Myers
Asymmetric Diels!Alder Reactions
Reviews:
Chem 115
• The stereochemical model for chiral induction by the 8-phenylmenthol controller has been
applied in the design of a practical auxiliary for asymmetric Diels!Alder reactions:
Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650–1667.
Evans, D. A.; Johnson, J. S. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
O
Yamamoto, H., Eds.; Springer: New York, 1999; Vol III, pp. 1177!1235.
S
Reilly, M.; Oh, T. Org. Prep. Proceed. Int. 1994, 26, 131!158.
, BCl3
O
O
OR
O
O
Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007!1019.
99% yield, 98.5 : 1.5 endo : exo,
97% de
H
PhCH3, –78 °C
product
diene
yield (%)
endo : exo
de (%)
94
> 99 : 1
97
97
--
94
98
--
94
Applications in Total Synthesis:
Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002,
41, 1668–1698.
H
O
OR
H OR
Chiral Auxiliaries – Dienophiles:
O
(–)-8-Phenylmenthol:
H OR
H3C
H3C
Ph
O
CH3
O
AlCl3, CH2Cl2
H3C
H3C
CH3
O
CH3
–55 °C
O
CH3
Corey, E. J.; Sarakinos, G. Org. Lett. 1999, 1, 1741!1744.
O
AlCl3
Dimenthyl Fumarate:
O
O
BnO
OR Et2AlCl
H3C
O
CH3
RO
I
O
O
CH3
toluene
–78 °C
• Lewis Acid(s?)
CO2R
CO2R
100%, 99% de
BnO
• The menthyl auxiliaries exhibit cooperative asymmetric induction in the case of the fumarate ester,
resulting in excellent selectivity for cycloaddition from the back face.
HO
OBn
(Intermediate in prostaglandin synthesis)
CH3
O
O
CH3
O
H3C
O
OR
Diene
89%, 97% de
• Endo-selective cycloaddition is proposed to occur from the unblocked "-face of the s-trans
acrylate-Lewis acid complex.
• A favorable #-stacking interaction is proposed to enhance the stereoselectivity of this process.
(Acrylates derived from menthol afford lower diastereoselectivity – ca. 40%).
• (–)-8-phenylmenthol, derived from (–)-pulegone, is commercially available. Recovery of the
auxiliary was accomplished in 94% yield following reductive removal.
Corey, E. J.; Ensley, H. E. J. Am. Chem. Soc. 1975, 97, 6908!6909.
Ensley, H. E.; Parnell, C. A.; Corey, E. J. J. Am. Chem. Soc. 1978, 43, 1610!1612.
Lewis Acid
Temperature (°C)
Yield
de (%)
i-Bu2AlCl
–40
56
95
i-Bu2AlCl
–20
94
95
Et2AlCl
–20
70
96
AlCl3
25
92
99
CH3
CH3
CH3
From: Furuta, K.; Iwanaga, K. Yamamoto, H. Tetrahedron Lett. 1986, 27, 4507!4510.
Kent Barbay
1
Myers
Asymmetric Diels"Alder Reactions
N-Acyloxazolidinone Dienophiles:
O
• Diene scope: includes dienes less reactive than cyclopentadiene (e.g. acyclic dienes). In this case,
imide 2 afforded uniformly higher diastereoselectivities than 1 or 3.
O
CH3
O
N
R'
O
1 R = CH(CH3)2
2 R = CH2Ph
R'
R
O
O
Et2AlCl (1.4 equiv)
CH3 O
CH3
Bn
XP
R
R'
Et2AlCl (1.4 eq)
Ph –100 °C, CH2Cl2
2–5 min.
3
R
COXC
diene
dr
isolated yield (%)
isolated dr
H
isoprene
95 : 5
85
> 99 : 1
H
piperylene
>100 : 1
84
> 99 : 1
endo dr
isolated yield
isolated dr
CH3
isoprene
94 : 6
83
> 99 : 1
>100 : 1
93 : 7
81
>99 : 1
CH3
piperylene
95 : 1 : 2 : 2
77
> 99 : 1
>100 : 1
95 : 5
78
97 : 3
dienophile
endo : exo
1, R' = H
2, R' = H
100 : 1
5 : 95
82
<1 : 99
1, R' = CH3
48 : 1
95 : 5
82
>99 : 1
2, R' = CH3
55 : 1
97 : 3
83
99 : 1
3, R' = CH3
60 : 1
Pha
b
2 : 98
88
<1 : 99
83
93 : 7
XC
O
Et2AlCl2
O
Al
N
Et2AlCl2
Et
O
O
O
H3C
Al
N
n
H3C
Et
XC
O
O
O
• (Z)-unsaturated imides and !,!-disubstituted imides have limited applicability due to competing
isomerization or low reactivity.
Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1984, 106, 4261"4263.
Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238"1256.
O
O
H
+
–30 °C, 5 h
H
Endo I
n
N
O
Ph
R
• cycloaddition occurs from the less sterically encumbered face
• the reactive dienophile is a chelated cationic species
• the s-cis conformation of chelated acyl oxazolidinones is assumed to be favored
O
N
XC
O
H
Me2AlCl
XC
• The stereochemical results are consistent with the following models:
Et
H3C
Et2AlCl2
Al
• The oxazolidinone auxiliaries have been applied to asymmetric intramolecular Diels"Alder reactions:
• The high reactivity of the unsaturated carboximides is highlighted by tolerance of !-substitution
on the dienophile, which is not typically the case for chiral ester dienophiles.
Et
O
Evans, D. A.; Chapman, K. T.; Hung, D. T.; Kawaguchi, A. T.
Angew. Chem., Int. Ed. Engl. 1987, 26, 1184"1186.
Et
Et
• The enhanced stereoselectivity of dienophile 2 is attributed to #-stacking:
>99 : 1
a. Reaction run at –20 °C, 2.5 h.
b. Exo product not observed by 500 MHz 1H-NMR.
