Tải bản đầy đủ (.pdf) (8 trang)

De kiem tra 15 phut nam 20162017 Mon Toan Lop 12 THPT Dang Thai Mai Ha Noi File word co loi giai

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (335.21 KB, 8 trang )

<span class='text_page_counter'>(1)</span>SỞ GD&ĐT HÀ NỘI. ĐỀ THI TRẮC NGHIỆM. TRƯỜNG THPT ĐẶNG THAI MAI. MÔN TOÁN 12 Thời gian làm bài: 15 phút. Họ, tên thí sinh:............................................................. Lớp:............................................................................... Câu 1: Điểm cực đại của đồ thị hàm số y  x3  x 2  2 là:.  2 50  B.  ;   3 27 . A.  2;0 . Câu 2: Cho hàm số y . A. max y  0 1;0.  50 3  D.  ;   27 2 . C.  0; 2 . x 1 . Chọn phương án đúng trong các phương án sau: 2x 1 B. min y  3;5. 11 4. C. min y   1;2. Câu 3: Kết luận nào sau đây về tính đơn điệu của hàm số y . 1 2. D. max y   1;1. 1 2. 2x  1 là đúng? Chọn 1 câu đúng. x 1. A. Hàm số đồng biến trên các khoảng   ;  1 và  1;   B. Hàm số luôn đồng biến trên R. C. Hàm số nghịch biến trên các khoảng   ;  1 và  1;   D. Hàm số luôn nghịch biến trên R \ {1} Câu 4: Cho hình chóp SABC có SA vuông góc với đáy, SA  a 3 , cạnh bên SB  3a và đáy ABC là tam giác vuông cân tại B. Thể tích khối chóp là: A. a3 6. B. a3 2. Câu 5: Khoảng nghịch biến của hàm số y    3  3 A.  0;  ;     và  2   2  . C.. . 3; . . C. a3 3. D. 2a3. 1 4 x  3x 2  3 là: Chọn 1 câu đúng. 2. .  . B.  3 ;0 và. . 3; .  . . D.  ;  3 và 0; 3. .

<span class='text_page_counter'>(2)</span> Câu 6: Cho hình chóp S.ABC với SA  SB, SB  SC ,SC  SA ,SA a ,SB b , SC  c . Thể tích của hình chóp bằng A.. 1 abc 6. B.. 1 abc 9. C.. 1 abc 3. D.. 2 abc 3. Câu 7: Cho hình chóp SABC có SB  SC  BC  CA  a . Hai mặt ABC và ASC cùng vuông góc với đáy SBC. Thể tích khối chóp là: A.. a3 3 12. B.. a3 3 6. C.. Câu 8: Khoảng nghịch biến của hàm số y . a3 3 3. D.. a3 3 9. 1 3 x  x 2  3x là: Chọn 1 câu đúng. 3. A.   ;  1. B. (-1; 3). C. 3 ;  . D.   ;  1 và  3 ;   . Câu 9: Cho hàm số y   x3  4 x2  5x  17 . Phương trình y '  0 có hai nghiệm x1 , x2 . Khi đó tổng bằng ? A.. 2 3. B. . 2 3. C. . 8 3. D.. 8 3. 1 Câu 10: Cho hàm số y  x3  m x 2   2m  1 x  1 . Mệnh đề nào sau đây là sai? 3 A.. m  1 thì hàm số có hai điểm cực trị. C. Hàm số luôn có cực đại và cực tiểu. B.. m  1 thì hàm số có cực đại và cực tiểu. D.. m  1 thì hàm số có cực trị. --------------------------------------------------------- HẾT -----------.

<span class='text_page_counter'>(3)</span> Đáp án 1-C. 2-A. 3-A. 4-C. 5-D. 6-A. 7-A. 8-B. 9-D. 10-C. LỜI GIẢI CHI TIẾT. Câu 1: Đáp án C Ta có: y '  3x 2  2 x x  0 Xét phương trình: y '  0   x  2 3 . Cách 1: dùng bảng biến thiên: x. . 2 3. 0. y’. +. -.  +.  2 y. 50 27. . Từ bảng biến thiên ta thấy, điểm cực đại của hàm số là (0;2) Cách 2: tính đạo hàm cấp 2 rồi xét dấu y’’ tại các điểm làm cho y’ bằng 0 Ta có: y ''  6 x  2 ,. y ''(0)  2  0 => x = 0 là điểm cực đại và yCD  2. Câu 2: Đáp án A. 1 Tập xác định: D  R \{ } 2.

