Tải bản đầy đủ (.pdf) (48 trang)

Bài tập vật lý điện tử đại học bách khoa hà nội

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (541.93 KB, 48 trang )

.c
om
ng

cu

u

du
o

ng

th

an

co

Bài tập vật lý điện tử

CuuDuongThanCong.com

Đỗ Đức Thọ
/>

Bài tập chương I

th

an



co

ng

.c
om

Bài 1:
Dữ kiện:
U0 = 900V
l1 = 2cm
l1
+ l = 20cm
2 2
d1 = 0,5cm

du
o

u

−2
D
l1  l1
0,
2.2.10

−4 m
S=

=
= 4,5.10
 + l2  =
−3
U K U0 2 d  2
V
 900.2.5.10

cu

Giải:

ng

S =?

CuuDuongThanCong.com

/>

Bài tập chương I
Bài 2:

l2

.c
om

U0


Dữ kiện:
U0 = 900V

K

2R

ng

l1 = 2 R = 5cm
+ l2 = 35cm

co

l1

M

l1

B⊗

D

du
o

ng

e = 1,6.10−19 C; m = 9.1031 kg


th

an

2
W = 2 ì 200 = 400; à0 = 1, 26.10−6 Tm/A

i WR2
H=
; B = µ0 H
2
2 32
2 (R + z )

cu

u

S =?
2
R
W µ0
l
D
e
1

l1  + l2 
Giải: S = =

2
2 32
i
2mU0  2
 2( R + z )

−4
2
−6
1,6.10−19
6,
25.10
.4.10
.1.26.10
m
−2
−2
S=
5.10 .35.10
= 0,618
−31
−4
−4 3 2
2.9,1.10 900
A
2 ( 6, 25.10 + 6, 25.10 )
CuuDuongThanCong.com

/>


Bài tập chương I
Bài 3:
Dữ kiện:
R = 3cm
U1 = 300V
U2 = 500V

θ1

.c
om

ng

z

C

θ1 θ

2

R

ϕ
O

B

an


co

f =?

A

ng

th

Giải: giả sử chùm điện tử chuyển động song song với trục của hệ hai

du
o

lưới và cách trục một khoảng z << R. Tia tới và tia khúc xạ hợp thành

cu

nhỏ nên ta có:

u

với pháp tuyến mặt lưới (bán kính OA) các góc θ1, θ2. Do các góc này

U1
sin θ2
θ2
=

=k≃
sin θ1
θ1
U2
CuuDuongThanCong.com

/>

Bài tập chương I
Từ hình học ta có:

co

ng

Rθ1
R
CB =
=
θ1 − θ2 1 − k

.c
om

ϕ = θ1 − θ2 ; CB = AC ϕ ; AC ≃ Rθ1

ng

th


an

Như vậy CB không phụ thuộc vào góc θ1 ⇒ có thể xem là tiêu cự

cu

u

du
o

3
f = CB =
= 13, 25cm
300
1−
500

CuuDuongThanCong.com

/>

Bài tập chương I

.c
om

Bài 5:
Dữ kiện:
U D1 = U A = 100V; U K = 0


d

ng

d = 1cm

d

an

co

UD 2 = ?

u

du
o

ng

th

Giải: Chúng ta có thể biểu diễn hệ
quang học điện tử giống như hệ
quang học tia sáng. Ứng dụng định luật
quang học với hai thấu kính ta có:

cu


1 1 1
+ =
a b f2

a- khoảng cách vật, b- khoảng cách ảnh đối với thấu kính thứ 2

CuuDuongThanCong.com

/>
d


Bài tập chương I
1
1
1
=
+ (*)
f2 d − f1 d

.c
om

Điều kiện để cho chùm điện tử hội tụ trên anôt là:

ng

4U D1
;

Từ cơng thức tính tiêu cự ta có: f1 =
E2 − E1

2 (U1 − U2 )
1
f1 =
=
4U1d
4U2 d
d−
U2 − 2U1

ng

th

an

co

Thay vào phương trình (*) ta nhận được:

