Tải bản đầy đủ (.docx) (6 trang)

de kiem tra toan 9 hoc ky 2

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (210.63 KB, 6 trang )

<span class='text_page_counter'>(1)</span>MA TRẬN ĐỀ KIỂM TRA HỌC KÌ II. MÔN: TOÁN - LỚP 9 Cấp độ. Nhận biết. Vận dụng. Thông hiểu. Chủ đề. Cấp độ thấp. Cộng. Cấp độ cao. Biết giải hệ Hệ phương trình PT bậc nhất bậc nhất hai ẩn hai ẩn Số câu Số điểm Tỉ lệ %. 1/3C (C1a) 0,5 5%. 1/3 C 0,5 5% Xác định được hệ số a của hàm số y = ax2(a ≠ 0), vẽ đồ thị; tính tọa độ giao điểm của hai đồ thị hàm số 1(C2a;b) 1,5 15 %. Hàm số y = ax2 (a ≠ 0) Số câu Số điểm Tỉ lệ %. Biết tìm hai số Phương trình bậc khi biết tổng Giải được phương hai một ẩn. Hệ và tích trình bậc hai thứcVi- ét Số câu Số điểm Tỉ lệ % Phương trình qui về PT bậc hai. Số câu Số điểm Tỉ lệ %. 1/3C (C1c) 0,5 5%. 1/2C (C3a) 0,5 5% Giải được PT qui về PT bậc hai. 1 1,5 15 % Có kỹ năng vận dụng các bước giải bài toán bằng cách lập phương trình 1 C (C 4) 1,5 15%. 2,5 25% Vận dụng hệ thức vi et tìm được giá trị của tham số.. 1/3C (C 1b) 0,5 5%. Biết vẽ hình. Hiểu mối liên hệ về Góc với đường Biết cách c/m các góc với đt để c/m tròn tứ giác nội tia phân giác tiếp đt Số câu 1/3C(C5a) 1/3C (C5b) Số điểm 1,0 1,0 Tỉ lệ % 10 % 10 % Hiểu công thức Hình trụ, hình tính V, tính được nón, hình cầu Sxq hình trụ Số câu 1C(C6) Số điểm 1,0 Tỉ lệ % 10% Tổng số câu 1C 19/6 C Tổng số điểm 2,0 4,5 Tỷ lệ 20 % 45 %. 11/6 C. 1/2C (C3b) 1,0 10 % Vận dụng mối liên hệ góc với ĐT để c/m  đồng dạng, hệ thức hình học. 1/3C(C5c) 1,0 10 %. 1C 1,5 15 %. 5/6 C 2,0 20 %. 5/6 C 1,5 15 %. 1C 3,0 30%. 1 1,0 10% 6C 10 100 %.

<span class='text_page_counter'>(2)</span> ĐỀ KIỂM TRA HỌC KÌ II NĂM HỌC 2014 - 2015 MÔN: TOÁN - LỚP 9 Ngày kiểm tra: ......./......./ 2015 Thời gian làm bài: 90 phút (không kể thời gian giao đề) Câu 1: (1,5 điểm)  2 x  y 4  a) Giải hệ phương trình:  x  y 5. b) Giải phương trình:. x4 – 8x2 - 9 = 0.. c) Tìm hai số x ; y biết: x + y = 3 và x.y = -54 Câu 2: (1,5 điểm) Biết đồ thị hàm số y = ax2 đi qua điểm A (1 ; 1) a) Tìm a.Vẽ đồ thị hàm số với a vừa tìm được. b) Xác định tọa độ giao điểm của hàm số câu a và đường thẳng y = x + 2 Câu 3: (1,5 điểm) Cho phương trình: x2 – 4x – n2 + 3 = 0 (*) (với n là tham số) a) Giải phương trình với n = 0 b) Tìm giá trị của n để phương trình (*) có hai nghiệm x1 , x2 thỏa mãn x2 = -5x1. Câu 4: (1,5 điểm) Giải bài toán bằng cách lập phương trình, hệ phương trình. Hai ô tô khởi hành cùng một lúc đi từ A đến B cách nhau 300 km. Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai 10 km nên đến B sớm hơn ô tô thứ hai 1 giờ. Tính vận tốc mỗi xe ô tô. Câu 5: (3,0 điểm) Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD ( F  AD ). a) Chứng minh tứ giác DCEF là các tứ giác nội tiếp. b) Chứng minh rằng: Tia CA là tia phân giác của góc BCF. c) Gọi M là trung điểm của DE. Chứng minh rằng: CM . DB DF . DO Câu 6 : (1,0 điểm) Tính diện tích xung quanh và thể tích của một hình trụ có bán kính đáy 2 cm và chiều cao bằng 100cm (  3,14 ) .................. Hết .......................

