Lecture 02
Diodes
圖片來自;www.personeel.glr.nl/koster/elektro/diodes.JP
1
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
topics
•
•
•
•
Semiconductor physics
Diode forward characteristic
Diode reverse characteristic
Special diodes
2
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Solid-state material
• Insulator (SiO2)
– Strong covalent bonds, no free electron
−8
−1
σ
<
10
(
Ω
−
cm
)
– Conductivity
1eV ≡ 1.6 ×10 −19 Joule
– Energy gap Eg ≥ 3eV
eV: eletron voltage
• Semi-conductor (Si, Ge)
– Conductivity 10 −8 < σ < 103 (Ω − cm) −1
– Energy gap 0 < Eg < 3eV
• Conductor (Cu, Ag)
– Weak covalent bonds, many free electrons
– Conductivity σ > 103 (Ω − cm) −1
– Energy gap Eg = 0eV
3
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
4
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Energy gap
Energy level
high energy
Infinite many atoms
Low energy
conduction band
Energy-level gap
valance band
/>
One atom
Level 3 : high energy
Level 1 : low energy
electrons
conduction band
conduction band
conduction band
Energy gap overlap
valance band
Energy-level gap
valance band
Energy-level gap
valance band
5
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Famous Semi-conductors
• Element semi-conductor
– Si
• Cheap
• Energy gap > Ge Æ small leakage
current
• Stable oxide
– Ge
• First transistor
• Small energy gap
• Unstable oxide
• Compound semi-conductor
– GaAs
6
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Intrinsic semiconductor (silicon)
At very low temperature
ion
/>
7
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Intrinsic semiconductor at room temperature
Mass-action law:
n = p = ni ⇒ np = ni2
3 − KTG
ni = BT e
2
E
For silicon semi-conductor
Material parameter
B = 5.4 ×1031
EG = 1.12eV
Boltzmann’s constant
k = 8.62 × 10 −5 eV K
At room temperature
Free electrons and holes generated
by thermal ionization, so the
concentration is same n = p = ni
T ≈ 300 K
ni ≈ 1.45 ×1010 carriers
8
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
cm3
/>
Hole and electrons moving
1. drift
Drift velocity
v = μE
Resistivity
R=ρ l
E=
E : electric field strength (V/cm)
μ : mobility of hole/electron (cm2/V-sec)
l
A
Charge density ρ ≡ nq ( Ω − cm )
conductivity
A
e
e
J = σE
J n = qnμ n E
J drift = q ( pμ p + nμ n ) E
e
Nq Nqv
=
T
L
I
Nqv
J= ⇒J=
A
AL
N
n≡
⇒ J = nqv
LA
I≡
σ ≡ nq μ
J p = qpμ p E
f
q
For intrinsic silicon :
2
cm
μ p = 480
V ⋅s
2
cm
μ n = 1350
Electron density
V ⋅s
9
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
2. diffusion
For intrinsic silicon :
q = 1.6 × 10 C
2
cm
D p = 12
J : current density
s
2
q : electron charge
cm
Dn = 34
D : diffusivity of hole/electron
s
−19
dp
J p = −qD p
dx
dn
J n = qDn
dx
p
n
electron diffusion
hole diffusion
Jp
Jn
x
x
The conventional current direction is the positive charge flow direction
10
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Currents in semi-conductor = drift current + diffusion current
dp
J p = pqμ p E − qD p
dx
dn
J n = nqμ n E + qDn
dx
r
E
r
E
hole
e−
+
Jn
Jp
11
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Einstein relationship : relationship between drift current and diffusion current
Dn
μn
=
Dp
μp
= VT
At room temperature (20oC)VT
kT
VT ≡
q
k = 1.38 × 10
VT thermal voltage
溫度伏特當量
≈ 25mV
Boltzmann’s constant
− 23 joules
kelvin
T = 273+ oC
T = 20o C → 293o K ⇒ VT ≈ 25mV
T = 27 o C → 300o K ⇒ VT ≈ 26mV
q = 1.6 × 10 −19 coulomb
12
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Current in solid-state
material
• Insulator
JT = 0
• Semi-conductor
JT = J p + J n
dp
J p = pqμ p E − qD p
dx
dn
J n = nqμ n E + qDn
dx
• Conductor
J T = J n = nqμ n E
13
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
N-type impure semiconductor (donor)