H3C
R
H3C
N
2
O
H3C
1, R' =
O
O
N
3, R' = H
XP
R'
COXC
Et2AlCl (1.4 eq)
–100 °C, CH2Cl2
2–5 min.
R
O
Chem 115
dr
(Endo I : Endo II)
n
H
Endo II
n
Isolated yield (%)a
1
95 : 5
73
2
97 : 3
88
Bn
O
O
N
1
3 : 97
65
2
6 : 94
70
C6H11
a. Refers to purified products, de >99%.
Evans, D. A.; Chapman, K. T.; Bisaha, J. Tetrahedron Lett. 1984, 25, 4071"4074.
Kent Barbay
2
Myers
Asymmetric Diels#Alder Reactions
• The stereochemical outcome is rationalized by the following model, involving a chelated complex:
Camphor-derived N-Enoyl Sultams:
H3C
CH3
H3C
CH3
R
R
Temperature (°C)
H
N
R
Time (h)
endo : exo
endo dr
yield
–130
6
99.5 : 0.5
97.5 : 2.5
83a
–78
18
96 : 4
99 : 1
91b
CH3
O
R
O
R
Temperature (°C)
Time (h)
H
–78
6
98.5 : 1.5
81
CH3
–94
6
97 : 3
64
MLn
• The camphor-derived sultam auxiliary has also been applied to intramolecular reactions:
H3C
XC
CH3
H
Endo I
n
XC
H
Endo II
XC
O
H
H
Exo I
n
dr
(Endo I : Endo II :
[Exo I + Exo II])
1
>97.4 : 2.5 : <0.1
75
2
94.0 : 2.6 : 3.4
53
• The cycloadducts tend to be crystalline solids, facilitating purification.
Oppolzer, W. In Comprehensive Organic Synthesis; Trost, B.M. and Fleming, I. Eds.; Pergamon:
Oxford, 1991, Vol. 5, pp. 315–399.
+
n
n
O
H
+
• Both antipodes of the chiral auxiliary are available; they are synthesized in two synthetic
steps from camphor-10-sulfonyl chloride.
Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Helv. Chem. Acta. 1984, 67, 1397–1401.
O
H
+
–20 °C, 5h
a. Recrystallized yield, de ≥ 99%.
• Recovery of the auxiliary is possible after reductive or hydrolytic removal.
XC
O
H
EtAlCl2
O
SO2
yielda
O
C(!)-Re face
TiCl4 Complex (X-ray)
N
dr
COXC
O
Oppolzer, W.; Rodriquez, I.; Blagg, J.; Bernardinelli, G. Helv. Chem. Acta. 1989, 72, 123–131.
R
EtAlCl2 (1.5 equiv)
CH2Cl2
S
O
Ground state (X-ray):
C=O/C=C s-cis,
NSO2/C=O s-trans
XC
N
SO2
CH3
H3C
H
N
Montaudo, G.; Librando, V.; Caccamese, S.; Maravigna, P. J. Am. Chem. Soc. 1973, 95, 6365–6370.
• Acyclic dienes are suitable substrates in the case of (unsubstituted) N-acryloyl sultams:
CH3
Lewis Acid
s-cis conformer
CH3
• !,"-unsaturated amides display a general preference for the s-cis conformer.
a. Recrystallized yield, de ≥ 99%.
b. Crude yield of material with indicated isomeric purity.
H3C
H
CH2Cl2
SO2
COXC
EtAlCl2 (1.5 equiv)
CH3
H3C
O
O
N
SO2
Chem 115
n
H
Exo II
n
Isolated yield (%)a
a. Refers to crystallized Endo I, de >99%.
Oppolzer, W.; Dupuis, D. Tetrahedron Lett. 1985, 26, 5437–5440.
Kent Barbay
3
Myers
Asymmetric Diels"Alder Reactions
Chiral Auxiliaries – Dienes:
Chem 115
• 1-Alkoxy-3-silyloxy-1,3-butadienes (auxiliary-modified analogs of Danishefsky's diene):
Review: Barluenga, J.; Suárez-Sobrino, A.; López, L. A. Aldrichimica Acta. 1999, 32, 4–15.
TBSO
Ph
TBSO
Chiral 1-heterosubstituted dienes:
• 1-O-methylmandeloxy substituted dienes (Trost's dienes):
CH3
O
CH3
CH3
CH3
CH3
O
PhCHO, (+)-Eu(hfc)3
O
CH3
–78 ! 23 °C
CH3
Ph
CH3
CHO
O
O
CH2Cl2
75% yield
Ph
92% de
BF3•OEt2
toluene
O
Ph
O
TFA
O
CHO
O
Bednarski, M.; Danishefsky, S. J. Am. Chem. Soc. 1986, 108, 7060–7067.
• 1-amino-3-silyloxy dienes:
Ph
CH3O
CH3O
Ph
O
H
B(OAc)3
+
O
O
OH
Ph
H3CO
O
Ph
O
H
O
1. LiAlH4
COX
toluene
O
Ph
N
Ph
Ph
dienophile
O
R
TBSO
X
CHCl3
O
R
TBSO
endo only
60% de, 92% yield
N
endo only
> 97% de, 98% yield
Ph
product
yield (%)
ee(%)
79
88
87
88
86
98
66
96
OH
OH
82
92
OH
OH
64
98
O
CH3
CH3
OH
CHO
O
CH3
Trost, B. M.; O'Krongly, D.; Belletire, J. L. J. Am. Chem. Soc. 1980, 102, 7595–7596.
OH
2. 10% HF
OH
OCH3
R
O
CHO
CH3
OH
O
• A stereochemical model rationalizing these results has been presented by Thornton:
CO2t-Bu
OH
CHO
H
• a transition state conformation in which the phenyl substituent
O
O
MeO
Ph
CO2Me
O
Ph
OH
is perpendicular to the plane of the diene is proposed, favoring
H
approach from the top face.
