Tải bản đầy đủ (.pdf) (20 trang)

TUYEN TAP 41 DE KIEM TRA 15 PHUT CHON LOC LOP 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (573.72 KB, 20 trang )

<span class='text_page_counter'>(1)</span>HƯỚNG DẪN SỬ DỤNG SÁCH.

<span class='text_page_counter'>(2)</span> HƯỚNG DẪN SỬ DỤNG SÁCH Bạn đang cầm trên tay cuốn sách tương tác được phát triển bởi Tilado®. Cuốn sách này là phiên bản in của sách điện tử tại . Để có thể sử dụng hiệu quả cuốn sách, bạn cần có tài khoản sử dụng tại Tilado®. Trong trường hợp bạn chưa có tài khoản, bạn cần tạo tài khoản như sau: 1. Vào trang 2. Bấm vào nút "Đăng ký" ở góc phải trên màn hình để hiển thị ra phiếu đăng ký. 3. Điền thông tin của bạn vào phiếu đăng ký thành viên hiện ra. Chú ý những chỗ có dấu sao màu đỏ là bắt buộc. 4. Sau khi bấm "Đăng ký", bạn sẽ nhận được 1 email gửi đến hòm mail của bạn. Trong email đó, có 1 đường dẫn xác nhận việc đăng ký. Bạn chỉ cần bấm vào đường dẫn đó là việc đăng ký hoàn tất. 5. Sau khi đăng ký xong, bạn có thể đăng nhập vào hệ thống bất kỳ khi nào. Khi đã có tài khoản, bạn có thể kết hợp việc sử dụng sách điện tử với sách in cùng nhau. Sách bao gồm nhiều đề bài, mỗi đề bài 1 đường dẫn tương ứng với đề trên phiên bản điện tử như hình ở dưới.. Nhập đường dẫn vào trình duyệt sẽ giúp bạn làm bài kiểm tra tương tác, xem lời giải chi tiết của bài tập. Nếu bạn sử dụng điện thoại, có thể sử dụng QRCode đi kèm để tiện truy cập. Cảm ơn bạn đã sử dụng sản phẩm của Tilado® Tilado®.

<span class='text_page_counter'>(3)</span> ĐẠI SỐ ĐỀ 01 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Hãy chọn câu đúng. Biểu thức A.. B.. có nghĩa khi và chỉ khi C.. D. Mọi x. Câu 2. Hãy chọn câu đúng. Kết quả của phép tính là A. 2. B. ‐ 2. C. ‐ 10. Câu 3. Giải phương trình A. 1. B. 2. D. 10 ta được nghiệm. C. 3. D. 4. C.. D.. Câu 4. Hãy chọn câu đúng A.. B.. II. TỰ LUẬN Bài 1. Phân tích đa thức thành nhân tử a. b. c.. (với x > 0). d. Bài 2. Chứng minh đẳng thức a. b..

<span class='text_page_counter'>(4)</span> ĐỀ 02 Luyện đề trực tuyến tại: Bài 1. Tìm x biết a. b. Bài 2. Rút gọn các biểu thức sau: a. b. c.. ĐỀ 03 Luyện đề trực tuyến tại: Bài 1. Cho biểu thức:. a. Rút gọn A nếu b. Tìm x để A = 2. ĐỀ 04 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Hãy chọn câu sai A.. B.. C.. D. Tất cả các câu trên đều sai.

<span class='text_page_counter'>(5)</span> Câu 2. Kết quả của phép tính. là. A.. B.. C.. D.. Câu 3. Kết quả của phép tính A.. là. B.. C.. Câu 4. Rút gọn biểu thức A.. D. ta được. B.. C.. D.. II. TỰ LUẬN Bài 1. Cho biểu thức a. Tìm giá trị của x để P < 2 b. Tìm giá trị nguyên của x để P có giá trị nguyên. ĐỀ 05 Luyện đề trực tuyến tại: Bài 1. Cho hai hàm số a. Tìm. sao cho. và. .. .. b. Tìm sao cho. .. Bài 2. Cho hàm số. . Hãy xác định hệ số. trong mỗi trường hợp sau:. a. Đồ thị hàm số song song với đường thẳng b. Khi. thì. .. ĐỀ 06 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM. ..

