Tải bản đầy đủ (.docx) (2 trang)

NINH BINH 20132014

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (109.61 KB, 2 trang )

<span class='text_page_counter'>(1)</span>SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH NINH BÌNH. KÌ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2013- 2014 Môn thi: TOÁN Ngày thi 6 tháng 7 năm 2013 Thời gian làm bài: 120 phút. ĐỀ THI CHÍNH THỨC. Đề thi gồm 5 câu trong 01 trang Câu 1 (2 điểm). 1. Giải bất phương trình x – 3 > 0. 1. 2. Tìm điều kiện của x để biểu thức x +1 xác định. 3. Giải hệ phương trình. ¿ x − 2 y =5 3 x + y=1 ¿{ ¿. Câu 2 (2,0 điểm). Rút gọn các biểu thức sau: 1. P=√ ( √ 3 −1 )2 . 2 x − 2 √ x+ 2 ( x − 1 ) √ . 2. Q= x − 1 − (với x 0 ; x ≠ 1 ) 2 2 ( √ x+1 ) Câu 3 (2,0 điểm). Trong mặt phẳng tọa độ Oxy cho parabol (P): y = x 2 và đường thẳng d: y = (k-1)x + 4 (k là tham số). 1. Khi k = -2, tìm tọa độ giao điểm của đường thẳng d và parabol (P). 2. Chứng minh rằng với mọi giá trị của k thì đường thẳng d luôn cắt parabol (P) tại hai điểm phân biệt. Gọi y 1 , y 2 là tung độ các giao điểm của đường thẳng d và parabol (P). Tìm k sao cho y 1 + y 2 = y 1 y 2 . Câu 4 (3,0 điểm). Cho đường tròn tâmO, bán kính R. M là một điểm nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA và MB đển đường tròn (A, B là hai tiếp điểm). Gọi E là giao điểm của AB và OM. 1. Chứng minh tứ giác MAOB là tứ giác nội tiếp. 2. Tính diện tích tam giác AMB, biết OM = 5 và R = 3. 3. Kẻ Mx nằm trong tam góc AMO cát đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng EA là phân giác của góc CED. Câu 5 (1,0 điểm). Cho các số thực dương x và y thỏa mãn 1+ x+ y=√ x+ √ xy+ √ y . Tính giá trị của biểu thức S=x 2013 + y 2013 .. [. ]. ------ HẾT -----.

<span class='text_page_counter'>(2)</span> HD: Câu 4:. A. D. C M E. O. B. 3. MAC , MDA đồng dạng ⇒ MC.MD= MA2 Δ MAO vuông tại A, Đường cao AE ⇒ ME.MO = MA2 ⇒ ME.MO = MC.MD(= MA2) ⇒. ME MC = , mà MD MO. Δ MDO và. Δ MEC có góc M chung nên hai tam giác đồng. dạng ⇒ MEC = MDO. Từ đó suy ra tứ giác ECDO nội tiếp (góc ngoài tại 1 đỉnh bằng góc trong của đỉnh đối diện) ⇒ OED = OCD = ODC = CEM ⇒ CEA = DEA ( cùng phụ với 2 góc bằng nhau) ⇒ EA là phân giác của CED Câu 5: Ta có 1  x  y  x  xy  y  2(1  x  y)  2( x  xy  y ) 0  ( x  1) 2  ( y  1) 2  ( x   x  y 1 2013 2013 Vậy S x  y 1  1 2. y ) 2 0.

<span class='text_page_counter'>(3)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×