Siegel, C.; Thornton, E. R. Tetrahedron Lett. 1988, 29, 5225–5228.
Tripathy, R.; Carroll, P. J.; Thornton, E. R. J. Am. Chem. Soc. 1991, 113, 7630–7640.
EtO2C
MeO2C
CO2Et
CO2Me
O
O
Kent Barbay
4
Myers
Asymmetric Diels"Alder Reactions
• These cycloadditions are proposed to proceed by a stepwise mechanism:
• Stereochemical Model:
L
CH3O
TBSO
s
Ph
endo TS
L
OTBS
N
(L = COX)
Ph
N
Ph
TBSO
N
s
Ph
R3
Ph
exo TS
L
s
OTBS
Ph
s
N
Ph
Barluenga, J.; Aznar, F.; Ribas, C.; Valdés, C. J. Org. Chem. 1997, 62, 6746–6753.
Enders, D.; Meyer, O.; Raabe, G. Synthesis 1992, 1242–1244.
NaHMDS
OTMS
CH3
exo
N
TMS
+
• Both endo and exo cycloadducts are transformed to the same enantiomer of the cyclohexenone
product, allowing the use of dienophiles that do not undergo cycloaddition with high endo/exo
selectivity.
Ar
N
H
• 2-amino dienes:
R1
N
CH3
NO2
R2
N
R3
R1
HOAc
Ar
combined
yield (%)
R3
yield (%)
ee (%)
H
H
Ph
48
98
CH2OTBS
H
Ph
63
94
CH2OTBS
CH2OTBS
H
Me
i-Pr
48
56
95
92
70
94
CH2OTBS
H
-(CH2)4-
CH3
NH
Ar
O
B
ee (%)
(pdt A)
51
> 98
43
90
Ph
65
95
H3C
NO2
R2
O
R3
• Sulfinyl-substituted dienes:
O
S
CO2Me
OCH3
R2
+
Ar
O
3-furyl
OCH3
R1
OH
Barluenga, J.; Anzar, F.; Ribas, C.; Valdés, C.; Fernández, M.; Cabal, M.-P.; Trujillo, J. Chem.
Eur. J. 1996, 2, 805–811.
*R
OCH3
NH
4-MeOPh
Review: Enders, D.; Meyer, O. Liebigs Ann. 1996, 1023–1035.
NO2
CH3
–80 ! 23 °C
2. NaHCO3, H2O
OCH3
Chiral 2-heterosubstituted dienes:
R2
+
R3
OH
1. ZnCl2, THF
A
Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 1999, 121, 9562–9573.
R1
R1
• Alkyl substitution at C3 of the diene appears to be required, probably to restrict the conformation
of the prolinol group as shown.
s
Ph
L
CH3
CH3
L
N
(L = COX)
O
TBSO
Ph
H
H
• Large group on dienophile occupies an
open quadrant of diphenylpyrrolidine auxiliary
in either endo or exo TS's.
s
L
N
NO2
R2
H
endo
+
Ph
Chem 115
R* =
LiClO4, CH2Cl2
25 °C
CH3
CH3
*R
O
S
CO2Me
OCH3
70% yield, 92% de
endo only
OH
Aversa, M. C.; Barattuci, A.; Bonaccorsi, P.; Giannetto, P.; Jones, D. N. J. Org. Chem. 1997, 62,
4376–4384.
Kent Barbay
5
Myers
Asymmetric Diels#Alder Reactions
Chiral Auxiliaries for Asymmetric Diels-Alder Reations – Applications in Synthesis:
(–)-Bilobalide:
(+)-Lepicidin A:
OTIPS
H3C
H3C
O
OTIPS
OTES
H3C
H
O
O
O
H3C
O
Me2AlCl
N
O
CH3
OTES
O
H
H3C
CH3
O
O
CH2Cl2
0 ! 23°C
Bn
H
71%, 10 : 1 diastereoselectivity
H
XP
O
(i-Bu)2AlCl
CH2Cl2/hexane
H3C
H
H3C
O
NaHMDS
OH
H
OTBS
H3C
O
O
O
Corey, E. J.; Su, W.-G. Tetrahedron Lett. 1988, 29, 3423–3426.
H
OTBS
Pulo'upone:
NMe2
TBSO
H
OH
HH
O H
H3C
CH3
XC
O
N
(+)-Lepicidin A
H
O
Me2AlCl
TBSO
CH2Cl2
–20 °C
SO2
Me
OMe
OMe
OMe
H3C
O
O
OTIPS
OTES
H
H3C
O
O
O
Me2AlCl
H3C
O
N
2. LiH, DMF
O
H
H3C
N
H
H
H
O
N
H
OTBS
89%
O
H
H
O
Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497–4513.
O
OTES
O
74%, 6 : 1 diastereoselectivity
1. BF3•OEt2
63%, ca. 100% de
(Crude de = 93%)
• A control experiment showed the auxiliary overcame inherent stereochemical bias in the substrate:
OTIPS
O
H
H
O
H3C
(–)-Bilobalide
H
O
H
t-Bu
O
H3CO
H
Me
O
H3C
OH
OH
O
O
O
12 : 1 diastereoselectivity
H
MenO2C
O
THF, –78 °C
HH
O
H
3. KHMDS, THF, –48 °C
O H
MenO2C
MenO2C
OTIPS
CO2Men
O
t-Bu
(CH3O)2HC
t-Bu
CO2Men
1. LDA, THF –78 °C
2.
t-Bu
CO2Ph
["]23D +25.5°
(c 8.0, CHCl3)
OTBS
O
O H
CH3
CH3
OTIPS
H
H3C
O
MenO2C
H3C
O
O
H
OTBS
H3C
Chem 115
OTBS
O
(+ 90% recovered sultam)
H
(–)-Pulo'upone
Oppolzer, W.; Dupuis, D.; Poli, G.; Raynham, T. R.; Bernardinelli, G. Tetrahedron Lett. 1988, 29,
5885–5888.
