Tải bản đầy đủ (.docx) (98 trang)

Giao an Toan 8 ca nam chuan kien thuc moi 20182019

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (313.3 KB, 98 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
Tài liệu
PHÂN PHỐI CHƯƠNG TRÌNH THCS
MƠN TỐN 8
(Dùng cho các cơ quan quản lí giáo dục và giáo viên,
áp dụng từ năm học 2018-2019)

Lớp 8

Cả năm: 140 tiết

Đại số: 70 tiết

Hình học: 70 tiết

Học kì I: 19 tuần (72 tiết)

40 tiết

32 tiết

Học kì II:18 tuần (68 tiết)

30 tiết

38 tiết

1


TT



1

2

Nội dung
I. Phép nhân và phép chia đa thức
1. Nhân đa thức
 Nhân đơn thức với đa thức.
 Nhân đa thức với đa thức.
 Nhân hai đa thức đã sắp xếp.
2. Các hằng đẳng thức đáng nhớ
 Bình phương của một tổng. Bình phương của một hiệu.
 Hiệu hai bình phương.
 Lập phương của một tổng. Lập phương của một hiệu.
 Tổng hai lập phương. Hiệu hai lập phương.
3. Phân tích đa thức thành nhân tử
 Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử
chung.
 Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng
đẳng thức.
 Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
 Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp.
4. Chia đa thức
 Chia đơn thức cho đơn thức.
 Chia đa thức cho đơn thức.
 Chia hai đa thức một biến đã sắp xếp.
II. Phân thức đại số
1. Định nghĩa. Tính chất cơ bản của phân thức. Rút gọn phân
thức. Quy đồng mẫu thức nhiều phân thức.

2. Cộng và trừ các phân thức đại số
 Phép cộng các phân thức đại số.
 Phép trừ các phân thức đại số.
3. Nhân và chia các phân thức đại số. Biến đổi các biểu thức hữu
tỉ
 Phép nhân các phân thức đại số.
 Phép chia các phân thức đại số.
 Biến đổi các biểu thức hữu tỉ.

Số tiết

Ghi
chú
Đại
số
70
tiết

21

19

2


TT

Nội dung

Số tiết


3

III. Phương trình bậc nhất một ẩn
1. Khái niệm về phương trình, phương trình tương đương
 Phương trình một ẩn.
 Định nghĩa hai phương trình tương đương.
2. Phương trình bậc nhất một ẩn
 Phương trình đã được về dạng ax + b = .
 Phương trình tích.
 Phương trình chứa ẩn ở mẫu.
3. Giải bài tốn bằng cách lập phương trình bậc nhất một ẩn.

16

4

IV. Bất phương trình bậc nhất một ẩn
1. Liên hệ giữa thứ tự và phép cộng, phép nhân.
2. Bất phương trình bậc nhất một ẩn. Bất phương trình tương đương.
3. Giải bất phương trình bậc nhất một ẩn.
4. Phương trình chứa dấu giá trị tuyệt đối.

14

5

V. Tứ giác
1. Tứ giác lồi
 Các định nghĩa: Tứ giác, tứ giác lồi.

 Định lí: Tổng các góc của một tứ giác bằng 36.
2. Hình thang, hình thang vng và hình thang cân. Hình bình
hành. Hình chữ nhật. Hình thoi. Hình vng.
3. Đối xứng trục và đối xứng tâm. Trục đối xứng, tâm đối xứng
của một hình.

6

VI. Đa giác. Diện tích đa giác
1. Đa giác. Đa giác đều.
2. Các cơng thức tính diện tích của hình chữ nhật, hình tam giác,
của các hình tứ giác đặc biệt (hình thang, hình bình hành, hình
thoi, hình vng).
3. Tính diện tích của hình đa giác lồi.

Ghi
chú

Hình
học
70
tiết
25

11

3


Nội dung


TT

Số tiết

7

VII. Tam giác đồng dạng
1. Định lí Ta-lét trong tam giác
 Các đoạn thẳng tỉ lệ.
 Định lí Ta-lét trong tam giác (thuận, đảo, hệ quả.
 Tính chất đường phân giác của tam giác.
2. Tam giác đồng dạng
 Định nghĩa hai tam giác đồng dạng.
 Các trường hợp đồng dạng của hai tam giác.
 Ứng dụng thực tế của tam giác đồng dạng.

18

8

VIII. Hình lăng trụ đứng. Hình chóp đều
1. Hình lăng trụ đứng. Hình hộp chữ nhật. Hình chóp đều. Hình
chóp cụt đều
 Các yếu tố của các hình đó.
 Các cơng thức tính diện tích, thể tích.
2. Các quan hệ khơng gian trong hình hộp
 Mặt phẳng: Hình biểu diễn, sự xác định.
 Hình hộp chữ nhật và quan hệ song song giữa: đ ường thẳng và
đường thẳng, đường thẳng và mặt phẳng, mặt phẳng và mặt

phẳng.
 Hình hộp chữ nhật và quan hệ vng góc giữa:đ ường thẳng và
đường thẳng, đường thẳng và mặt phẳng, mặt phẳng và mặt
phẳng.