<span class='text_page_counter'>(6)</span> I. TRẮC NGHIỆM Câu 1. Điểm A(x;y) nằm ở góc phần tư nào của hệ trục tọa độ nếu x > 0; y > 0. Hãy chọn đáp án đúng A. I. B. II. C. III. D. IV. Câu 2. Hãy chọn câu đúng. Trên mặt phẳng tọa độ Oxy tất cả các điểm có hoành độ bằng nhau và tung độ đối nhau thì đối xứng qua A. x = 1. B. y = ‐ 1. C. Trục Ox. D. x = 4. Câu 3. Hãy chọn câu đúng A. Điểm đối xứng với điểm A(1;2) qua Oy là điểm A’(1;2) B. Điểm đối xứng với điểm A(1;2) qua Ox là điểm A’(1;‐2) C. Điểm đối xứng với điểm A(3;2) qua Ox là điểm A’(‐3;2) D. Điểm đối xứng với điểm A(3;2) qua gốc tọa độ là điểm A’(3;‐2) Câu 4. Hàm số A. m ≠ 2. là hàm số bậc nhất khi B. m = 2. C. m ≠ ‐ 2. Câu 5. Hàm số A. m ≠ ‐ 5. D. m ≠. 2. là hàm số bậc nhất khi B. m ≠ 5. C. m = 5. D. m > 5. Câu 6. Cho hai đường thẳng y = 5x + m – 2 và y = kx + 4 – m . Hai đường thẳng này song song với nhau nếu A. k = 1;m ≠ 3. B. k = 5; m = 3. C. k = ‐ 2 ; m ≠ 3. D. k = 5; m ≠ 3. Câu 7. Xét vị trị tương đối của hai đường thẳng x + y + 1 = 0; 2x + 2y + 3 = 0. Hãy chọn đáp án đúng A. Song song. B. Cắt nhau. Câu 8. Cho hàm số A(1;3). Hãy chọn đáp án đúng. C. Trùng nhau. D. Vuông góc. . Xác định a biết đồ thị hàm số đi qua điểm. A. a = ‐2 hoặc a = 4 B. a = ‐ 2 hoặc a = 6 C. a = 2 hoặc a = 4. D. a = 2 hoặc a = 6.

<span class='text_page_counter'>(7)</span> II. TỰ LUẬN Bài 1. Cho hai hàm số a. Tìm. sao cho. và. .. .. b. Tìm sao cho. .. ĐỀ 07 Luyện đề trực tuyến tại: Bài 1. Hãy giải hệ phương trình sau:. Bài 2. Tìm nghiệm nguyên âm của phương trình:. .. ĐỀ 08 Luyện đề trực tuyến tại: Bài 1. Cho hệ phương trình với tham số : a. Giải hệ phương trình với. .. b. Giải và biện luận hệ phương trình. c. Tìm các giá trị nguyên của. để hệ phương trình có nghiệm nguyên.. d. Tìm các giá trị nguyên của nhỏ nhất.. để nghiệm của hệ phương trình thỏa mãn. ĐỀ 09. ..

<span class='text_page_counter'>(8)</span> Luyện đề trực tuyến tại: Bài 1. Một xe lửa phải vận chuyển một lượng hàng. Nếu xếp vào mỗi toa 15 tấn hàng thì còn thừa lại 3 tấn, nếu xếp mỗi toa 16 tấn thì có thể chở thêm 5 tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng?. ĐỀ 10 Luyện đề trực tuyến tại: Bài 1. Hai đội xe chở cát để san lấp một khu đất, nếu hai đội cùng làm thì sau 12 ngày xong việc. Nhưng hai đội chỉ cùng làm trong 8 ngày. Sau đó đội thứ nhất làm tiếp một mình trong 7 ngày nữa thì xong việc. Hỏi mỗi đội làm một mình thì bao lâu xong việc? Bài 2. Một sân trường hình chữ nhật có chu vi 340m. Ba lần chiều dài hơn 4 lần chiều rộng là 20m. Tính chiều dài và chiều rộng của sân trường.. ĐỀ 11 Luyện đề trực tuyến tại: Bài 1. Cho parabol a. Xác định b. Lấy điểm nhất của. để. . đi qua điểm và lấy điểm. . Vẽ. ứng với giá trị đó của .. tùy ý thuộc đồ thị vừa vẽ. Tìm độ dài nhỏ. .. ĐỀ 12 Luyện đề trực tuyến tại: Bài 1. Tìm giá trị của .. để đồ thị hàm số. đi qua điểm.

