Tuyển tập Hội nghị khoa học toàn quốc lần thứ nhất về Động lực học và Điều khiển
Đà Nẵng, ngày 19-20/7/2019, tr. 1-6, DOI 10.15625/vap.2019000248
Hiệu quả giảm chấn của hệ cơ lập móng kết hợp với hệ cản
nhớt gắn ở kết cấu phụ
Dương Lê Trường1, Nguyễn Trọng Phước2
Khoa Xây dựng, Trường Đại học Xây dựng Miền Trung
1
Khoa Xây dựng, Trường Đại học Mở TP. Hồ Chí Minh
2
E-mail:
nghiên cứu cho thấy hiệu quả giảm chấn khi liên kết các
kết cấu liền kề với nhau bằng các thiết bị giảm chấn như:
hệ cản đàn nhớt, hệ cản chất lỏng, hệ cản lưu biến từ.
Dựa trên ý tưởng này, bài báo tập trung phân tích
hiệu quả giảm chấn của hai kết cấu liền kề sử dụng hai hệ
cản đó là gối cơ lập và hệ cản chất lỏng nhớt. Trong đó,
hai kết cấu có số tầng khác nhau nhưng chiều cao tầng
bằng nhau được nối với nhau bằng hệ cản chất lỏng nhớt,
hệ cơ lập móng được gắn ở kết cấu chính. Phương trình
chuyển động của hệ khi chịu gia tốc nền của động đất
được thiết lập và được giải bằng phương pháp New Mark
trên toàn miền thời gian. Gia tốc nền cũng được lựa chọn
những trận động đất với phổ tần số tương đối gần với tần
số riêng của kết cấu. Ứng xử của các hệ cản được phân
tích dưới dạng tường minh bằng phương pháp số và lập
trình bằng ngơn ngữ MATLAB.
Tóm tắt
Bài báo phân tích hiệu quả giảm chấn của hệ kết hợp gồm hệ cơ
lập móng (Base Isolation, BI) gắn ở kết cấu chính nối với kết
cấu phụ bằng hệ cản chất lỏng nhớt (Viscous Fluid Damper,
VFD) dưới tác dụng của gia tốc nền động đất. Hệ cô lập móng
sử dụng mơ hình cân bằng tuyến tính đàn–nhớt để mô tả ứng xử
trễ của gối. Hệ cản chất lỏng nhớt được mô phỏng bởi quan hệ
lực cản và vận tốc chuyển động của hệ, có thể là tuyến tính hoặc
phi tuyến và sử dụng mơ hình tổng qt Maxwell để tính lực
cản. Phương trình chuyển động của hệ chịu gia tốc nền được
thiết lập dựa trên nguyên lý cân bằng động và được giải bằng
phương pháp Newmark. Phần mềm MATLAB được sử dụng để
viết chương trình máy tính phân tích phản ứng động của hệ kết
cấu. Kết quả số từ phản ứng động chuyển vị, gia tốc và lực cắt
cho thấy hiệu quả của hệ kết hợp.
Từ khóa: Hệ cản chất lỏng nhớt, hệ cơ lập móng, gia tốc nền.