16

Tuần 1

Ghi
chú

Tiết 1
CHƯƠNG I: SỐ HỮU TỈ – SỐ THỰC
TẬP HP Q CÁC SỐ HỮU TỈ
4


I/ MỤC TIÊU:
- 1 Kiến thức Hiểu được khái niệm số hữu tỉ, cách biểu diễn số hữu tỉ trên trục số và
so sánh các số hữu tỉ. Bước đầu nhận biết được mối quan hệ giữa các tập hợp soỏ: N
Z Q.
2. Kĩ năng:
- Bieỏt bieồu dieón số hữu tỉ trên trục số; biết so sánh hai số hữu tỉ.
- Rèn tính cẩn thận, chính xác, khả năng quan sát, nhận xét để so sánh hai số hữu tỉ.
II/ CHUẨN BỊ CỦA GV VÀ HS:
HS: Ôn lại phần các phân số bằng nhau.
GV: chuẩn bị phiếu học tập, máy chiếu hắt hoặc bảng phụ.
III/ HOẠT ĐỘNG TRÊN LỚP:
Ổn định và giới thiệu chương I :

Học sinh cả lớp lăng nghe Gv giới thiệu chương I
Gv giới thiệu bài 1
HOẠT ĐỘNG THẦY

HOẠT ĐỘNG TRÒ

-GV ở lớp 6 ta đã biết các -HS:
phân số bằng nhau là các cách 3 3  6 9 ...
1 2 3
viết khác nhau của cùng một
1 1 2
số, số đó được gọi là số hữu tỉ.  0.5    ...
2 2 4
Vậy giả sử thầy có các số:
0 0
5
3;-0.5;0;2 7 .

Em nào có thể các phân số
khác nhau cùng bằng các số
đó?

0   ...
1 2
5 19  19 38
2  
 ...
7 7
 7 14


NỘI DUNG
1. SỐ HỮU TỈ:
3 6 9
3    ...
1 2 3
1 1 2
 0.5    ...
2 2 4
0 0
0   ...
1 2
5 19  19 38
2  
 ...
7 7
 7 14
5
Vậy các số 3;-0.5;0; 7 .đều
2

HS đọc phần đóng là số hữu tỉ.
tập hợp các số hữu tỉ kí hiệu
khung sgk trang 5
là Q
Vài HS khác đọc lại.
Gv chốt lại:
GV cho HS đọc phần đóng HS:
?1: Các số là hữu tỉ vì
khung ở sgk trang 5
GV cho HS làm BT ?1 và ? các số đó đều viết

được dưới dạng phân
2
a
số b .

?2: Số nguyên a là số hữu tỉ

2. BIỂU DIỄN SỐ HỮU TỈ
HS cả lớp cùng thực TRÊN TRỤC SỐ:
hiện
Một HS lên bảng vẽ.
Cả lớp theo dõi
5


a

a
1

HS:

3. SO SÁNH HAI SỐ HỮU
TỈ:

 2  10
vì:
3 = 15
GV cho HS thực hiện BT ?3 4  4  12
 5 = 5 = 15

skg tr5
 10  12
GV nhận xét
Ta có: 15 > 15

2
Ví dụ so sánh hai phân số 3
4
và  5 .
vì  2  10
3 = 15
4  4  12
 5 = 5 = 15
 10  12
Ta có: 15 > 15 vì -10>-12
2 4
Nên: 3 >  5 .

GV giới thiệu và trình bày
-10>-12
VD1 và VD2
trên bảng phụ để HS tiện theo
dõi
GV cho HS làm BT ?4 so sánh

2 4
Nên: 3 >  5 .

2
4

hai phân số 3 và  5 .

HS làm ?5
2
Số hữu tỉ dương là: 3 ;
3
GV nhấn mạnh: Với hai số  5

hữu tỉ bất kỳ x,y ta x>y.Ta có
thể so sánh hai số hữu tỉ bằng
cách viết chúnh dưới dạng
phân số rồi so sánh hai phân
số đó.
GV treo bảng phụ ghi sẵn
VD1 và VD2 trên bảng và
hướng dẫn HS cách giải.
GV treo bảng phụ ghi sẵn
VD1 và VD2 trên bảng và
HDHS quan sát cách giải
GV chốt lại số hữu tỉ dương,
âm như sgk tr 7.
Cho HS làm ?5

Số

hữu

tỉ

âm


là:

3 1
; ; 4
7 5
0
Số  2 không là số hữu

tỉ dương, âm.