4U D 2
f2 =
;
E3 − E2

du
o


Giải phương trình này ta nhận được:

cu

u

U2(1) = 432, 28V

CuuDuongThanCong.com

U2( 2) = 27,72V

/>

Bài tập chương III

.c
om

Bài 1:
Dữ kiện:

d

ng

P = 100W
Pb = 5%P

an


co

d = 1A0
ϕK = 2, 2eV

th

R = 75cm

R

ng

t =?
Giải: Cường độ ánh sáng trên bề mặt nguyên tử K là:

cu

u

du
o

Pb
I=
4π R2
2
2
Pb

Pd
d
 
b

π
=
Công suất hấp thụ bởi nguyên tử: Pa = I .Sa =


4π R2  2  16 R2
Thời gian cần thiết để nguyên tử K hấp thụ năng lượng ϕK là:
Mẫu sóng ánh sáng cho kết quả rất lớn so với
ϕK
t=
= 57,6s
thực nghiệm:
Pa
CuuDuongThanCong.com

/>

Bài tập chương II
I
Bài 2:

λ = 2500A0 ; ϕK = 2, 2eV;

.c
om


Tmax = ?

I = 2W

λ

− ϕK

co

Giải: từ công thức: Tmax =

hc

;

ng

Ne = ?

m2

an

Dữ kiện:

du
o


ng

th

6,626.10−34.3.108.6, 24.1018
Tmax =
− 2, 2 = 2,75eV
−10
2500.10
Số photon đập vào bề mặt K trong 1s là:
I
I

ph
=
=
= 2,52.1018 2
Eph hc hc
m .s

cu

u

N=

λ

Nếu mỗi photon đập vào bề mặt K bứt ra một e thì số điện tử phát ra từ
Ne = N = 2,52.1018 ph 2

1m2 bề mặt K trong 1s sẽ là:
m .s
CuuDuongThanCong.com

/>

Bài tập chương II
I
λ'

λ

pe

.c
om

Bài 3:
Dữ kiện:
hc
Eph =
= 0,3MeV;

λ

cu

u

du

o

ng

th

an

co

ng

ve = ?
hc
0
Giải: áp dụng định luật bảo tồn năng lượng ta có: E + Ee = + me c2 (1)
λ'
h
h
= − + pe ( 2 )
Mặt khác theo định luật bảo toàn động lượng:
λ
λ'
hc

0
2
E
+
E

=
+
m
c
e
e
 ph
λ'
2
2
E
+
E
=
m
c
+ pe c
Từ (1) và (2)

ph
e
0
 hc = − hc + pe c
1 + v 
 λ
λ'


2
2 Eph + E0 = m0γ c2 + m0γ vc = m0 cγ ( c + v )

( 2 Eph + E0 ) = E02  vc 
1 − 
 c
CuuDuongThanCong.com

/>

Bài tập chương II
2

co

ng

v 4,73 − 1
=
= 0,65;
c 4,73 + 1

an

Bài 4:

ng

th

Dữ kiện:

du

o

λ = 1A0 ;

cu

u

U =?
Giải: λe = 12, 2

2

.c
om

v α −1
=
;
c α +1

 2 Eph + E0   2 Eph   2.0,3 
α =
=
+ 1 = 
+ 1 = 4.73

E0

  E0

  0,511 
2

U

(

⇒ U = 12, 2

CuuDuongThanCong.com

) (
2

λe

= 12, 2

1

) = 150V
/>

Bài tập chương II

.c
om

Bài 5:
Dữ kiện:

Ee >> Ee0

co

ng

λe ?

du
o

h hc hc
λe = =
=
pe pe c Ee

ng

th

an

Giải:
2
Ta có: Ee2 = ( pe c ) + E02 . Do Ee >> E0 ⇒ pec ≈ Ee

u

hc
Đối với photon ta có: E = ⇒ λ =

λ
E

cu

hc

Như vậy ta có bước sóng kết hợp của hạt gần đúng bằng bước sóng của
photon có cùng năng lượng. Đây là điều phải chứng minh

CuuDuongThanCong.com

/>

Bài tập chương II

co

ng

.c
om

Bài 6:
Dữ kiện:
h
h
λ= =
p mv


th
ng

E mc2 c2
= ;
vf = =
p mv v

du
o

Giải:
Ta có:

an

v f , vg ?