2. Cơ sở lý thuyết
1. Đặt vấn đề
2.1. Mô hình kết cấu
Trong những năm gần đây động đất xảy ra ngày càng
tăng về số lượng và cường độ, ngày càng phức tạp và khó
dự đốn. Gây ra những thiệt hại khủng khiếp về người và
của như: Ngày 27/02/2010 tại Chile xảy ra trận động đất
mạnh 8,8 độ Richter làm khoảng 800 người thiệt mạng và
gây thiệt hại ước tính lến đến 30 tỷ USD. Ngày 11/3/2011
tại Nhật Bản xảy ra trận động đất mạnh 9 độ Richter làm
khoảng 16000 người thiệt mạng và gây thiệt hại từ 122 tỷ
USD đến 235 tỷ USD. Ngày 25/4/2015 tại Nepal xảy ra
trận động đất mạnh 7,9 độ Richter làm khoảng 8000
người thiệt mạng và gây thiệt hại hơn 5 tỷ USD, … Vì
vậy, việc tìm ra các giải pháp kháng chấn cho kết cấu
chịu tác động của động đất luôn là đề tài có tính thời sự
và thu hút rất nhiều nhà khoa học trong nước cũng như
quốc tế quan tâm nghiên cứu. Một trong những giải pháp
đó là gắn các thiết bị tiêu tán năng lượng vào kết cấu để
tiêu tán năng lượng kết cấu và làm cho kết cấu an tồn
hơn. Trong số những thiết bị đó, thiết bị giảm chấn bị
động được xem khá hiệu quả đó là thiết bị gối cô lập,
thiết bị này được khá nhiều nhà nghiên cứu công bố và
được sử dụng rộng rãi ở những vùng quốc gia thường
xuyên xảy ra động đất như: Nhật Bản, Mỹ, New
Zealand,… Tuy nhiên, thiết bị này có nhược điểm là
chuyển vị tương đối giữa kết cấu bên trên và nền khá lớn,
đồng thời không phát huy hiệu quả khi chịu các trận động
đất mạnh ở gần vị trí đứt gãy. Ngồi ra, cịn có khá nhiều
Hình 1: Mơ hình kết cấu
1
Dương Lê Trường, Nguyễn Trọng Phước
Xét hai kết cấu nhà có số tầng khác nhau, các tầng có
cùng cao độ, khối lượng và độ cứng mỗi tầng là như
nhau, được mơ hình với số bậc tự do động lực học khác
nhau. Các dầm được xem như tuyệt đối cứng và chỉ có
chuyển vị theo phương ngang được xem xét, hệ kết cấu
giả định làm việc trong miền đàn hồi. Các thông số khác
như khối lượng, độ cứng, cản của từng kết cấu được thể
hiện ở Hình 1. Hệ cản chất lỏng nhớt được bố trí tại các
sàn của cơng trình 2, hệ cơ lập móng gắn ở cơng trình 1.
Phương trình vi phân chuyển động có dạng sau:
Cu Ku DfVFD Mrug
Mu
ceff c11
c
11
C1 ...
0
0
(1)
cản, độ cứng của kết cấu; f FVD f1 , f 2 ,..., f n là véctơ
lực tác dụng hệ VFD; D là ma trận thể hiện vị trí điểm
T
lần lượt là
đặt; r 1,1,...1 là véctơ đơn vị; u, u , u
các véctơ đáp ứng chuyển vị, vận tốc, gia tốc theo thời
g là gia tốc nền của động đất theo
gian của kết cấu; u
thời gian. Các ma trận M, C, K được định nghĩa và có
kích thước như sau:
C1
n m 1, n m 1
C
2 n m 1,2 n m 1
n, n02m1
K1
n m 1, n m 1
K
2
1,2
1
n
m
n
m
n, n02m1
01
keff
n m 1, n
n, n
01
C2
n, n
01
n m 1, n
0
n m 1, n
0
m11 ...
0
...
...
...
0
... m( n m 1)1
0
...
keff k11
k
11
K1 ...
0
0
k11 ...
...
0
m( n m )1
0
0
...
...
...
0
...
0
...
0
...
...
... c( n m )1
0
(7)
F F
(8)
Tỷ số cản hiệu quả của gối cô lập BI được xác định
dựa trên năng lượng tiêu tán trong mỗi chu kỳ tải, được
thể hiện bởi
0
...
...
Hình 2: Mơ hình ứng xử cân bằng tuyến tính
đàn–nhớt
0
...
...
...
c( n m )1
c( n m )1
0
n, n
0
0
(4)
K 2
...
...
(3)
với các ma trận tính chất của kết cấu thứ nhất.
mb
0
M1 ...
0
0
...
0
trong đó F và F là lực dương và âm ứng với chuyển
vị ∆+ và ∆-. Lúc này độ cứng hiệu quả là giá trị độ dốc
của đường nối hai đỉnh trong vòng lặp ứng xử trễ của gối
cơ lập BI, thể hiện trên Hình 2.
(2)
M 2
0
2.2. Gối cô lập BI
Theo Matsagar (2004) [2], đã mô tả mối quan hệ ứng
xử giữa biến dạng - lực trong gối cô lập BI theo mô hình
cân bằng tuyến tính đàn - nhớt dựa trên tiêu chuẩn
Uniform Building Code và International Building Code.