IV. CỦNG CỐ ( 5’)
GV cho HS cả lớp làm tại chổ BT 1 và 3a sgk trang 7,8

6


GV nhận
Gọi 2 HS lên bảng làm, cả lớp cùng làm và theo dõi bài của hai bạn trên
xét và cho
điểm
BT1:
-3N
-3Z
-3Q
2
3 Z

2
3 Q

NZQ
2  2  22
BT3a: x=  7 = 7 = 77
 3  33
Y= 11 = 77

Suy ra: x>y
V. HƯỚNG DẪN VỀ NHÀ (2’)
- Về nhà các em học trong vở ghi kết hợp với SGK
- làm các bài tập 2;3b,c;4;5 sgk tr7,8
- Soạn bài cho tiết sau
Giáo án đại số 8 chuẩn kiến thức kỹ năng mới cả năm mới
Liên hệ ĐT 0168.921.86.68
Tuan 1
Tieỏt 2 .
Tieỏt 2 : CỘNG , TRỪ SỐ HỮU TỈ.

I/ MỤC TIÊU:
1 Kiến thức -Hs hiểu được quy tắc cộng ,trừ số hữu tỉ. Quy tắc chuyển vế trong tập hợp số
hữu tổ.
2. Kĩ năng:
-Coự kổ naờng laứm caực pheựp toaựn nhanh , đúng
Có kỉ năng áp dụng quy tắc chuyển vế.
II/ CHUẨN BỊ CỦA GV VÀ HS:
-GV:Bảng phụ, phiếu học tập,
-Hs:n tập quy tắc ,cộng trừ phân số, quy tắc chuyển vế.
III/ HOẠT ĐỘNG TRÊN LỚP:
Kiểm tra(10’)
Cho ví dụ về 3 số hữu tỉ (dương, âm.0).
Sửa bt 3/8 : So sánh

So saùnh :
2 −2 −2
a ) x = − 7 = 7 =77

− 3 −21
y = 11 =77

Vì -22 < -21 vaø 77 > 0

− 22 −21 − 2 −3
<

<
77
77
7 11
7


3
b) −0 , 75=− 4

c)

− 213 18
−216
>
(¿
)
300

− 25 300

Vậy giữa hai số hữu tỉ bất kỳ bao giờ cũng có ít nhất một số hữu tỉ nữa.Đó chính là sự khác
biệt giữ a Z và Q.
¿
a
b
x= ; y= (a ,b ,m ∈ Z , m>0)
m
m
x< y
tacoù:
⇒a< b
¿{
¿
a 2a
b 2b
a+b
x= m = 2 m ; y= m = 2 m ; z= 2 m

Vì a
Tương tự : 2b > a+b
Suy ra y > z (2)
TỪ (1) và (2) x < y
HOẠT ĐỘNG THẦY
Số hữu tỉ là số viết được dưới
a


dạng phân số b (a,b Z , b
0 )
? Vậy để cộng trừ hai số hữu tỉ
ta làm thế nào?
-Gọi Hs nhắc lại quy tắc cộng
tr72 phân số khác mẫu.
- Như vậy , với hai số hữu tỉ bật
kỳ ta đều có thể viết chúng dưới
dạng phân số có cùng mẫu
dương rối áp dụng quy tắc cộng
trừ phân số cùng mẫu.
.Hãy hoàn thành các công thức
sau
x+y=
x-y =
-?Trong phép cộng phân số có
những quy tắc nào

⇒a+ a⇒ 2 a⇒ x < z (1)

Dạy Bài Mới
HOẠT ĐỘNG TRÒ
HS: Có thể viết chúnh
dưới dạng phân số rối áp
dụng quy tắc cộng trừ
phân số.
- HS phát biễu quy tắc.


NỘI DUNG
1 ) Cộng trừ hai số hữu tỉ.
a

a

b

a

b

a+ b

a

b

a+ b

x+y = m + m = m
a

x+y = m + m = m

b

- Với x = b ; y= m (a,b,m
Z ,m>0 )
b


a−b

x – y = m − m= m

a−b

x – y = m − m= m

- HS lên bảng.

−7 4
+
3 7 =
− 49 12
−37
+
=
21
721 21
−3
b) (-3) – ( 4 ) =
− 12 3 − 9
+ =
4
4
4

a)


Ví dụ : Cho vd và gọi hs lên
bảng
−7 4
+
3 7
−3
–( 4 )

a)

b ) (-3)

-Hs cả lớp làm vào vở, 2
hs lên bảng làm:
8


−1

-Gọi hs nói ra cách làm, sau đó
GV bổ sung nhấn mạnh các
bước làm.
- Y/c Hs làm ?1.
- Y/c hs làm tiếp bài 6/10
Gv:Xét bài tập sau: Tìm số
nguyên x biết x+5 =17
- Dự a vào bài tập trên hãy
nhắc lại quy tắc chuyển vế
trong Z.
- Tương tự trong, trong Q cũng

có quy tắc chuyển vế.

−3
1
- Ví dụ : Tìm x, biết: 7 + x = 3
- Y/c hs làm ? 2

a) 15

b)

11
15

- Hs lớp làm vào vở , 2 hs
lên bảng.
HS: x+5 =17
x = 17-5
x = 12
Hs: Nhắc quy tắc chuyển
vế trong Z.
- Hs ghi vào vở.