Kent Barbay
6
Myers
Asymmetric Diels!Alder Reactions
Chem 115
• Both antipodes of the 1,2-diaryl-1,2-diaminoethane ligands are available, via resolution employing
tartaric acid: Corey, E. J.; Lee, D.-H.; Sarshar, S. Tetrahedron: Asymmetry 1995, 6, 3–6.
Catalytic, Asymmetric Diels!Alder Reactions:
• The first reported catalytic, asymmetric Diels!Alder reaction:
• Proposed transition-state assembly:
CH3
O
N
OAlCl2
+
H3C
CHO
Tf
H3C
CH3
(15 mol%)
toluene, –78 °C
CH3
69%, 72% ee
exo : endo = 98 : 2
• Non-chelated binding mode
• s-trans dienophile conformer
O
N
Al
N
CH3
Tf
• Phenyl blocks front face
CHO
O
• The exo selectivity of "-substituted acroleins is general.
• This model is supported by 1H, 13C, and 1H NOE data for the 1 : 1 dienophile : catalyst complex,
as well as X-ray diffraction analysis of the catalyst dimer.
Hasimoto, S.; Komeshima, N.; Koga, K. J. Chem. Soc., Chem. Commun. 1979, 437–438.
Corey, E. J.; Sarshar, S. J. Am. Chem. Soc. 1992, 114, 7938–7939.
C2-symmetric Diazaaluminolidine Catalysts:
Chiral (Acyloxy)borane (CAB):
Ph
Ph
F3CO2SN
R
O
+
R'
O
N
R
NSO2CF3
+
R
Al
CH3
R'
O
(10-20 mol%)
O
R'
H
H
H
CH3
CH2OBn
H
CH2Cl2, –78 °C
endo : exo
ee (%)
O
91
92
96 : 4
94
88
R3
+
O
Corey, E. J.; Imwinkelried, R.; Pikul, S.; Xiang, Y. J. Am. Chem. Soc. 1989, 111, 5493–5495.
• A modified catalyst expanded the scope of this system to include maleimide dienophiles:
Ar
F3CO2SN
NSO2CF3
Al
CH3
Ar = 3,5-dimethylphenyl
(20 mol%)
O
+
H3CO
N
O
toluene, –78 °C
CH3
R2
R1
CHO
R4
94
95
Ar
CHO
OR O
CHO
R1
CH2Cl2, –78 °C
R3
CH2Cl2, –78 °C
R4
O
O
R2
1 or 2 (10 mol %)
CO2H
OR
R1
B H
O
O
1 R = Me
2 R = i-Pr
CHO
R2
yield (%)
>50 : 1
–
N
1 or 2 (10 mol %)
R2
R1
H O
N
H3CO
H O
R1
R2
R3
1
H
H
–
–
88 : 12
84
90
1
H
H
CH3
CH3
–
84
53
1
H
CH3
–
–
11 : 89
96
85
1
H
CH3
CH3
CH3
–
97
61
1
H
CH3 CH3
H
–
91
65
1
CH3
CH3
–
3 : 97
90
91
2
H
Br
–
–
6 : 94
95
100
2
H
Br
CH3
CH3
–
95
80
2
CH3
Br
–
–
>99 : 1
98
100
–
R4
endo : exo ee (%) yield (%)
• "-substituted ",#-unsaturated aldehyde dienophiles give optimal selectivities.
CH3
98%, 93% ee
Corey, E. J.; Sarshar, S.; Lee, D.-H. J. Am. Chem. Soc. 1994, 116, 12089–12090.
catalyst
• Both enantiomers of the CAB catalyst are available, from (+) and (–)-tartaric acid.
Furuta, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H. J. Org. Chem. 1989, 54, 1483–1484.
Ishihara, K.; Gao, Q.; Yamamoto, H. J. Org. Chem. 1993, 58, 6917–6919.
Kent Barbay
7
Myers
Asymmetric Diels#Alder Reactions
• Yamamoto's CAB catalyst has been applied to intramolecular reactions:
MeO
O
CHO
CH3
• Lewis acids complex aldehydes syn with respect to the formyl proton – for a review on the
conformations of carbonyl-Lewis acid complexes, see: Shambayati, S.; Crowe, W. E.;
Schreiber, S. L. Angew. Chem., Int. Ed. Engl. 1990, 29, 256–272.
CO2H
O
Chem 115
O
B H
O
OMe O
(10 mol%)
• Formyl CH--O hydrogen bonding is proposed as an additional organizational element leading to
the excellent enantioselectivities observed. For the application of the formyl CH--O hydrogen bond
postulate to the understanding of enantioselective reactions involving chiral boron Lewis acids and
aldehydes, see: Corey, E. J.; Rohde, J. J. Tetrahedron Lett. 1997, 38, 37–40.
CHO
CH3
CH2Cl2, –40 °C
84%, 92% ee
99 : 1 endo : exo
• A modified oxazaborolidine catalyzes cycloadditions to furan:
Furuta, K.; Kanematsu, A.; Yamamoto, H.; Takaoka, S. Tetrahedron Lett. 1989, 30, 7231–7232.
NH
Oxazaborolidine Catalysts:
Br
+
Br
CHO
3 (5 mol%)
CHO
CHO
CH2Cl2, –78 °C
CHO
Br
+
3 (5 mol%)
CHO
O
4 (10 mol%)
+
Br
CH2Cl2, –40 °C H3C
H
O
CHO
CH2Cl2, –78 °C
NH
Br
95%, 99% ee
96 : 4 exo : endo
CH3
O
H3C
Br
>98%, 92% ee
O
Ts N B O
n-Bu
O
N B
n-Bu
Ts
4
H
Corey, E. J.; Loh, T.-P. Tetrahedron Lett. 1993, 34, 3979–3982.