Dựa trên tiêu chuẩn này, thì quan hệ ứng xử phi tuyến của
biến dạng - lực trong gối cô lập BI được thay thế bằng
mơ hình cân bằng tuyến tính đàn - nhớt thơng qua thông
số độ cứng đàn hồi và cản nhớt hiệu quả.
Độ cứng đàn hồi tuyến tính hiệu quả trong mỗi chu
kỳ tải trọng được xác định từ đường cong thực nghiệm
của biến dạng - lực của gối cô lập BI, được mơ tả:
trong đó: M, C, K lần lượt là các ma trận khối lượng,
M1
n m 1, n m 1
M
2 n m 1,2 n m 1
n, n02m1
c11 ...
...
... k( n m )1
(5)
eff
...
k( n m )1
k( n m )1
0
0
Eloop
2
k
eff
2
(9)
với Eloop là năng lượng tiêu tán của mỗi chu trình tác động
là độ cứng hiệu quả,
của tải trọng, keff
(6)
ceff 2 eff M eff là độ cản nhớt hiệu quả của gối cô lập
2
Hiệu quả giảm chấn của hệ cơ lập móng kết hợp với hệ cản nhớt gắn ở kết cấu phụ
BI, eff 2 / Teff
là tần số tự nhiên hiệu quả,
Teff 2 / M / keff
là chu kỳ hiệu quả của gối cơ lập
BI, M là tổng tồn bộ khối lượng kết cấu bên trên. Lực
sinh ra trong gối cơ lập BI là
Fb keff xb ceff xb
(10)
Hình 5: Mối quan hệ Lực - Chuyển vị của hệ VFD
2.2. Hệ cản chất lỏng nhớt
Hệ VFD là hệ cản chất lỏng nhớt được phát minh
cách đây cả thế kỷ, tuy nhiên đến năm 1990 mới đưa vào
áp dụng cho các cơng trình dân dụng. Hiện nay, trên thế
giới hệ cản VFD được sử dụng nhiều cho các cơng trình
xây dựng. Hệ VFD của hãng Taylor Devices được lựa
chọn nhiều nhất, sử dụng tập trung ở các nước thường
xuyên phải chịu các trận động đất như Mỹ, Nhật, Hàn
Quốc, Đài Loan, Trung Quốc.
3. Kết quả số
Khảo sát hai kết cấu: kết cấu 20 tầng (Building 1) và
kết cấu (Building 2) 10 tầng, các thông số: khối lượng, độ
cứng và cản của hai kết cấu lần lượt là: Building 1:
mi1 1, 29 105 kg , ki1 4 109 N / m, Building 2:
mi 2 1, 29 104 kg , ki 2 4 108 N / m . Khối lượng của
sàn móng mb 1, 29 105 kg . Tần số riêng thấp nhất của
Building 1 là 2,147 Hz, Building 2 là 4,189 Hz. Gia tốc
nền được lựa chọn Elcentro như Hình 6 có các tầng số
xấp xỉ khi phân tích chuỗi Fourier là 2,07 Hz và các đỉnh
khác xấp xỉ từ 1,8 đến 2,6 Hz được thể hiện Hình 7.
Hình 3: Sơ đồ cấu tạo và Mơ hình hệ VFD
Hình 6: Gia tốc nền động đất Elcentro
Theo mơ hình tổng qt Maxwell thì độ cứng và cản
của hệ VFD được thể hiện như Hình 4 [3].
Hình 4: Mơ hình tổng qt Maxwell của hệ VFD
Mơ hình này phải thỏa mãn điều kiện sau đây
x xe xv ;
x xe xv ;
(11)
Hình 7: Phổ năng lượng động đất Elcentro
F Kxe Cxv
Khảo sát số thực hiện 4 trường hợp sau:
Kết cấu tách rời – không gắn hệ cản (Uncontrol)
Kết cấu lắp hệ VFD (VFD)
Kết cấu lắp BI ở Building 1 (BI)
Kết cấu lắp BI kết hợp hệ VFD (BI+VFD)
Tỷ số cản lấy chung cho Building 1 và Building 2 là
ξ =2%, các dạng dao động cao hơn tính theo phương
pháp Rayleigh. Thơng số VFD chọn c 1 105 Ns / m,
trong đó: F là lực cản, x là chuyển vị tổng của cản,
xe và xv là các chuyển vị của độ cứng và cản, xe và
xv là các vận tốc của độ cứng và cản, , là các hệ số
đại diện mối quan hệ lực và vận tốc. Mối quan hệ giữa
Lực cản và chuyển vị thể hiện ở Hình 5.