2) Hoạt động 3: Quy tắc
chuyển vế.(10’)
Tìm số nguyên x biết x+5
=17
16
x+5 =17
- 1 hs lên bảng : x= 21

x = 17-5
- 2 hs lên bảng :
x = 12
1
Kết quả:a) x = 6
b) Với mọi x,y,z
Q:x +y =z
29
⇒ x =z -y
x = 28
Chú Ýù (SGK)

IV. CỦNG CỐ ( 5’)
Bài (a,c ) /10 SGK.
3
5
3
Tính : a) 7 + − 2 + − 5

( )( )

¿
30 −175 − 42 −187
47
a +
+
=
¿=− 2 ¿
70 70
70

70
70

4
2
7
c) 5 − − 7 − 10

( )

27

c) = 10

GV : y/c hs hoạt động nhóm làm bài tập 9(a,c)/10 SGK và 10/10 SGK ( GV phát phiếu học
tập ).
-Kiểm tra bài làm của một vài hs.
- HS hoạt độmg theo nhóm
Bài 9 : a) x= 5/12 b x = 4/21
Bài 10:
Cách 1:Tính giá trị trong ngoặc
C 2: Bỏ ngoặc rối tính
V. HƯỚNG DẪN VỀ NHÀ (2’)
Học thuộc quy tắc và công thức tổng quát.
-Bài tập về nhà: 7(b) ;8(b,d); 9(b,d)/10 SGK
- n tập quy tắc nhân , chia phân số, các tính chất phép nhân trong Z, phép nhân phân số.
Tuần 2
Tieát 3 .

9



Bài 3 : NHÂN ,CHIA SỐ HỮU TỈ.
I.MỤC TIÊU :
1 Kiến thức
- Hs hiểu được quy tắc nhân chia số hửừu tổ.
2. Kĩ năng:
- Coự kú naờng nhaõn ,chia soỏ hữu tỉ nhanh đúng.
II .CHUẨN BỊ :
-DV: Công thức tổng quát nhân ,chia hai số hữu tỉ, các tính chất của phép nhân.Bảng phụ
ghi bài tập 14/12 để tổ chức trò chơi
-HS: n tập các quy tắc như hướng dẫn vế nhà.
III. CÁC HOẠT ĐỘNG.
Kiểm tra
Hs1 nhắc lại qui tắc nhân phân số

 5 21

 p dụng tính : 7 10

Gọi HS 2 nhắc lại qui tắc chia phân số
11 33
:
p dụng tính : 12 16

 5 21  5.21  3
1
 
  1
7 10 7.10

2
2
11 33 11 16 4
:
  
12 16 12 33 9

a
c
Tổng quát với 2 phân số b và d thì
a c
a c
a c a.c
 ?
: ?
 
b d
b d b.d
vaø b d

a c a d a.d
:   
b d b c b.c

ở bài học trước ta đã biết thế nào là nmột số hữu tỉ, vậy em nào có thể nhắc lại cho thầy số
hữu tỉ là số như thế nào ( HS phát biểu)
GV :khẳng dịnh phép nhân và chia số hữu tỉ được thực hiện như phép nhân và chia phân số.
 vào bài học
Dạy Bài Mới
HOẠT ĐỘNG THẦY

HOẠT ĐỘNG TRÒ
NỘI DUNG
1. NHÂN HAI SỐ HỮU TỈ:
Với hai số hữu tỉ x và y thì ta có HS phát biểu và viết :
(SGK)
a
c
a
c
thể viết được dưới dạng phân số
x
y
x
y
b và
d
b và
d
không ?
a c a.c
a c a.c
Chú ý : b 0 ; d 0
 
 
b d b.d
b d b.d
HS:
x.y
=
x.y

=
Khi đó x.y = ?
Đó chính là qui tắc nhân hai số
HS thực hiện vào tập
hữu tỉ.
Đổi hỗn số ra phân số
GV : ra ví dụ
Nhân phân số với hỗn số ?

Ví dụ : a/
1


 5 21  5.21  3
1
 
  1
7 10 7.10
2
2

2 1 2 7 7
3   
b/ 3 2 3 2 3
a c a d a.d
:   
x : y = b d b c b.c
HS y 0

Ta đã biết cách nhân hai số hữu

tỉ vậy cũng với hai số hữu tỉ trên
Đổi ra phân số
thì :
x:y=?
trong phép chia thì y phải có HS thực hiện
điều kiện gì ?
nếu một trong hai số x, y là hỗn HS thực hiện vào tập
số thì ta phải làm như thế nào?
Cho ví dụ

2. CHIA HAI SỐ HỮU TỈ :
(SGK)

Ví duï:
 3 3  3
 0,3 :     :
 5  10 5
3 5 1
  
10  3 2

Chú ý : (SGK)

Thực hiện ?
Cho HS nhắc lại tỉ số của hai số
nguyên  tỉ số của hai số hữu tỉ

IV. CỦNG CỐ ( 5’)
với các kiến thức vừa được học bây giờ các em hãy vận dụng kiến thức đó vào giải các bài
tập sau.

Cho HS làm bài 11
3
Kết quả: a/ 4
7
1
1
c/ 6 6

9
b/ 10
1
d/ 50

Bài 13:

 15
1
19
3
 7
b/ 3
2
2
8
8
Kế quả
4
-7
1
c/

d/  1
15
6
6
a/

V. HƯỚNG DẪN VỀ NHÀ (2’)
Bài tập về nhà : 14, 15 SGK và từ bài 17  23 sách bài tập
về nhà ôn lại giá trị tuyệt đối của một số nguyên, phân số thập phân và xem trước bài giá
trị tuyệt dối của một số hữu tỉ.
1


Tuần 2
Tiết 4 .
GÍA TRỊ TUYỆT ĐỐI CỦA MỘT SỐ HỮU TÌ.
CỘNG , TRỪ ,NHÂN , CHIA SỐ THẬP PHÂN

:

I MỤC TIÊU:\
1 Kiến thức
 Học sing hiểu khái niệm giá trị tuyệt đối của một số hữu tí
 Xá định được giá trị tuyệt đối của một số hữu tỉ
2. Kĩ năng:
Coự kổ naờng voọng trửứ nhaõn chia soỏ thập phân
 Có ý thức vận dụng tính chất các phép toán vế các số hữu tì để tính toán hợp lí.
II . CHUẨN BỊ:
Sgk, Hình vẽ trục số để ôn lại GTTĐ của số nguyên a, bảng pbụ
III. CÁC HOẠT ĐỘNG.

Kiểm tra)
Gọi HS tính :
3

; -5 

; 0 

Thế nào là giá trị tuyệt đố của một số nguyên?
HS thực hiện
3 3 ; -5 5 ; 0 0

cả lớp theo dõi và nhận xét
HS phát biểu : “Khoảng cách từ điểm a đến điểm 0 trên trục số là giá trị tuyệt đối của số
nguyên a”
1


Như vậy ta đã được ôn lại về giá trị tuyệt đối của một số nguyên, còn đối với số hữu tỉ thì giá
trị tuyệt đối được tính như thế nào?  vào bài
Đặt vấn đề: (phần đầu bài học)
Dạy Bài Mới
HOẠT ĐỘNG THẦY
HOẠT ĐỘNG TRÒ
NỘI DUNG
Giới thiệu khái niệm:
HS tiếp nhận khái niệm thông .1Giá trị tuyệt đối của một
Cũng như giá trị tuyệt đối của qua phần ôn tập.
hữu tỉ:
một số nguyên, giá trị tuyệt

(SGK – tr 13)
đối của một số hữu tỉ x kí hiệu
x
?1
là khoảng cách từ diểm x
tới điểm 0 trên trục số .
Cho HS làm ?1

a / 3,5 3,5

HS: trả lời x < 0 ( hoặc x 0)
Với bài tập vừa giải em nào
có thể trả lời câu hỏi đặt ra ở ?2
1
1
đậu bài?
a/ x 
b/ x 
7
7
Nếu không trả lời được x 0
1
c / x 3
d/ x 0
thì cần chú ý trường hợp = 0.
5
Cho hs làm ?2
HS thực hiện :

 205 173

Ta đã biết mỗi số thập phân
 2,05  1,73 


100 100
đều viết được dưới dạng phân
số có mẫu là luỹ thừa của 10   32  0,32
100
do đó ta có thể chuyển về
dạng phân số để thực hiện các
phép tính như các phân số.

Trong thực tế ta không làm
như trên màchỉ cần áp dụng
các qui tắc về giá trị tuyệt đối
và dấutương tự như đối với số
nguyên.
Giới thiệu ví dụ SGK

4 4

7
7

Hs thực hiện

b / x  0 thì x x
x 0
x 0


thì

x  0 thì x  x

x
x 
 x

neu x 0
neu x  0

2. Cộng , trừ, nhân,chia số
thập phân:
Ví dụ : (SGK)
?3

a /  3,116  0,263
  3,116  0,263 
 2,853
b /   3,7    2,16 

2 HS thực hiện
?3 lên bảng
  3,7 2,16 
trình bày bài làm.
Các HS khác cùng theo dõi làm 7,992
vào tập  nhận xét

IV. CỦNG CỐ ( 5’)
Y/ c nêu công th71c xáx định GTTĐ của một số hữu tỉ ( Trong vở ghi)

1


_ GV đưa bài tập 19/15 lên màn hình : cho hs thảo luận theo nhóm và một hs đại diện
nhóm đúng tại chổ giải thích.
Sau khi hs giải thích :Trong hai cách làm cả hai bạn đều áp dụng tính chất giao hoán, kết
hợp của phép cộng đế tính hợp lí. Nhưng cách làm của bạn nào nhanh hơn
HS trả lời: Nên làm theo cách của bạn Liên
_ Bài tập 15 /15 :Cả lớp làm vào vở , hai hs lên bảng làm.
Kết quả : a) = 4,7 b) = 0 c) = 3,7
d) -28.
V. HƯỚNG DẪN VỀ NHÀ (2’)
Học thuộc định nghóa và công thức xác định GTTĐ của một số hữu tỉ, n tập so sánh hai số
hữu tỉ
_ Bài tập 21,22,24/15 SGK ; 24,25/ 7,8 SBT
_ Tiết sau luyện tập , mang máy tính bỏ túi.