cu

2

u

E = ( pc ) + m0 c2 ⇒ 2 EdE = 2 ( pc ) d ( pc ) = 2 pc2 dp
2

dE 2 pc2 mvc
vg =
=

=
=v
2
2E
dp
mc

CuuDuongThanCong.com

/>

Bài tập chương II
Bài 8:

th

an

co

ng

.c
om

Dữ kiện:
h = 6,625.10−3 Js; L = 12m;
v = 5m/s; d = 0,6m
∆y
Giải:


cu

u

du
o

ng

h
λ L mv L hL
6,625.10−3.12
Ta có: ∆y =
=
=
=
= 0, 4m
−3
d
d
mvd 66, 25.10 .5.0,6

CuuDuongThanCong.com

/>

Bài tập chương II
Bài 9:


.c
om

Dữ kiện:

a ) m = 5mg;v = 2m/s;∆x ?

ng

∆p =10−3 ;
p

co

b ) me = 9,1.10−31 kg; v = 1,8.108 m/s;∆x ?

du
o

ng

h
∆x ≥
= 10,577.10−20 A0
2π .∆px

v2
h 1− 2
h
c = 5,14A0

∆x ≥
=
2π .∆px 2π .10−3.m0 v

b) ∆x.∆px ≥

h


cu

u

h

x
.

p

a)
x


th

an

Giải:


CuuDuongThanCong.com

/>

Bài tập chương II
Bài 10:

∆λ =1A ;
0

t?

ng

λ =2500A0 ;

.c
om

Dữ kiện:

h
h
λ2
t≥
=
=
= 8, 493.10−9 s
2π .∆E 2π . hc ∆λ 2π c∆λ
2


th

an

co

h
Giải: ∆E.∆t ≥


λ

∆x ?

u

∆p = p = ;

cu

h

du
o

ng

Bài 11:
Dữ kiện:


λ

h
Giải: ∆x.∆p ≥

CuuDuongThanCong.com

h
h
λ
∆x ≥
=
=
2π .∆p 2π . h 2π

λ

/>

Bài tập chương II
Bài 12:
h
mv.∆p. ∆x mv ≥

h
∆E.∆t ≥


h

∆ ( p 2m ) . ∆x v ≥

2

co

ng

.c
om

h
Giải: ∆p.∆x ≥


th

du
o

ng

mv.∆p. ∆x mv ≥

u

h


cu


Giải: ∆p.∆x ≥

an

Bài 13:

CuuDuongThanCong.com

h


∆ ( p2 2m ) . ∆x v ≥

h
∆E.∆t ≥


/>
h



Bài tập chương II

Dữ kiện:

m = 10−14 kg;

L = 0,1mm;


vmin ?

.c
om

Bài 15:

co

ng

Giải:

an

th

du
o

ng

vmin

h2
2
2
−34
2

2 E1
h
1
h
6,625.10
−16
8mL =
=
=
=
=
=
3,3.10
m/s
−14
−4
2 2
m
m
4m L 2 mL 2.10 .1.10

u

cu

En = E1 .n2

mv2
8mL ⋅
E

8 EmL2
2.m.L.v
2
=
=
=
n=
2
2
E1
h
h
h
2

2.10−14.10−4.1.10−5
10
n=
=
3.10
6.625.10−34
CuuDuongThanCong.com

/>

Bài tập chương II

Lˆ Ψ = i
= LΨ
dx


dΨ 1
= Ldx = −iLdx
Ψ i

.c
om

Bài 16:
Giải:

ng

th

an

co

ng

C = const
Ψ = C.e− iLx
Chúng ta thấy rằng hàm Ψ(x) thỏa mãn phương trình, với mọi giá trị L
hàm Ψ(x) liên tục, đơn trị và hữu hạn. Như vậy bất kì giá trị L thực nào
cũng là trị riêng của và Ψ(x) là hàm riêng của Lˆ

cu

u


du
o

Áp dụng kết quả này cho trường hợp toán tử hình chiếu xung lượng ta
có:

−iℏ
= px Ψ
Ψ = C.e− ip x C = const
dx
Hàm Ψ(x) là khác không trong khoảng: -∞ < x < ∞, liên tục, đơn trị,
hữu hạn với mọi giá trị px là số thực ⇒ như vậy đại lượng hình chiếu
xung lượng của một hạt tự do khơng bị lượng tử hóa
CuuDuongThanCong.com

x

/>

Bài 17:

a ) L = 1nm; D ?