3
Dương Lê Trường, Nguyễn Trọng Phước
1, chu kỳ hiệu quả của gối cô lập Teff / T1 1 , tỷ số
cản hiệu quả của gối cô lập eff 0,1 . Các giá trị đáp
ứng chuyển vị, gia tốc và lực cắt phân tích rõ dưới dạng
biểu đồ.
Kết quả cho thấy, từ Hình 8 và Hình 9 chuyển vị tầng
đỉnh theo thời gian của hệ gắn BI+VFD và hệ chỉ gắn BI
khi chịu động đất đạt hiệu quả cao trong 7 giây đầu tiên,
tuy nhiên sau 14 giây sau có hiệu quả cao chỉ cịn đối với
Building 2, Building 1 đạt hiệu quả nhưng không cao.
Chuyển vị lớn nhất của hệ BI+VFD ở tầng đỉnh giảm
đáng kể so với kết cấu khơng gắn hệ cản (Hình 10 và
Hình 11) Building 1 là 49,04%, Building 2 là 51,21%,
chuyển vị lớn nhất ở Building 1 của hệ BI+VFD so với
hệ BI là tương đối.
Hình 8: Chuyển vị tầng đỉnh Building 1
Hình 12: Lực cắt lớn nhất các tầng Building 1
Hình 9: Chuyển vị tầng đỉnh Building 2
Hình 13: Lực cắt lớn nhất các tầng Building 2
Hiệu quả giảm lực cắt trong hệ BI+VFD vẫn đạt hiệu
quả trong quá trình xảy ra động đất. Cụ thể, lực cắt hệ
BI+VFD giảm tối đa là 64,53%, tiếp theo là hệ BI giảm
64,30% và cuối cùng là hệ VFD giảm 7,63% so với kết
cấu không gắn hệ cản ứng với Building 1. Tương ứng với
Building 2 lực cắt giảm tối đa cho hệ BI+VFD là 44,86%
và 42,98% cho hệ VFD so với hệ khơng cản.
Hình 10: Chuyển vị lớn nhất các tầng Building 1
Hình 14: Gia tốc tầng đỉnh Building 1
Hình 11: Chuyển vị lớn nhất các tầng Building 2
4
Hiệu quả giảm chấn của hệ cơ lập móng kết hợp với hệ cản nhớt gắn ở kết cấu phụ
Hình 15: Gia tốc tầng đỉnh Building 2
Hình 18: Quan hệ Lực – biến dạng của gối cơ lập BI
Hình 16: Gia tốc lớn nhất các tầng Building 1
Hình 19: Quan hệ Lực – biến dạng của hệ VFD
Qua Hình 14, Hình 15 cho thấy gia tốc ở tầng đỉnh
theo thời gian của hệ BI+VFD vẫn đạt hiệu quả so với hệ
không cản, hệ VFD và tăng nhẹ so với hệ BI. Hiệu quả
giảm gia tốc lớn nhất trong kết cấu là: Building 1 giảm
56,32%, Building 2 giảm 23,66%.
Ứng xử bên trong hệ VFD và gối cô lập BI cũng
được phân tích và thể hiện dưới dạng tường minh thơng
qua mối qua hệ giữa lực và biến dạng được thể hiện ở
Hình 18, Hình 19.