5.

Tuần 3

Tiết

LUYỆN TẬP.

:
I MỤC TIÊU:

1 Kiến thức : Học sinh củng cố lại kiến thức về giá trị tuyệt đối của một
số hữu tỉ; cộng, trừ, nhân, chia một số thập phân.

2 Kỹ năng : Rèn luyện kỹ năng tính nhanh, chính xác, tích cực.
Kó năng so sánh.
3 Thái độ : Giáo dục tính cẩn thận, chính xác, tích cực.
II . CHUẨN BỊ:
Giáo án,SGK, thước thẳng, phấn màu.
III. CÁC HOẠT ĐỘNG.
Kiểm tra
Học sinh 1: Tìm x biết:
-

x 

1
3 ; b) x 0,37 .

a)
Học sinh 2: Tìm x biết:
a)
HOẠT ĐỘNG THẦY
Làm bài tập 22 SGK trang 15,

x  1

1
2
x
3 ; b)
3 .

Luyện Tập

HOẠT ĐỘNG TRÒ
Làm câu hỏi theo nhóm.

NỘI DUNG
1. Bài tập 22 trang 16.
1


16 .
giáo viên cho học sinh làm bài
tập 22 theo nhóm.
Gọi đại diện lên trình bày 
nhận xét.
Bài tập 23 SGK.
Giáo viên cho học sinh làm
theo nhóm, trước khi làm đưa
công thức:
x Nhận xét.

Trình bày giải.
Nhóm khác nhận xét.

Làm theo nhóm.
Trình bày giải.
Nhóm khác nhận xét.

2
5
4

 1   0,875 
 0  0,3 
3
6
13

2.Bài tập 23 trang 16: So
sánh.
a)
.
b) -500 và 0,01.
-500 < 0 < 0,01.
 -500 < 0,01.
13
 12
c) 38 vaø  37
 12 12 12 1 13 13
 
  
 37 37 36 3 39 38
 12 13


 37 38

làm bài tập 24 SGK.
Cho học sinh làm câu a (cá
nhân).
Hỏi? Ta dùng tính chất gì để
tính nhanh?.


Bài tập 25 SGK.
Giáo viên hướng dẫn học sinh
giải câu a.
Yêu cầu học sinh làm bài tập
25b.
Giáo viên nhận xét kết quả và
sửa sai (nếu có).

Làm cá nhân 24a.
Dùng tính chất kết hợp để thực
hiện phép tính.
Phép giao hoán để tính nhanh.

Học sinh làm bài tập 25b theo
nhóm.
Đại diện trình bày lời giải.
Nhóm khác nhận xét kết quả.

3.Bài tập 24a trang 16: Tín
nhanh:

a )( 2,5.0,38.0, 4)  [0,125.3,15.(
[( 2,5.0, 4).0,38]  [0,125.( 8).3
[( 1).0,38]  [( 1).3,15] 2,77

4.Bài tập 25 trang 16: Tìm x
biết:
a) x  1, 7 2,3
x  1, 7 2,3

x 1, 7  2,3
x 4
3 1
b) x   0
4 3
3 1
x 
4 3
1 3
x 
3 4
5
x
12

x  1, 7  2
x 1, 7  2,3
x  0, 6

1


3
1

4
3
1 3
x  
3 4

 13
x
12
x

IV. HƯỚNG DẪN VỀ NHÀ (2’)
Làm bài tập còn lại phần luyện tập.
- Sử dụng máy tính bỏ túi theo sách trang 16.
- Ôn lại công thức lũy thừa ở lớp 6.
- Học sinh khá giỏi làm bài tập 31  38 SBT trang 7.
- Đọc trước bài 5: Lũy thữa một số hữu tỉ.

6.

Tuần 3

Tieỏt
Đ5. LUYế THệỉA CUA MOT SO HệếU Tặ.

I MUẽC TIEU:

1 Kiến thức : Học sinh hiểu khái niệm lũy thừa với số mũ tự nhiên của
một số hữu tỉ, biết cách tính tích và thương của hai lũy thừa cùng cơ số, quy tắc
tính lũy thừa của lũy thừa.
2 Kỹ năng : Có kỹ năng vận dụng các quy tắc nêu trên trong tính toán.
3 Thái độ : Giáo dục tính cẩn thận, tích cực trong nhóm.
II . CHUẨN BỊ:
Giáo án, SGK, thước thẳng, phấn màu.
III. CÁC HOẠT ĐỘNG.
Kiểm tra

Tạo tình huống học tập cho học sinh.
Có thể viết (0,25)8 và (0,125)4 dưới dạng hai lũy thừa cùng cơ số như thế nào?
Dạy Bài Mới
HOẠT ĐỘNG THẦY
HOẠT ĐỘNG TRÒ
NỘI DUNG
-

Tìm hiểu khái niệm “Lũy thừa
với số tự nhiên”.
Cho học sinh nhắc lại khái
Học sinh nhắc lại khái niệm lũy
niệm lũy thừa với số mũ tự
thừa với số mũ tự nhiên của
nhiên của một số tự nhiên.
một số tự nhiên.
Nhấn mạnh với học sinh các

1.Lũy Thừa Với Số Mũ Tự
Nhiên:

Lũy thừa bậc n của một số h
tỉ x, ký hiệu xn, là tích của n
thừa số x (n  , x  1) .
1


kiến thức trên cũng áp dụng
được cho các lũy thừa mà cơ
số là số hữu tỉ.