3
76%, 92% ee
• Corey has demonstrated the synthetic versatility of the 2-bromoacrolein/cyclopentadiene
cycloaddition adducts:
• !-substitution on the aldehyde component is required for high enantioselectivity.
• The tryptophan-derived ligand was efficiently recovered.
Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966–8967.
CO2H
OH
Br
O
• Physical and chemical studies of this system led to the following transition-state model:
O
H
N
Br
H
H
Br
H
O
O
CHO
O
N B n-Bu
H O
S O
• The complex of the s-cis conformer is proposed
to be the reactive species.
• Attractive "-stacking interactions between the indole and
the dienophile organize the TS, and result in reaction from
the unblocked (back) face.
CH3
Corey, E. J.; Loh, T.-P.; Roper, T. D.; Azimioara, M. D.; Noe, M. C. J. Am. Chem. Soc. 1992,
114, 8290–8292.
CH3
O
CO2Et
O
Br
CH3
Corey, E. J.; Loh, T.-P. J. Am. Chem. Soc. 1991, 113, 8966–8967.
Kent Barbay
8
Myers
Asymmetric Diels"Alder Reactions
• Catalysts 1, 2, and 3 exhibit broad substrate scope and predictable selectivities.
Enantioselectivities are typically >90%; endo:exo ratios are uniformally high (4:1!>99:1).
Cationic Oxazaborolidine Catalysts:
H Ph Ph
O
+
catalysta
2
3
1 or 2 (20 mol%)
CH3
CO2Et
CH2Cl2
CH3
diene
dienophile
product
O
O
N B
X– H Ar
OEt
Chem 115
CH3
CH3
CH3
CH3
Ar = o-tolyl
O
H
yield, ee (%)
16, 20
99, 64
24, 4
99, 77
48, –78
97, 91
2, –95
98, >99
24, –78
85, 94
16, –20
97, 93b
H
O
H
CH3
time (h), temp (°C)
O
CH3
2
catalyst
X
1
2
OTf
NTf2
temp (°C) time (h)
4
20
yield (%)
endo:exo
ee (%, endo)
46
94
91:9
89:11
>98
97
72
16
CH3
CH3
O
O
O
H
CH3
O
CH3
2
CH3 TIPSO
TIPSO
• The neutral oxazaborolidine catalyst does not exhibit catalytic activity in the Diels"Alder reaction
of cyclopentadiene with methacrolein.
O
• Early experiments were conducted with catalyst 1; it was subsequently shown that the triflimideactivated catalyst 2 exhibits greater thermal stability and higher catalytic activity.
H
N B
Tf2N H Ar1
3
1
O
CHO
CH3
H
O
Ar1 = o-tolyl
Ar2 = 3,5-dimethylphenyl
O
1
a
20 mol% catalyst. bendo:exo = 91:9.
• Corey has proposed the following pre-transition-state complexes:
O
OCH2CF3
+
CH3
Ar2
O
H
O
• When using less reative dienes, the related 3,5-dimethylphenyl catalyst 3 is often superior to 2.
Ar2
CH3
H
2 or 3
(20 mol%)
Ar1
CO2CH2CF3
solvent, 20 °C
H
X
catalyst
solvent
time (h)
yield (%)
ee (%)
2
3
toluene
neat
40
24
78
96
88
95
Corey, E. J.; Shibata, T.; Lee, T. W. J. Am. Chem. Soc. 2002, 124, 3808.
Ryu, D. H.; Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2002, 124, 9992.
Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388.
• A useful set of predictive selection rules has been developed for the oxazaborolidinium-mediated
Diels"Alder reaction of substituted quinones:
Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 4800.
N B
Ar1
Ph
O
H
H
O
X
R
enals
R'
N B
O
R
Ph
O
H
R'
quinones, enones, and
#,$-unsaturated esters
• The phenyl [or 3,5-dimethylphenyl in the case of 3 (not shown)] substituent is proposed to engage
in %-stacking with the dienophile.
• The diene approaches the catalyst–dienophile complex from the face opposite the phenyl group.
• The existence of an O—HC interaction is supported by studies of enal-, and enone-BF3 complexes.
• Note the sense of stereoinduction for enals is opposite that of quinones, enones, and #,$unsaturated esters.
Seth B. Herzon
9
Myers
Asymmetric Diels#Alder Reactions
Alkyldichloroboranes:
Chem 115
Titanium-TADDOL:
• Narasaka's Ti complex catalyzes a wide variety of Diels#Alder reactions with high selectivities:
Ph
BCl2
Ph
Me
R
CO2Me +
n
(10 mol%)
n
CH2Cl2
–78 ! –20 °C
Ph
O
O
O
O
TiCl2
Ph Ph
R
CO2Me
+ R2
5
(10 mol %)
O
O
N
O
R2
O
4Å MS, –23 ! 23 °C
6
R
n
O
ee (%) yield (%)
H
1
97
97
CH3
1
93
91
CO2Me
1
90
92
H
2
86
83
O
O
R1
+ R
2
N
R1
5 (10 mol %)
O
N
O
R2
N
4Å MS, 0 ! 23 °C
7
O
O
O
• The catalyst was prepared by resolution with (–)-menthone.
O
• The adjacent figure illustrates the approximate conformation of the catalyst•
methyl crotonate complex (X-ray).
Cl B Cl
O
H3C
H3CS
N
O
toluene/pet. ether
4Å MS, –5 °C
O
R2
CH3S
O
N
O
8
• NMR studies suggest this conformation is retained in solution.
CH3
O
+ R2
5 (10 mol %)
O
O
O
• The s-trans crotonate conformer is observed.
• The carbonyl is positioned over and parallel to the naphthylene,
within van der Waals contact (3.2 Å) ("-stacking interaction).
• Complexation of Lewis acids anti to ester C–O bonds
appears to be a general phenomenon.