<span class='text_page_counter'>(9)</span> Bài 2. Tìm a. Hệ số. của parabol. , biết rằng parabol đi qua điểm. .. b. Tọa độ của điểm M thuộc parabol nói trên, biết rằng khoảng cách từ M đến trục hoành gấp đôi khoảng cách từ M đến trục tung.. ĐỀ 13 Luyện đề trực tuyến tại: Bài 1. Cho phương trình:. . (*). a. Chứng minh rằng phương trình luôn có nghiệm với mọi giá trị của b. Tìm các giá trị của. .. để phương trình có một nghiệm lớn hơn 2.. ĐỀ 14 Luyện đề trực tuyến tại: Bài 1. Tìm các giá trị của chung:. để hai phương trình sau có ít nhất một nghiệm. Bài 2. Giải các phương trình: a.. .. b.. .. ĐỀ 15 Luyện đề trực tuyến tại: Bài 1. Cho phương trình: a. Tìm giá trị của. . (1). để phương trình có hai nghiệm dương.. b. Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình không phụ thuộc vào .. ĐỀ 16.

<span class='text_page_counter'>(10)</span> Luyện đề trực tuyến tại: Bài 1. Cho phương trình a. Chứng tỏ phương trình (1) luôn có nghiệm với mọi m b. Tìm giá trị của m để phương trình (1) có hai nghiệm trái dấu. c. Tìm giá trị của m để phương trình (1) có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia.. ĐỀ 17 Luyện đề trực tuyến tại: Bài 1. Giải phương trình:. .. Bài 2. Giải phương trình:. .. ĐỀ 18 Luyện đề trực tuyến tại: Bài 1. Giải phương trình:. .. Bài 2. Giải phương trình:. .. ĐỀ 19 Luyện đề trực tuyến tại: Bài 1. Giải các phương trình: a.. b..

<span class='text_page_counter'>(11)</span> ĐỀ 20 Luyện đề trực tuyến tại: Bài 1. Giải phương trình:. . (*). Bài 2. Giải phương trình:. .. ĐỀ 21 Luyện đề trực tuyến tại: Bài 1. Điểm trung bình của 100 học sinh trong hai lớp 9A và 9B là 7,2. Tính điểm trung bình của các học sinh mỗi lớp, biết rằng số học sinh lớp 9A gấp rưỡi số học sinh lớp 9B và điểm trung bình của lớp 9B gấp rưỡi điểm trung bình của lớp 9A.. ĐỀ 22 Luyện đề trực tuyến tại: Bài 1. Một buổi tổng kết thi đua có 55 đại biểu tham dự. Lúc đầu các đại biểu được chia ngồi đều trên các ghế dài (mỗi ghế có số người ngồi như nhau). Về sau, có thêm 3 ghế dài nên bây giờ mỗi ghế ngồi bớt đi 1 đại biểu và chiếc ghế cuối cùng chỉ có 3 đại biểu. Hỏi ban đầu có mấy ghế dài.. ĐỀ 23 Luyện đề trực tuyến tại: Bài 1. Tính độ dài các cạnh của một hình chữ nhật có chu vi bằng 408 m và có đường chéo bằng 156 m..

<span class='text_page_counter'>(12)</span> HÌNH HỌC ĐỀ 01 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Trong tam giác vuông có góc nhọn . Tỉ số giữa cạnh kề và cạnh huyền của tam giác tam vuông được gọi là A.. B.. Câu 2. Cho A.. C.. D.. . Hãy chọn câu sai B.. C.. D.. C.. D. F = 0. C. B = 1. D. B = ½. Câu 3. Tính giá trị của biểu thức A.. B. F = b. Câu 4. Tính giá trị của biểu thức A. B = 2. B. B = 3/2. II. TỰ LUẬN Bài 1. Cho tam giác ABC có giác của góc B cắt AC tại D. a. Tính độ dài đường phân giác BD b. Gọi M là trung điểm của BC. Chứng minh. ĐỀ 02 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM. . Đường phân.

<span class='text_page_counter'>(13)</span> I. TRẮC NGHIỆM Câu 1. Các cạnh của một tam giác vuông có độ dài 3cm; 4cm; 5cm. Góc nhỏ nhất của tam giác đó xấp xỉ bằng A.. B.. C.. Câu 2. Cho tam giác ABC vuông tại A có góc xấp xỉ bằng A. 6,5cm. B. 5,8cm. B. 3,1cm. B. 15,3cm. D. 5,4cm , AC = 5cm. Độ dài cạnh AB. C. 3,6cm. Câu 4. Cho tam giác ABC vuông tại A có góc cao AH xấp xỉ bằng A. 15,9cm. , BC = 7cm. Độ dài cạnh AC. C. 5,6cm. Câu 3. Cho tam giác ABC vuông tại A có góc xấp xỉ bằng A. 3,5cm. D.. D. 3,4cm ; BC = 30cm. Độ dài đường. C. 14,1cm. II. TỰ LUẬN Bài 1. Một chiếc diều ABCD như hình vẽ:. a. Chứng minh D, B và trung điểm của AC thẳng hàng b. Tính chiều dài cạnh AD (Kết quả lấy sau dấu phẩy hai chữ số). ĐỀ 03. D. 15,5cm.