Hình 17: Gia tốc lớn nhất các tầng Building 2
Bảng 1: Hiệu quả giảm đáp ứng cho Building 1
Chuyển vị
Trường hợp
khảo sát
Vận tốc
Lực cắt
Gia tốc
Max
Độ giảm
Max
Độ giảm
Max
Độ giảm
Max
Độ giảm
(cm)
(%)
(m/s)
(%)
(kN)
(%)
(m/s2)
(%)
Uncontrol
6,28
0,00
0,88
0,00
18975
0,00
13,76
0,00
VFD
5,94
5,41
0,83
5,68
17528
7,63
13,13
4,58
BI
3,34
46,82
0,38
56,82
6774
64,30
5,94
56,83
BI+VFD
3,2
49,04
0,36
59,09
6730
64,53
6,01
56,32
5
Dương Lê Trường, Nguyễn Trọng Phước
Bảng 2: Hiệu quả giảm đáp ứng cho Building 2
Chuyển vị
Trường hợp
khảo sát
Vận tốc
Lực cắt
Max
Độ giảm
Max
Độ giảm
Max
Độ giảm
Max
Độ giảm
(cm)
(%)
(m/s)
(%)
(kN)
(%)
(m/s2)
(%)
Uncontrol
2,48
0,00
0,58
0,00
1431
0,00
11,37
0,00
VFD
1,35
45,56
0,33
43,10
816
42,98
9,11
19,88
BI+VFD
1,21
51,21
0,31
46,55
789
44,86
8,68
23,66
[8]
4. Kết luận
lượng trong kết cấu chịu động đất, Hội nghị Khoa học toàn
quốc Cơ học Vật rắn biến dạng lần thứ XII, 2015.
[9]
A.K., Dynamics of
dampers. Engineering Structures, vol. 39, pp. 187-198,
2012.
[10] Murase M., Tsuji M., Takewaki I., Smart passive control of
buildings with higher redundancy and robustness using
base-isolation and inter-connection, Earthquake and
Structures , vol. 4, no. 6, pp. 649-670, 2013.
structures -theory and
applications to earthquake engineering, Fourth Edition,
Prentice Hall, New Jerse, 2012.
[2]
Matsagar V.A. and Jangid R.S., Influence of isolator
characteristics on the response, Engineering Structures,
vol. 26, pp. 1735-1749, 2004.
[3]
Greco R. and Marano G.C., Identification of parameters of
Maxwell and Kelvin-Voigt generalized model for viscous
dampers, Journal of Sound and Vibration, vol. 21(2), pp.
260-274, 2015.
[4]
Narkhede D.I. and Sinha R., Behavior of nonlinear fluid
viscous dampers for control of shock vibrations, Journal of
Sound and Vibration, 2014.
[5]
Kandemir-Mazanoglu E.C. and Mazanoglu K., An
optimization study for viscous dampers between adjacent
buildings, Mechanical Systems and Signal Processing,
2016.
[6]
Patel C.C., Seismic analysis of parallel structures coupled
by lead extrusion dampers, International Journal of
Advanced Structural Engineering, vol. 9, pp. 177-190,
2017.
[7]
Zhou Y., Lu X., Weng D., Zhang R., A Practical design
method for reinforced concrete structures with viscous
Tài liệu tham khảo
Chopra
Phước N.T., Trung P.Đ., Phân tích hiệu quả giảm chấn của
gối cơ lập kết hợp với hệ cản lưu biến từ và hệ cản khối
Mô hình hệ cơ lập móng gắn ở kết cấu chính nối với
kết cấu phụ bằng hệ cản chất lỏng nhớt dưới tác dụng của
gia tốc nền động đất được thiết lập và đánh giá hiệu quả
giảm chấn của hệ cản. Từ các kết quả số cho thấy được,
kết cấu chính gắn BI đã đạt được hiệu quả giảm chấn
trong kết cấu là khá tốt về chuyển vị, vận tốc, gia tốc và
lực cắt. Hệ VFD liên kết giữa hai kết cấu cũng đạt được
hiệu quả giảm chấn trong kết cấu là tương đối, nhưng khi
hệ BI gắn ở kết cấu chính liên kết với kết cấu phụ bằng
hệ VFD mang lại hiệu quả giảm chấn trong kết cấu là
vượt trội so với hệ VFD và hệ không cản.
[1]
Gia tốc
Kasagi M., Fujita K., Tsuji M., Takewaki I., Automatic
generation of smart earthquake-resistant building system:
Hybrid system of base-isolation and building connection,
Heliyon e00069, 2016.
6