• The absolute stereochemical configuration of the products is consistent with a transition-state
model closely related to the observed ground state complex:
Cl B Cl
R
O
H3C
O
R
CO2Me
Diene
R1
R2
6
–
H
6
–
6
–
endo : exo
ee (%)
yield (%)
reference
n.d.
88
81
2
CH3
87 : 13
94
91
1
Ph
92 : 8
80
76
1
7
H
H
–
93
81
2
7
H
CO2Me
–
91
84
1
7
CH3
H
–
>96
93
2
7
CH3
CO2Me
–
94
94
1
8
–
H
85 :15
87
97
3
8
–
CO2Me
78 : 22
86
99
3
1. Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J.
J. Am. Chem. Soc. 1989, 111, 5340–5345.
2. Narasaka, K.; Tanaka, H.; Kanai, F. Bull. Chem. Soc. Jpn. 1991, 64, 387–391.
3. Narasaka, K.; Yamamoto, I. Chem. Lett. 1995, 1129–1130.
• The naphthalene substituent forces the dienophile to approach from the front face.
Hawkins, J. M.; Loren, S. J. Am. Chem. Soc. 1991, 113, 7794–7795.
• A number of transition-state models have been proposed; the analysis is complicated by the
number of coordination possibilities available in octahedral complexes.
Kent Barbay
10
Myers
Asymmetric Diels!Alder Reactions
Bis(oxazoline) Copper Complexes:
• The stereochemical results are in all cases consistent with the following model:
• Evans' copper (II) catalysts have been successfully applied to a wide array of cycloaddition
substrates:
O
+
Cu
N
CH2Cl2
6
O
X +
O
N
CMe3
O
Si face
R
• Acyclic dienes unsubstituted at the 1-position afforded lower enantioselectivities:
O
O
N
Catalyst
O
Diene
O
N
CH2Cl2
O
+
O
N
yield (%)
–
59
81
–
65
78
98
57a
CH3
CH3
O
O
10
CH3
O
O
ee (%)
X
10 (1–5 mol%)
11
O
endo : exo
10
O
N
O
R
9 or 10
(5–10 mol%)
O
+ 2 SbF6–
N
Cu
Me3C
CMe3
9 X = OTf
10 X = SbF6
O
R
N
+2
N
• Square planar geometry about Cu
• Imide binds in a bidentate fashion
• s-cis dienophile configuration
• diene approaches from the back face;
the front face is blocked by the t-Bu group
O
O
N
Me3C
O
X–
+2
H3C CH3
+2
H3C CH3
O
Chem 115
CH3
10 (5 mol %)
O
O
12
10
O
CH2Cl2, –78 °C
N
O
OAc
27 : 73
a. Isolated yield of enantiomerically and diastereomerically pure material.
• These dienes (substituted at C3) are proposed to approach via an exo transition state. The exo
transition state is apparently only selective in the case of 1-substituted dienes.
R
endo : exo
–
H
98 : 2
>98
86
–
CO2Et
94 : 6
95
92
96 : 4
97
85
Catalyst
Diene
X
9
6
9
6
ee (%)
yield (%)
9
6
–
CH3
10
6
–
Ph
91 : 9
96
96
10
6
–
Cl
86 : 14
95
96
10
11
OAc
–
85 : 15
96
75
10
11
SPh
–
98 : 2
98
10
11
NHCbz
–
72 : 28
90
10
12
–
–
80 : 20
97
• Calalyst 10 is also effective for intramolecular Diels!Alder reactions:
R
O
O
N
n
10
(5-10 mol%)
O
R
H
CH2Cl2, 25 °C
N
H
n
R
n
84
H
1
>99 : 1
86
89
54
Ph
1
>95 : 5
92
86
97
Ph
2
97
97
• Catalyst 10 (X = SbF6) uniformly provides higher reactivity and higher levels of asymmetric
induction than 9 (X = OTf), which was reported earlier.
Evans. D. A.; Murry, J. A.; von Matt, P.; Norcross, R. D.; Miller, S. J. Angew. Chem., Int. Ed. Engl.
1995, 34, 798–800.
endo : exo
84 : 16
ee (%)
O
O
O
yield (%)
Evans, D. A.; Miller, S. J.; Lectka, T. J. Am. Chem. Soc. 1993, 115, 6460–6461.
Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc. 1999, 121, 7559–7573.
Evans, D. A.; Barnes, D. M.; Johnson, J.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.;
Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 7582–7594.
Kent Barbay
11
Myers
Asymmetric Diels"Alder Reactions
Asymmetric Catalysis of the Diels–Alder Reaction with a Chiral Amine through Reversible
Iminium Ion Formation:
O
N
R
• Stereochemical model:
CH3
O
N
CH3
N CH3
H
• HCl
13
5 mol %
Ph
Chem 115
Ph
CH3
N
• Selective formation of the (illustrated) (E)-iminium isomer is
CH3
CH3
proposed, avoiding unfavorable interactions between the
substrate olefin and the geminal dimethyl substituents.
H
O
+
R
CHO
endo
• The benzyl substituent shields the !-face of the dienophile.
CHO
R
Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243–4244.
exo
5% H2O–MeOH
23 °C
Jacobsen's Catalyst:
R
exo : endo
yield
exo ee (%)
endo ee (%)
Me
75
1:1
86
90
n-Pr
92
1:1
86
90
i-Pr
81
1:1
84
93
Ph
99
1.3 : 1
93
93
Furyl
89
1:1
91
93
• Jacobsen's Cr (III) salen complex 14 catalyzes highly enantioselective Diels–Alder reactions of
1-amino-3-silyloxydienes and acroleins:
H
N
H
N
Cr
t-Bu
R
O
SbF6
t-Bu
t-Bu
14
CHO
13 (20 mol %)
R
O
O
5% H2O–MeOH
23 °C
X
R2
TBSO
endo
14 (5 mol %)
t-Bu
R2
TBSO
+
R1
product
R
diene
yield endo : exo ee (%)
Ph
N
CHO
CO2Me
4Å MS, CH2Cl2
–40 °C
Ph
N
R1
CHO
CO2Me
endo
H
82
14 : 1
94
CHO
CH3
CH3
H
84
–
89
CHO
H
Ph
Ph
CH3
CH3
CH3
R
CHO
CH3
90
–
75
–
90
75
5:1
90
83
R1
R2
yield
ee (%)
Me
H
93
97
Et
H
91
97
i-Pr
H
92
>97
TBSO(CH2)2
H
93
95
TBSO
H
86
>97
76
96
–(CH2)3–
CH3
H
CHO
• No exo products were observed in these cycloadditions.
Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2000, 122, 7843–7844.
Kent Barbay
12
Myers
Asymmetric Diels!Alder Reactions
• X-ray analysis of the (1R, 2R)-salen–Co(III)-SbF6•2PhCHO complex suggested that replacing the
t-butyl groups with bulkier trimethylsilyl substituents might create a steric interaction (between
the trimethylsilyl groups) that would twist the aromatic rings out of plane.
• This modification has resulted in an exceptionally selective and active Diels–Alder catalyst:
H
N
H
N
Co
t-Bu
t-Bu
O
O
SbF6
TMS
TMS
R2
N
Ph
CH2Cl2
room temp.
N
Ph
CO2Me
R1
R2
1
CH3
H
2
CH3
3
4
1
98
98
H
0.05
72
93
98
CH2CH3
H
0.1
30
93
>97
TBSO(CH2)2
H
0.5
18
100
>97
5a
H
H
0.1
18
100
85
6b
H
H
2
40
90
>97
2
72
78
>95
b
TBSO
CH3
Reaction performed at –78 °C.
CH3
N
CH3
82
91
80
83
88
4
i-Pr
77
81
92
5
Bn
84
82
89
6
CH2CH2OTBS
80
80
86
N
CH3
R
Ar
CH3
CH3
O
Ar
R
N
CH3CN
CH3
Ar
1. LAH, Et2O
OH
OH
2. HF, CH3CN
Ar
H
R
O
R
TBSO
O
toluene, –40 °C
2.0 equiv
CH3
N
CH3
R
O
AcCl
O
CH2Cl2
–78 °C
OCH3
O
O
O
O
R CHO
1
O
68%, 94% ee
68%, 94% ee
O
69%, >98% ee
97%, 94% ee
O
O
O
O
O
O
70%, >98% ee
HF
2.0 equiv
O
H O
catalyst
(20 mol%)
CF3
CHO
toluene, –80 °C
2 days
• The diene approaches from the
face opposite the napthyl group.
O
• Products:
TBSO
CH3
catalyst:
85
CH2CH3
O
catalyst
(20 mol%)
CHO
CH3
3
H
+
O
R
2
The same TADDOL derivative catalyzes hetero-Diels–Alder reactions:
Catalysis via Hydrogen Bonding
+
73
Catalytic, Asymmetric Hetero-Diels–Alder Reactions:
• Entry 2 represents the lowest substrate/catalyst ratio (s:c = 2000) reported for an asymmetric
Diels–Alder reaction.
Huang, Y.; Iwama, T.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 5950.
TBSO
77
Thadani, A. N.; Stankovic, A. R.; Rawal, V. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5846.
4
performed at 0 °C.
—
CO2Me
ee (%)
–(CH2)4–
H
R1
CHO
yield
7
1
CH3
O
O O
time (h)
a Reaction
mol % cat.
% yield 1
CH3
endo
entry
% ee of 2
R
R2
+
CHO
% yield 2
entry
•The following stereochemical model has been proposed:
catalyst
R1
Chem 115
O
O
67%, 92% ee
Ph
O
O
64%, 86% ee
O
52%, >94% ee
Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature, 2003, 424, 146.
R
2
OH
• A 2nd-generation catalyst was developed, expanding the substrate scope. See: Unni, A. K.;
Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336.
Seth B. Herzon
13
Myers
Asymmetric Diels!Alder Reactions
OTES
CH3
+ RCHO
H3C
2. TBAF, AcOH,
THF
Inverse Electron Demand Hetero-Diels!Alder Reactions catalyzed by Bis(oxazoline)
O
1. 14 (3 mol%)
4Å MS, 23 °C
CH3
O
H3C
Chem 115
Copper(II) Complexes:
+
H3C CH3
R
O
O
–
R
Ph
CH2OTBS
CH2OBn
ee (%)
yield (%)
90
72
>99
97
94
94
98
85
(CH2)4CH=CH2 98
78
CH2CH2Ph
98
78
2-furyl
95
77
n-C5H11
N
CH3
N
O
X
X
hetero
diene
• Excellent enantioselectivities were maintained with several other dienes in reactions catalyzed
by 15:
ee (%)
H3C
O
O
3Å MS, THF, 0 °C
hetero
dienophile
O
EtO
91
C
O
O
H3CO
O
endo
yield (%)
ee (%)
R = Me
24 : 1
87
97
R = Ph
> 20 : 1
93
97
R = i-Pr
22 : 1
95
96
R = OMe
59 : 1
90
98
R = Ph
16 : 1
96
97
R = i-Pr
16 : 1
94
95
R = Et
> 20 : 1
94
97
R = Ph
> 20 : 1
91
99
OEt
EtO2C
O
R
O
EtO2C
50
Ph
H3CO
Y
R
OTBS
>99
O
endo : exo
product
78
OTBS
X
O
R
CH3
H3C
+
O Y
yield (%)
O
OTES
CH3
H3C
C
O
O
98
H3C
C
O
R
EtO
OTES
R
2 mol% 16
14 X = SbF6
15 X = Cl
Product
• air-stable, solid catalyst
R
• The diastereoselectivity was >95% in all cases, favoring the illustrated endo product.
• Use of acetone as solvent in the cycloaddition generally improves enantioselectivities, and is
critical in the case of aromatic aldehydes.