Yêu cầu học sinh phát biểu
khái niệm,quy ước.
n

x
Học sinh phát biểu khái niệm.

( đối với học sinh khá giỏi:
chứng minh).

Học sinh khá giỏi có thể nêu
cách chứng minh công thức:

Tìm hiểu quy tắc lũy thừa của
lũy thừa.
Cho học sinh làm câu hỏi 3
theo nhóm.

x: cơ số, n: số mũ.
Quy ước: x1 = x.
x0=1 (x 0).
an
a
   n (a, b  , b 0)
b
b

n

Giáo viên nhận xét.


Cho học sinh làm cá nhân câu
hỏi 2.
Nhận xét.

n

an
a

 
bn
b

Yêu cầu học sinh làm câu hỏi1 Học sinh làm câu hỏi 1 theo
nhóm.
theo nhóm.
Đại diện nhóm trả lời.
Nhóm khác nhận xét.
Gọi đại diện nhóm trả lời.

Quy tắc tính tích và thương của
hai lũy thừa cùng cơ số.
Xây dựng công thức tính tích
và thương của hai lũy thừa
cùng cơ số là số hữu tỉ.
Hỏi? Khi nhân hai lũy thừa
cùng cơ số ta làm như thế nào
( tương tự với chia ta làm như
thế nào?).



x.x.x...
 x ( x  , n  , x  1)

n

n

a
a
   n
Đưa công thức:  b  b

n

?1. Tính
2

3 3 9
  3
a)    . 
 4 
4 4 16
3
b)( 0,5) ( 0,5).( 0,5).( 0,5) 
c)(9, 7) 0 1

2. Tích và thương của hai lu
thừa cùng cơ số.

x n .x m  x n  m

Học sinh nhắc lại công thức
tính tích và thương của hai luỹ
thừa cùng cơ số. Cho số tự
nhiên.
Đưa ra quy tắc tính đối với số
hữu tỉ.
Học sinh trả lời câu hỏi.

Làm cá nhân câu hỏi 2.
Hai học sinh khác nhận xét.

x m : x n x m  n , x 0, m n

?2. Tính.
a) (-3)2. (-3)3= (-3)2+3= (-3)5.
b) (-0,25)5: (-0,25)3= (-0,25)5
(-0,25)2.

3. Lũy thừa của lũy thừa:
(xm)n=xm.n

?4.
2

Làm theo nhóm câu hỏi 3.

6
   3 3 

  3
a )      
 4 
 4  
2

b)  (0,1) 4  (0,1)8
1


Yêu cầu xây dựng công thức.
Xây dựng công thức tính.
Cho học sinh làm câu hỏi 4 cá
nhân. Nhận xét.
Làm câu hỏi 4.
Cá nhân trả lời.
IV. CỦNG CỐ ( 5’)
- Học sinh nhắc lại khái niệm, 3 công thức tính của lũy thừa với số tự nhiên.
- Làm bài tập 21 SGK trang 17.
V. HƯỚNG DẪN VỀ NHÀ (2’)
- Học bài làm bài tập 28  33 trang 19, 20 SGK.
- Học sinh khá giỏi làm bài tập 44  49 SBT trang 10.
- Đọc trước bài 6.
Tuần 4
Tiết 7 .
§6. LŨY THỪA CỦA MỘT SỐ HỮU TỈ (Tiếp theo ).
I MỤC TIÊU:
1 Kiến thức : Học sinh nắm vững hai quy tắc về lũy thừa của một tích và
lũy thừa của một thương.
2 Kỹ năng : Có kỹ năng vận dụng các quy tắc trên trong tính toán.

3 Thái độ : Giáo dục tính cẩn thận, tích cực.
II . CHUẨN BỊ:
Giáo án, SGK, thước thẳng, phấn màu.
III. CÁC HOẠT ĐỘNG.
Kiểm tra
Khái niệm lũy thừa của một số hữu tỉ với số mũ tự nhiên? Viết công thức tính tích và thương
-

2

3

 2  2
  . 
4
hai lũy thừa cùng cơ số? Tính: a) (-1) b)  3   3  .
3

  1 2 
    ?
- Công thức lũy thừa của lũy thừa? Tính   5  
. Giáo viên nhận xét cho điểm.

* Có thể tính nhanh (0,125)3.83 như thế nào?
Dạy Bài Mới
HOẠT ĐỘNG THẦY
HOẠT ĐỘNG TRÒ
1: Quy tắc lũy thừa của một
tích.


Học sinh làm theo nhóm câu
hỏi 1.