Majority carriers are negative charges : electrons
N D : Donor atoms concentration
nno : Free electrons concentration
In thermal equilibrium
nno ≈ N D
n-type
from semiconductor physics
Mass-action law
donor atom
nno pno = ni2
ni2
pno ≈
ND
+
Doped +5 atoms: Sb, P, As
銻,磷,砷
electron
donor ion (positive ion)
14
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
P-type impure semiconductor (acceptor)
Majority carriers are positive charges : holes
N A : Acceptor atoms concentration
p po : Free holes concentration
In thermal equilibrium
p po ≈ N A
from semiconductor physics
acceptor atom
Doped +3 atoms: B, Ga, In,
硼,鎵,銦
hole
p po n po = ni2
ni2
n po ≈
NA
acceptor ion (negative ion)
15
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
+3
+3
+5
+3
+5
+5
圖片來自;www.rvweb.fr/.../electricite/partie3_4.php
16
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
≈ 0.5μm
Depletion region
圖片來自;www.rvweb.fr/.../electricite/partie3_4.php
17
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
PN Junction under open-circuit
Space charge
(≈ 0.5μm)
I =0
I D : Diffusion current
I S : Drift current
∴ I = 0 → ID = IS
Contact difference of potential
N N
Vo = VT ln( A 2 D )
ni
V0
For silicon at room temperature
Vo = 0.6 ~ 0.8V
18
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
dp
dx
dn
J n = nqμ n E + qDn
dx
dp
J p = 0 ⇒ pqμ p E = qD p
dx
D p dp
E=
pμ p dx
J p = pqμ p E − qD p
Q
Dp
μp
=
Dn
μn
= VT
VT dp
p dx
dV
QE = −
dx
dp
⇒ dV = −VT
p
⇒E=
p1
p2
V1
V2
∫ dV = ∫ − VT
1
dp
p
p1
→ V2 − V1 = −VT (ln p2 − ln p1 ) = VT ln
p2
V21
Boltzmann equation
Mass-action law
VT
⇒ p1 = p2 e
2
J n = 0 ⇒ n1 = n2 e
Vo =V 21= VT ln
−V21
VT
p1
p2
N AND
Vo = VT ln
n 2i
n1 p1 = n2 p2 = ni
p
n
p1 = p po = N A
p2 = pn 0 =
ni2
19
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
ND
/>
Depletion region
Gauss’s Law
∇ • E ( x) =
Charge density
Field strength
Wn
E ( x) = ∫
qN D
− Wp
−W p
Wn
− qN A
E (x)
電場的散度等於體電荷密度
(volume charge density)
除以真空容電率
qN AW p = qN DWn
ρ (x)
− Wp
Wn
V = −∫
−W p
Wn
V (x)
V0
ε
V0 = − ∫
0
−W p
=
qN AW p2
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
qN AW p
E0 = −
E0
ρ ( x)
ε
2ε
ρ ( x)
dx
ε
E ( x)dx
=−
qN DWn
ε
Wn
E ( x)dx − ∫ E ( x)dx
0
qN DWn2
+
2ε
/>
20
Depletion width
W = W p + Wn ⇒ W =
⇒ Wn =
ND
Wn + Wn
NA
NA
ND
W ⇒ Wp =
W
N A + ND
N A + ND
qN AW p2
qN DWn2
V0 =
+
2ε
2ε
q N AND
V0 =
(
)W 2
2ε N A + N D
Wp
Wn
Charge equality
qW p AN A = qWn AN D
⇒
Wn N A
=
Wp N D
⇒ Wn N D = W p N A
Wdep
2ε s 1
1
= Wn + W p =
(
+
)V0
q N A ND
ε s : Silicon Electrical permirrivity
For silicon
容電係數
ε s = 1.04 × 10 −12 F cm
Wdep = 0.1μm ~ 1μm
21
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
圖片來自;www.rvweb.fr/.../electricite/partie3_4.php
22
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
PN Junction reverse bias
IS > ID
IS − ID = I
q J = q N = qN DWn A
N AND
qJ = q
AWdep
N A + ND
Wdep = Wn + W p =
Cj =
Junction capacitance
dq J
Cj =
dVR
⇒ Cj =
VR =VQ
εs A
VR = 0
C jo = A
2ε s 1
1
(
+
)(V0 + VR )
q N A ND
C jo
varactor
1 + VVRo
qε s N A N D 1
(
)
2 N A + N D V0
Wdep
23
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
圖片來自;www.rvweb.fr/.../electricite/partie3_4.php
24
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>
Minority carriers distribution in forward bias (the story about reverse saturation current)
electrons
p1 = p2 e
V21
VT
page18
→ p n ( xn ) = p n 0 e
V
VT
holes
pn ( x) = pn 0 + [ pn ( xn ) − pn 0 ]e
Q J p = − qDP
⇒ Jp = q
Dp
Lp
− ( x − xn )
LP
dp
dx
pn 0 (e
V
VT
− 1)e
− ( x − xn )
LP
Total loss by recombination
= External electric field inject electrons
Inject holes from P region to diffuse away from the
junction into the N region and disappear by
recombination
25
Microelectronic Circuit by
meiling CHEN
CuuDuongThanCong.com
/>