Tải bản đầy đủ (.docx) (1 trang)

Toan TS 10 Thai Binh NH 2011 2012

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (81.89 KB, 1 trang )

<span class='text_page_counter'>(1)</span>SỞ GIÁO DỤC VÀ ĐÀO TẠO THÁI BÌNH. KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011 - 2012 Môn thi: TOÁN Thời gian làm bài: 120 phút ,không kể thời gian giao đề. Bài 1. (2,0 điểm) A Cho biểu thức:. 3  x 1. 1 x 3  x  1 x 1. với x 0, x 1 .. 1. Rút gọn A. 2. Tính giá trị của A khi x = 3 −2 √ 2 . Bài 2. (2,0 điểm) ¿ mx + 2y=18 x - y =− 6 Cho hệ phương trình : ¿{ ¿. ( m là tham số ).. 1. Tìm m để hệ phương trình có nghiệm (x ;y) trong đó x = 2. 2. Tìm m để hệ phương trình có nghiệm duy nhất (x ;y) thoả mãn 2x + y = 9. Bài 3. (2,0 điểm)Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x 2 và đường thẳng (d): y = ax + 3 ( a là tham số ) 1. Vẽ parabol (P). 2. Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt. 3. Gọi x1 ; x2 là hoành độ giao điểm của (P) và (d), tìm a để x1 +2x2 = 3 Bài 4. (3,5 điểm)Cho đường tròn O, đường kính AB = 2R. Điểm C năm trên tia đối của tia BA sao cho BC = R. Điểm D thuộc đường tròn tâm O sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD tại M. 1. Chứng minh rằng: a) Tứ giác BCMD là tứ giác nội tiếp. b) AB.AC = AD. AM. c) CD là tiếp tuyến của đường tròn tâm O. 2. Đường tròn tâm O chia tam giác ABM thành hai phần, tính diện tích phần tam giác ABM nằm ngoài đường tròn tâm O theo R..

<span class='text_page_counter'>(2)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×