NỘI DUNG
1. Lũy thừa của một tích:
(x.y)n = xn. yn
1


Cho học sinh làm câu hỏi 1
theo nhóm.
Đưa công thức tính lũy thừa
của một tích  cho học sinh
làm câu hỏi 2.
Gợi ý học sinh đưa về cùng
lũy thừa. Nhận xét.

 công thức tính.

(x.y)n = xn. yn

Làm câu hỏi 2 cá nhân. Hai
học sinh khác nhận xét.

Ví dụ: câu hỏi 2 Tính.
5

5

 1

1 
a)   .35  .3  15 1
 3
3 
3
b)(1,5) .8 (1,5)3 .(2)3 (1,5.2)3 

2. Luõy thừa của một thương
n

2: Quy tắc tính lũy thừa của
một thương.
Cho học sinh làm câu hỏi 3
theo nhóm.
Yêu cầu học sinh tự phát biểu
công thức. Yêu cầu áp dụng
công thức vào làm câu hỏi 4.
Phát phiếu học tập cho học
sinh.
Giáo viên thu phiếu  nhận
xét.

xn
 x
 y   y n ( y 0)
 

Học sinh làm câu hỏi 3 theo
nhóm.
Đưa ra quy tắc.


Ví dụ:câu hỏi 4

Học sinh nhận phiếu học tập và
điền kết quả.

b)

2

722  72 
a ) 2   32 9
 24 
24
3

153 153  15 
 3   53 125
27
3
 3

IV. CỦNG CỐ ( 10’)
-- Yêu cầu học sinh phát biểu lũy thừa của một tích và lũy thừa của một thương.
- Học sinh làm câu hỏi 5.
- (0,125)3 . 83 = (0,125.8)3 = 13 = 1.
- (-39)4 : (13)4 = (-39:13)4 = (-3)4 = 8l.
- Học sinh làm bài tập 34 SGK trang 22: a, c, d, f sai; b, e đúng.
- Học sinh lên bảng sửa lại các câu sai.
V. HƯỚNG DẪN VỀ NHÀ (2’)

- - Học bài, làm bài từ 35  37 SGK.Xem trước phần luyện tập.
- Học sinh khá giỏi làm bài tập 55  59 SBT.

Phần I. ĐẠI SỐ
Chương I: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC.
§1.NHÂN ĐƠN THỨC VỚI ĐA THỨC.
1


I/ Mục tiêu:
1/ KT:Học sinh nắm chắc qui tắc nhân đơn thức với đa thức.
2/ KN:Biết vận dụng linh hoạt quy tắc để giải toán.
3/ TĐ:Rèn luyện tính cẩn thận, chính xác trong tính toán.
II/ Chuẩn bị:
- GV: Bảng phụ ghhi bài tập ?1
- HS:n lại quy tắc nhân hai luỹ thừa cùng cơ số,quy tắc nhân một số với một tổng.
III/ Tiến trình bài dạy:
1.n định lớp(1ph)
2.kiểm tra bài cũ:sinh hoạt hs chuẩn bị dụng cụ học toán.
3.Bài mới:
Hoạt động của giáo viên
Hoạt động1:Hình thành quy
tắc.(15ph)
?. Hãy cho một ví dụ về đơn
thức?
?. Hãy cho một ví dụ về đa thức?
?. Hãy nhân đơn thức với từng
hạng tử của đa thức và cộng các
tích tìm được.
“Ta nói đa thức 6x3-6x2 +15x là

tích của đơn thức 3x và đa thức
2x2- 2x+5"
?. “Qua bài toán trên, theo các
em muốn nhân một đơn thức với
một đa thức ta làm như thế nào?”
GV: Ghi bảng quy tắc
Hoạt động 2:Vận dụng quy tắc,
rèn luyện kỹ năng:(15ph)
-Cho học sinh làm ví dụ SGK
trang 4.

Hoạt động của học sinh
Nội dung
Hoạt động 1:
§ 1. NHÂN ĐƠN THỨC
-Đơn thức: 3x
VỚI ĐA THỨC.
2
-Đa thức: 2x - 2x + 5
3x(2x2- 2x+5)
= 3x. 2x2+3x.(-2x)+3x. 5
= 6x3-6x2+15x
1/ Quy tắc:muốn nhân
một đơn thức với một đa
thức, ta nhân đơn thức
với từng hạng tử của đa
-Học sinh trả lời.
thức rồi cộng các tích với
nhau.
-Ghi quy tắc.


-Học sinh làm:

Học sinh trả lời và thực
hiện ?2
1

1

-Cho học sinh thực hiện ?2 Nhân (3x 3 y  x 2  xy ).6 xy 3
2
5
đa thức với đơn thức ta thực hiện
1
1
6 xy 3 .(3 x 3 y  x 2  xy )
như thế nào?
2
5
=
-Thực hiện
?. Nhắc lại tính chất giao hoán

2/ Áp dụng: Làm tính
nhân
( 2 x 3 ).( x 2  5 x 

Ta coù:
( 2 x 3 ).( x 2  5 x 


1
)
2

1
)
2

2



×