<span class='text_page_counter'>(14)</span> Luyện đề trực tuyến tại: Bài 1. Cho tam giác ABC vuông tại A, đường cao AH, Tính AH, AC, BC, CH. Bài 2. Cho tam giác vuông ABC vuông tại A. Biết góc tính:. .. ; BC = 10 cm. Hãy. a. Số đo góc C b. Độ dài cạnh AC và AB (theo cm và làm tròn đến chữ số thập phân thứ hai). ĐỀ 04 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Hai đường tròn phân biệt có nhiều nhất bao nhiêu điểm chung A. 1 điểm. B. 2 điểm. C. 3 điểm. D. Vô số điểm. Câu 2. Chỉ ra vị trí tương đối của hai đường tròn phân biệt biết số tiếp tuyến chung của hai đường tròn bằng 1 A. Ở trong nhau. B. Ở ngoài nhau. C. Tiếp xúc trong với nhau. D. Tiếp xúc ngoài với nhau. Câu 3. Hai đường tròn (O) và (O’) thỏa mãn điều kiện gì để chung có vô số tiếp tuyến chung ? A. Không cắt nhau B. Cắt nhau. C. Tiếp xúc với nhau. D. Trùng nhau. II. TỰ LUẬN Bài 1. Cho hai đường tròn (O) và (O') cắt nhau tại A và B sao cho hai điểm O và O' cùng thuộc một nửa mặt phẳng bờ AB. Biết OA = 30cm, O'A = 26cm, AB =.

<span class='text_page_counter'>(15)</span> 48cm. Tính độ dài OO'.. ĐỀ 05 Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Gọi d là khoảng cách từ đường thẳng a đến tâm đường tròn (O;R). Hãy chọn đáp án đúng A. Nếu đường thẳng a và đường tròn (O) cắt nhau thì d > R B. Nếu đường thẳng a và đường tròn (O) cắt nhau thì d = R C. Nếu đường thẳng a và đường tròn (O) cắt nhau thì d < R D. Nếu đường thẳng a và đường tròn (O) không giao nhau thì d < R Câu 2. Hãy chọn câu sai A. Đường thẳng là tiếp tuyến của một đường tròn khi khoảng cách từ tâm của một đường tròn đến đường thẳng lớn hơn bán kính của đường tròn B. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đo cách đều hai tiếp điểm C. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến D. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ tâm đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm II. TỰ LUẬN Bài 1. Cho đường tròn tâm O có bán kính OA = R, dây MN vuông góc với OA tại trung điểm I của OA. Tiếp tuyến của đường tròn tại M cắt đường thẳng OA tại E. Tính độ dài IE theo R.. ĐỀ 06.

<span class='text_page_counter'>(16)</span> Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Chỉ ra vị trí tương đối của hai đường tròn phân biệt biết số tiếp tuyến chung của hai đường tròn bằng 2 A. Ở trong nhau. B. Ở ngoài nhau. C. Cắt nhau. D. Tiếp xúc với nhau. Câu 2. Cho đoạn thẳng OO’ = 4cm. Vẽ các đường tròn (O;2cm) và (O’;1cm) . Xác định vị trí tương đối của hai đường tròn đó. A. Ở trong nhau. B. Ở ngoài nhau. C. Tiếp xúc trong với nhau. D. Tiếp xúc ngoài với nhau. II. TỰ LUẬN Bài 1. Cho hai đường tròn (O) và (O') có cùng bán kính, cắt nhau tại hai điểm phân biệt A và B. Kẻ một cát tuyến chung của hai đường tròn đi qua A cắt (O) tại D và (O') tại E. Chứng minh rằng BD = BE.. ĐỀ 07 Luyện đề trực tuyến tại: Bài 1. Cho hai đường tròn (O) và (O’) nằm ngoài nhau. Đường nối tâm OO’ cắt (O) tại A và B, cắt (O’) tại C và D. Kẻ tiếp tuyến chung ngoài của hai đường tròn, E và F lần lượt là hai tiếp điểm với (O) và (O’). Gọi M là giao điểm của AE và DF, N là giao điểm của EB và CF. Chứng minh rằng: a. MENF là hình chữ nhật. b. MN vuông góc với AD. c. ME.MA = MF.MD.. ĐỀ 08.