<span class='text_page_counter'>(4)</span> Ta có: y ' . 3  0, x  D nên hàm số luôn nghịch biến (2 x  1)2. Ta kiểm tra các đáp án: A. max y  0  y( 1)  0 , mà y( 1)  0. => đúng. [ 1;0]. B. min y  [3;5]. C. min y  [ 1;2]. D. max y   1;1. 2 11 11 => loại  y(5)  , mà y(5)  4 4 3 1 sai vì trên [-1;2] hàm số không liên tục 2. 1 sai vì trên [-1;1] hàm số không liên tục 2. Câu 3: Đáp án A Tập xác định: D  R \{-1} Ta có: y ' . 1  0, x  D ( x  1)2.  Hàm số luôn đồng biến trên (; 1)  (1; ) Câu 4: Đáp án C S. Vì SA  ( ABC ) nên SA  AB Xét tam giác SAB vuông tại A:. AB  SB2  SA2  a 6 Vì tam giác ABC vuông cân tại B Nên diện tích tam giác ABC là:. S. ABC. . a 3. 3a. 1 1 AB.BC  AB 2  3a 2 2 2. Vậy thể tích của hình chóp SABC là:. A. C. 1 V  .SA.S ABC  a3 3 3. B.

<span class='text_page_counter'>(5)</span> Câu 5: Đáp án D Ta có: y '  2 x3  6 x .. x  0  Xét phương trình: y '  0   x  3 x   3  Bảng biến thiên:.  3. . x y’. -. 0. +. . 3. 0 0. -. 0. +. y. Dễ thấy khoảng nghịch biến của hàm số là: (;  3)  (0; 3) Câu 6: Đáp án A A.  SA  SB  Vì  SA  SC  SB  SC  S  a. Nên SA  (SBC ) => SA là chiều cao của hình chóp ASBC Diện tích SBC vuông tại S là:. S. SBC. . 1 1 SB.SC  bc 2 2. c. S. Vậy thể tích của hình chóp là:. 1 1 V SABC  3 .SA.S SBC  6 abc. b. B. C.

<span class='text_page_counter'>(6)</span> Câu 7: Đáp án A Vì (ABC) và (ASC) cùng vuông góc với đáy A. (SBC) và ( ABC)  (SAC )  AC Nên AC  (SBC )  AC là chiều cao của hình chóp ABSC SBC có các cạnh đều bằng a nên có diện tích là:. S SBC . a2 3 4. V SABC . S. C. Vậy thể tích khối chóp là: 1 a3 3 AC.S SBC  3 12. a B. Câu 8: Đáp án B Tập xác định: R Ta có: y '  x2  2 x  3.  x  1 x  3. Xét phương trình: y '  0  . Bảng biến thiên:.

<span class='text_page_counter'>(7)</span> x. . -1. y’. +. 0. . 3 . 0. +. y. Từ bảng biến thiên, ta thấy khoảng nghịch biến của hàm số là: (-1;3) Câu 9: Đáp án D Ta có: y '  3x2  8x  5 Xét phương trình: y '  0  3x2  8x  5  0. x1 , x2 là hai nghiệm của phương trình trên Theo Vi-ét, ta có: x1  x2 . 8 3. Câu 10: Đáp án C Tập xác định: R Ta có: y '  x2  2mx  2m  1 Xét phương trình: y '  0  x2  2mx  2m  1  0 Phương trình (*) có. (*). '  m2  2m  1  (m  1)2  0, m.  Phương trình (*) luôn có nghiệm Như vậy, để hàm số đã cho có cực trị thì phương trình y’=0 phải có nghiệm và y’ đổi dấu qua mỗi nghiệm đó. Do đó, hàm số có cực trị khi và chỉ khi m  1 ( tại m=1, phương trình y’=0 có nghiệm kép x  1 nhưng y’ không đổi dấu qua nghiệm đó) Vậy đáp án C sai..

<span class='text_page_counter'>(8)</span>

<span class='text_page_counter'>(9)</span>

×