Dữ kiện: E = 50eV;
U0 = 70eV;

Giải:

b) D = e




2.10−10
2.9,1.10−31 ( 70−50 ).1,6.10−19
−34
6,625.10

ng

=e

th

2.10−19
2.9,1.10−31 ( 70−50 ).1,6.10−19
−34
6,625.10

=e

cu

2L
2 m(U0 − E )






≃ 1,3.10−20

du
o

a) D = e

2L
2 m(U0 − E )


u



an

co

ng

b ) L = 0,1nm; D ?

.c
om

Bài tập chương II

CuuDuongThanCong.com


≃ 0,01

/>

Bài tập chương II
Bài 17:

ng

.c
om

nπ 

Giải: dạng của hàm sóng: Ψ = Ansin 
x
 L 
Từ điều kiện chuẩn hóa của hàm sóng ta có:

co

an

th

ng

du
o


0

u

1 = ∫ Ψn ( x )


x  
 dx = A2 L

n
2



cu

L

2




L
L 1 − cos 


2
2  nπ

2
 L
= ∫ An sin 
x dx = An ∫ 
2
 L 
0
0 

2
An =
L

CuuDuongThanCong.com

/>

Bài tập chương II

Dữ kiện: L =10−10 m

.c
om

a ) Emin ?

Bài 18:

Giải:


an

co

ng

b ) n2 → n1 ; λ ?

6,625.10 )
(
h2
−18
=
=
=
6,03.10
J = 37,7eV
E
a) 1
2
−31
−10 2
8mL 8.9,1.10 . (1.10 )

L

du
o

ng


th

−34 2

E3 = E1.32 = 339eV

cu

u

E2 = E1 .22 = 151eV

b)

hc

λ

= E2 − E1

hc
6,625.10−34.3.108
−7
λ=
=
=
0,1099.10
= 11nm
−19

E2 − E1
113.1,6.10
CuuDuongThanCong.com

/>

Bài tập chương III
Bài 1:

ng

.c
om

Giải: từ công thức: 1 = R  12 − 12  ; R = 1,097.10−3 1 ta có:
λ
A0
 n1 n2 

an

λmax =

4
4
0
=
=
1215A
3R 3.1,097.10−3


ng

λmax

1 1
3R
= R  2 − 2  =
1 2  4

th

1

co

Bước sóng dài nhất của dãy Lyman (n1 =1; n2 = 2) :

λmin

u

1

= R 2 − 0 = R
1


cu


1

du
o

Bước sóng ngắn nhất của dãy Lyman (n1 =1; n2 →∞) :

CuuDuongThanCong.com

λmin

1
1
0
= =
=
912A
R 1,097.10−3

/>

Bài tập chương III
Bài 2:

λmin =

ng

λmin


1
R


= R 2 − 0 =
2
 4

co

1

.c
om

Giải: Bước sóng ngắn nhất của dãy Balmer (n1 = 2 ; n2 →∞):
4
R

th

an

Năng lượng của nguyên tử Hyđrô được tính theo cơng thức: En = E21
n

du
o

ng


Trong đó: E1 = Ei là năng lượng ion hóa ngun tử Hyđrơ

cu

u

E = E1 = En .n = E2 .2 = 4 E2 = 4
i

2

2

hc

λmin

4.6,625.10−34.3.108
18
Ei =

6,
24.10
= 13,59eV
−10
3650.10
CuuDuongThanCong.com

/>


Bài tập chương III
Bài 3:

cu

u

du
o

ng

th

an

co

ng

.c
om

Giải: năng lượng cực đại có thể hấp thụ bởi nguyên tử Hyđrô bằng
năng lượng của điện tử là 12,2 eV. Giả sử lúc đầu nguyên tử ở trạng
thái cơ bản, khi hấp thụ năng lượng trên nguyên tử có thể chuyển lên
mức năng lượng Umax, có thể tính bằng cơng thức sau:
1


1

∆E = En − E1 = E1  2 − 1 = 12, 2
−13,6. 2 − 1 = 12, 2
n=3
n

n

Như vậy có thể có các vạch ứng với các bước sóng sau:
n=3
1
1 1  8R

0
= R 2 − 2  =
λ1 = 1026A
λ1
1 3  9
n=2
1
1 1  5R

0
= R 2 − 2  =
λ2 = 6563A
λ2
 2 3  36
n =1
1

 1 1  3R
= R 2 − 2  =
λ2 = 1215A0
λ3
1 2  4
CuuDuongThanCong.com

/>

×