<span class='text_page_counter'>(17)</span> Luyện đề trực tuyến tại: I. TRẮC NGHIỆM Câu 1. Hãy chọn câu sai. Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ các đường kính AOC và AO’D khi đó A. Ba điểm B, C, D thẳng hàng. B. AB vuông góc với CD. C. AB vuông góc với OO’. D. Ba điểm B, C, D không thẳng hàng. Câu 2. Cho đường tròn (O) đường kính CD. Lấy điểm A trên đường tròn sao cho . Khi đó số đo cung lớn AC là A.. B.. C.. D.. II. TỰ LUẬN Bài 1. Cho điểm M nằm ngoài (O ; R). Kẻ một cát tuyến của (O) đi qua M cắt (O) tại A và B. Chứng minh rằng MA.MB = MO – R .. ĐỀ 09 Luyện đề trực tuyến tại: Bài 1. Cho đường tròn (O ; R) với dây cung AB. Gọi H là trung điểm của AB và I là điểm chính giữa của cung AB. a. Chứng minh rằng ba điểm H, I, O thằng hàng. b. Cho cung cũng nhận điểm I làm điểm chính giữa . Chứng minh rằng CD // AB hoặc CD trùng với AB.. ĐỀ 10 Luyện đề trực tuyến tại:

<span class='text_page_counter'>(18)</span> Bài 1. Cho tam giác đều ABC nội tiếp (O). Điểm D di chuyển trên cung nhỏ AC. Gọi E là giao điểm của AC và DB, gọi F là giao điểm của AD và BC. Chứng minh rằng: a. b. Tích AE.BF không đổi.. ĐỀ 11 Luyện đề trực tuyến tại: Bài 1. Cho hình bình hành ABCD. Tia phân giác của cắt các đường thẳng AB, BC theo thứ tự ở I, K. Gọi O là tâm đường tròn ngoại tiếp . Chứng minh rằng: a. b. Điểm O nằm trên đường tròn ngoại tiếp. .. ĐỀ 12 Luyện đề trực tuyến tại: Bài 1. Cho . Vẽ hai nửa đường tròn đường kính AB và AC ra phía ngoài tam giác. Qua A vẽ cát tuyến MAN (M thuộc nửa đường tròn đường kính AB, N thuộc nửa đường tròn đường kính AC). a. Tứ giác BMNC là hình gì? b. Tìm quỹ tích trung điểm I của MN khi cát tuyến MAN quay quanh A.. ĐỀ 13 Luyện đề trực tuyến tại: Bài 1. Cho cân tại A, điểm C lấy điểm D sao cho và CD.. . Trên nửa mặt phẳng bờ AB không chứa . Gọi E là giao điểm của AB. a. Chứng minh ACBD là tứ giác nội tiếp b. Tính.

<span class='text_page_counter'>(19)</span> ĐỀ 14 Luyện đề trực tuyến tại: Bài 1. Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Tia OA cắt (O’) tại C, tia O’A cắt (O) tại D. Chứng minh: a. Tứ giác OO’CD nội tiếp. b. Năm điểm O, O’, B, C, D cùng nằm trên một đường tròn.. ĐỀ 15 Luyện đề trực tuyến tại: Bài 1. Cho tứ giác ABCD nội tiếp đường tròn (O) và M là điểm chính giữa của cung AB ( không chứa điểm C và D). Gọi giao điểm của MC và MD với AB lần lượt là E và F, giao điểm của AD và MC là I, giao điểm của BC và MD là K. Chứng minh: a. b. Tứ giác CDFE nội tiếp c. IK // AB d. Giả sử ba điểm A, B, C cố định còn D di động trên cung ACB. Chứng minh tâm đường tròn ngoại tiếp chuyển động trên một đường thẳng cố định.. ĐỀ 16 Luyện đề trực tuyến tại: Bài 1. Một thùng trụ có diện tích xung quanh bằng tổng diện tích hai đáy, đường cao hình trụ bằng h. a. Tính thể tích hình trụ b. Thùng chứa được bao nhiêu lít nước biết h= 6dm ?. ĐỀ 17 Luyện đề trực tuyến tại: Bài 1. Cho hình nón có bán kính đáy bằng 5 cm và đường sinh là 12 cm. Tính:.

<span class='text_page_counter'>(20)</span> a. Diện tích toàn phần của hình nón b. Thể tích hình nón.. ĐỀ 18 Luyện đề trực tuyến tại: Bài 1. Cho một hình cầu và một hình nón. Bán kính của hình cầu và bán kính của hình nón đều bằng . Diện tích toàn phần của hình nón bằng diện tích mặt cầu. a. Tính diện tích mặt cầu b. Tính chiều cao của hình nón..

<span class='text_page_counter'>(21)</span>

×