<span class='text_page_counter'>(3)</span> HƯỚNG DẪN CHẤM KIỂM TRA HỌC KÌ II NĂM HỌC 2014 - 2015 MÔN: TOÁN 9. Câu. Nội dung. Điểm.  2 x  y 4 3x 9  x 3  x 3         x  y 5 3  y 5  y 2 a)  x  y 5. Câu 1 (1,5 điểm). 0,25 0,25.  x 3  Vậy hệ phương trình có một nghiệm duy nhất:  y 2. b) x4 – 8x2 - 9 = 0. Giải phương trình, tìm được nghiệm x1 = -3; x2 =3 và kết luận c) -Lập luận được x và y là nghiệm của phương trình: X2 – 3X – 54 = 0 - Giải và tìm được 2 cặp số (x ; y) là: (9 ; -6) và ( -6 ; 9) a) - Lý luận và tìm được a = 1.. 0,5 0,25 0,25 0,25. - Vẽ đồ hàm số y = x2 *Lập bảng giá trị của hàm số Câu 2 (1,5 điểm). x -3 -2 -1 2 y=x 9 4 1 * Vẽ chính xác đồ thị. 0 0. b) Phương trình hoành độ giao điểm:. 1 1. 2 4. 3 9. 2. x =x+2. - Giải phương trình tìm được: x1 = -1; x2 = 2. 0,25 0,25 0,25 0,25. - Tung độ giao điểm: y1 = 1; y2 = 4 Kết luận: Phương trình: x2 – 4x – n2 + 3 = 0 (*) (với n là tham số). 0,25. a) Với n = 0. Ta có PT: x2 – 4x + 3 = 0. Câu 3 (1,5 điểm). Giải PT tìm được: x1 = 1 ; x2 = 3 2 2 2 b) Ta có  b  4ac 16  4n  12 4n  4 > 0 với mọi n. 0,5.  > 0 với mọi n. Nên PT luôn có hai nghiệm phân biệt với mọi n.. 0,25. b  (1)  x1  x2  a 4   x .x  c  n 2  3 (2) 1 2 a - Theo vi ét ta có: . Theo đề bài: x2  5 x1 (3) - Từ (3) và (1) tìm được x1 = -1; x2 = 5 - Thay x1 = -1; x2 = 5 vào (2) tìm được n 2 2, n  2 2 và KL. 0,25. 0,25 0,25.

<span class='text_page_counter'>(4)</span> Câu 4 (1,5 điểm). Gọi vận tốc của xe ô tô thứ hai là x (km/h). ĐK: x > 0. 0,25. Thì vận tốc của xe ô tô thứ nhất là x + 10 (km/h). 0,25. 300 Thời gian ô tô thứ nhất đi hết quãng đường AB là x  10 (giờ). 0,25. 300 Thời gian ô tô thứ hai đi hết quãng đường AB là x (giờ) 300 300  1 Theo bài ra ta có PT: x x  10. 0,25 0,25 0,25. Giải PT tìm được x = 50 và kết luận C B E M A. F O. D. Câu 5. - Vẽ hình, ghi GT- KL đúng. 0,5. (3,0 điểm). a) Chứng minh được tứ giác DCEF là các tứ giác nội tiếp.   b) Chỉ ra được BCA BDA. 0,5 0,5.   Vì tứ giác DCEF nội tiếp ( c/m câu a), suy ra BDA  ACF   ACF  CA là phân giác góc BCF.  BCA c) Chứng minh được CM MD. Chứng minh được MDF và ODB đồng dạng. Câu 6 (1,0 điểm). 0,25 0,25 0,25. . MD DF  OD DB.  MD.BD DO.DF  CM .BD DO.DF (đpcm) 2 2 - Thể tích hình trụ: V = r h = 3,14. 2 .1000 = 1256 cm3. 0,5 0,25 0,5. Diện tích xung quanh hình trụ: Sxq= 2 rh = 2. 3,14.2.100 = 1256 cm2. 0,5. (Lưu ý: Mọi cách giải khác đúng và lập luận chặt chẽ đều cho điểm tối đa câu đó) ------------- Hết ----------------.

<span class='text_page_counter'>(5)</span>

<span class='text_page_counter'>(6)</span>

<span class='text_page_counter'>(7)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×