• Both enantiomers of the aminoindanol ligand are commercially available.
Diene
OTf
Cu
Me3C H2O OH2 CMe3
OTf
16
Cr
O
N
O
OEt
H
H
O
Ph
91
OTBS
• This is the first effective method for the asymmetric HDA reaction between dienes with less than
two oxygen substituents and unactivated carbonyl compounds.
Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999, 38, 2398!2400.
EtO
C
O
O
SR
EtO2C
O
SR
Kent Barbay
14
Myers
Asymmetric Diels!Alder Reactions
Catalytic, Asymmetric Diels!Alder Reactions – Applications in Synthesis:
R1
R1
R2
Gibberellic Acid:
R2
5 mol% 16
Chem 115
NH
+
O
(MeO)2P
O
3Å MS, THF, 0 °C
X
(MeO)2P
O
X
O
O
endo
O
N B
Ts
n-Bu
H
R1
R2
X
yield (%)
endo : exo
ee (%)
Me
H
OEt
84
36 : 1
93
Ph
H
OEt
95
22 : 1
97
i-Pr
H
OEt
92
22 : 1
95
OEt
H
OEt
92
44 : 1
97
Me
Me
OEt
98
25 : 1
≥90
H
Me
16 : 1
75
SEt
Br
CO2Me
Br
96
CHO
OTMS
• The hetero-Diels!Alder reactions catalyzed by 16 have a favorable temperature-enantioselectivity
profile, affording dihydropyrans with high enantioselectivities even at 0 °C.
• Stereochemical Model:
H3C CH3
O
Me3C
Gracilin B:
R1
CMe3
O
P OCH3
R2
O
H
1. "
CO
2. NaCl,
DMSO, "
(20 mol %)
TMS
• attack of heterodienophile occurs from the less
hindered #-face
O
Br
Ar
NSO2CF3
Al
TMS
CH3
Ar = 3,5-dimethylphenyl
t-Bu
R2 = H
H2, Pd/C
or Rh/C
R1
(MeO)2P
O
CH3
O
R2 = H
O
X
dr > 20 : 1
COOH
OsO4, NMO
t-BuOH, H2O
O
CH3
R2
TMS
H OCH3
H
HO2C
OHC
H OCH
3
RuCl3•(H2O)3
NaIO4
Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc. 2000, 122, 1635–1649.
H
H
H
O
H
O
H OCH
3
H3CO
CH3
O
O
HO
O
OEt
(MeO)2P
O OH
dr > 20 : 1
MeSO3H
O
CH3
R2 = H
O
H OCH3
H3C
OEt
t-Bu
O
89%, 95% ee
O
O
R1 = CH3
O
OEt
(MeO)2P
R2 = H or CH3
O
dr > 20 : 1
O
N
O
R2
HO
H
toluene, –78 °C
1. HCl, MeOH
2. PPTS
CHO
H3C
OH
H
Ar
• The product dihydropyrans are synthetically versatile:
MeO2C
HO
O
N
+
OCH3
R1
H
F3CO2SN
• heterodiene binds in a chelated fashion
Cu
XO
81%, 99% ee,
99 : 1 exo : endo
Gibberellic Acid
• square planar transition structure
2 –OTf
N
Br
CH2Cl2, –78 °C
Corey, E. J.; Guzman-Perez, A.; Loh, T.-P. J. Am. Chem. Soc. 1994, 116, 3611!3612.
+2
O
N
CHO
Br
(10 mol %)
Br +
Gracilin B
H
H
H
AcO
O
H
O
AcO
Corey, E. J.; Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616!9617.
Kent Barbay
15
Myers
Asymmetric Diels!Alder Reactions
Estrone
Ph
H
Tf2N–
CH3
CHO
N B
H
O
CH3
CH3
CHO
(20 mol%)
Chem 115
The application of the oxazaborolidinium catalysts to once racemic syntheses has been
demonstrated:
H Ph Ph
O
O
H
i-Pr
i-Pr
O
N B
Tf2N– H Ar
OCH3
OCH3
H
O
O
toluene, –50 °C, 48 h
Ar = o-tolyl
99%, 99% ee
CO2Et
EtO2C
CH3O
H
CH2Cl2, –78 °C, 8 h
H
CH3O
92%, 94% ee
recryst.
100% ee
O
5 steps
CH
H N 3
62%
CH3 O
CH3 O
three steps†
H
O
H
CH3
(–)-dendrobine
H
H NCH3
CH3
H
racemic synthesis: Kende, A. S.; Bentley, T. J. J. Am. Chem. Soc. 1974, 96, 4332.
HO
H
CH3O
Hu, Q.; Rege, P. D.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 5984.
†
i-Pr
Hu, Q.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708.
H
(+)-estrone
H3CO2C
H
i-Pr
O
Tf2N–
Ph
Ar = o-(CF3)C6H4
(a). Ananchenko, S. N.; Torgov, I. V. Tetrahedron Lett. 1963, 4, 1553.
(b) Quinkert, G.; Grosso, M. D.; Dõring, A.; Döring, W.; Schenkel, R. I.; Bauch, M.; Dambacher, G. T.;
Bats, J. W.; Zimmermann, G.; Dürner, G. Helv. Chim. Acta 1995, 78, 1345.
O
H
O
N B
H Ar
(10 mol%)
CH2Cl2, –50 °C, 16 h
H O
95%, 82/18 endo/exo
96% ee (endo)
• Both enantiomers of the catalyst are accessible.
• The following pre-transition-state assembly was suggested:
CO2Et
CH3
H O
H
H
H
H N B O
CH3
CH3
H3C
CH3
CH3O2C
H
H
CH3
silphinene
H
O
OCH3
O
racemic synthesis: Tsunoda, T.; Kodama, M.; Ito, S. Tetrahedron Lett. 1983, 24, 83.
Hu, Q.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 13708.
Seth B. Herzon
16