where the signal is 1 2
of the maximum signal strength.
20 log T (ω )
if
1
ω = ω 0 ⇒ T (ω ) =
2
1
if T (ω ) =
2
⇒ 20 log T (ω ) = 10 log 2 = 3dB
14
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Y ( s)
k ( s + z1 )( s + z 2 ) L
=
2
R( s ) ( s + p1 )( s + p2 )( s + as + b) L
GH (dB)
Case I : k
ω
Magnitude:
0. 1
1
10
k dB = 20 log k (dB)
∠GH
1800
Phase:
⎧ 0
∠k = ⎨ o
⎩180
o
,k f 0
,k p 0
900
ω
15
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Case II :
1
sp
Magnitude:
1
( jω ) p
0. 1
dB
1
( jω ) p
p=2
p =1
= −20 p log ω (dB)
ω
1
10
∠GH
Phase:
∠
GH (dB)
= (−90 o ) × p
900
− 90
0
− 1800
ω
p =1
p=2
16
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
Case III : s p
p=2
GH (dB)
Magnitude:
( jω ) p
dB
ω
= 20 p log ω (dB)
0. 1
∠GH
Phase:
∠( jω ) = (90 ) × p
p
p =1
180
0
90
0
1
10
p=2
p =1
ω
o
− 900
− 1800
17
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
a
1
−1
or
(
s
+
1
)
Case IV : ( s + a)
a
Magnitude:
(1 + j
ω
a
a =1
GH (dB)
ω
) −1
dB
= −20 log 1 + ( ) 2
a
ω
ω
= −10 log[1 + ( ) 2 ]
a
ω
ω pp a ⇒ ≈ 0 ⇒ dB = −10 log1 = 0
a
ω ω
ω
ω ff a ⇒ 1 + j ≈ ⇒ dB ≈ −20 log
∠GH
a a
a
1800
dB = −[20 log ω − 20 log a]
ω = a ⇒ 1 + j1 ⇒ dB = −10 log 2 = −3.01
Phase:
ω
∠(1 + j
a
) = 0 0 − tan
0. 1
1
10
ω = a ⇒ −450
900
−1 ω
− 900
a
− 1800
ω
ω
ω pp a ⇒ ≈ 0 ⇒ ∠GH ≈ tan −1 0 = 0o
a
ω
Circuit by
ω ff a ⇒ ≈ ∞ ⇒ ∠GH ≈ − tan −1 ∞ =Microelectric
−90o
18
Meiling CHEN
a
CuuDuongThanCong.com
/>
Case V : ( s + a) or ( 1 s + 1)
a
Magnitude:
(1 + j
ω
a
a =1
a
GH (dB)
ω
)
dB
= 20 log 1 + ( ) 2
a
ω
ω
= 10 log[1 + ( ) 2 ]
a
ω
ω pp a ⇒ ≈ 0 ⇒ dB = 10 log1 = 0
a
ω ω
ω
ω ff a ⇒ 1 + j ≈ ⇒ dB ≈ 20 log
a a
dB = 20 log ω − 20 log a
a
ω = a ⇒ 1 + j1 ⇒ dB = 10 log 2 = 3.01
Phase:
∠(1 + j
ω pp a ⇒
ω ff a ⇒
ω
a
ω
a
ω
a
) = tan
0. 1
∠GH
1800
10
ω = a ⇒ 450
900
−1 ω
− 900
a
− 1800
≈ 0 ⇒ ∠GH ≈ tan −1 0 = 0o
1
ω
19
Circuit by
≈ ∞ ⇒ ∠GH ≈ tan −1 ∞ =Microelectric
90o
Meiling CHEN
CuuDuongThanCong.com
/>
20
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
ω n2
T (s) = 2
s + 2ξω n s + ω n2
Case VI :
T ( jω ) =
T ( jω ) =
ω n2
(ω n − ω 2 ) + 2 jξω nω
2
1
ω 2
ω
(1 − ( ) ) + j 2ξ
ωn
ωn
∠ T ( jω ) = − tan −1
2ξωω n
2
(ω n − ω 2 )
ω
2ξ
ωn
−1
∠ T ( jω ) = − tan
ω 2
1− ( )
ωn
ω
⎧
ω
pp 1
,
0
,
pp
1
⎪
0
ωn
ω
⎧
0
n
⎪
ω
⎪
ω
⎪
0
=1
T ( jω ) = ⎨ − 20 log(2ξ ) ,
= 1 ∠T ( jω ) = ⎨ − 90 ,
ωn
⎪
⎪− 180o ω n
ω
ω
⎩
⎪
ω
−
40
log(
)
,
ff
1
,
ff 1
⎪
ω
ω
n
n
⎩
ωn
21
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
ω = ωn
22
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
BJT high frequency model
Splitting resistance (refinement the lumped-component circuit)
Depletion capacitance
Cπ >> Cμ
Emitter-base capacitance
= diffusion capacitance + Base-Emitter junction capacitance
23
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
KTC9013 Technical data
How to find
Cπ by datasheet ?
24
Microelectric Circuit by
Meiling CHEN
CuuDuongThanCong.com
/>
1
sC μ
h fe ≡
T (ω ) =
Ic
I
⇔β= C
Ib
IB
1+ (
Vπ
I c = g mVπ −
= ( g m − sC μ )Vπ
1
sCμ
Ib =
1
)
1
ωβ =
(Cπ + Cμ )rπ
β 0 = g m rπ
g m − sC μ
⇒ h fe ≈
ω0
3-dB frequency
Vπ
(rπ // Cπ // C μ )
Ic
h fe ≡ =
I b 1 rπ + s (Cπ + Cμ )
s
Low frequency ß
β0
g m rπ
=
1 + s (Cπ + Cμ )rπ Microelectric
1 + s (Cπ +Circuit
Cμ )rby
π
25
Meiling CHEN
CuuDuongThanCong.com
/>