Tải bản đầy đủ (.docx) (33 trang)

(Sáng kiến kinh nghiệm) một số giải pháp nâng cao kĩ năng giải các bài toán về sự tăng giảm tử số và mẫu số của phân số cho học sinh lớp 4 – 5

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (271.38 KB, 33 trang )

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TAM DƯƠNG
TRƯỜNG TIỂU HỌC HOÀNG HOA
=====***=====

BÁO CÁO KẾT QUẢ
NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN KINH NGHIỆM

Tên sáng kiến: Một số giải pháp nâng cao kĩ năng giải các bài toán về sự tăng
giảm tử số và mẫu số của phân số cho học sinh lớp 4 – 5.
Tác giả sáng kiến: Nguyễn Văn Đủ

.

Tam Dương, năm 2019


PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TAM DƯƠNG
TRƯỜNG TIỂU HỌC HOÀNG HOA
=====***=====

BÁO CÁO KẾT QUẢ
NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN KINH NGHIỆM

Tên sáng kiến: Một số giải pháp nâng cao kĩ năng giải các bài toán về sự tăng
giảm tử số và mẫu số của phân số cho học sinh lớp 4 – 5.
Tác giả sáng kiến: Nguyễn Văn Đủ

.

Tam Dương, năm 2019



1. Lời giới thiệu
Mục tiêu của mơn tốn ở bậc tiểu học là cung cấp cho học sinh những
kiến thức cơ bản ban đầu về số học, về đo lường, về hình học, một số yếu tố
thống kê đơn giản, giúp các em có được những kĩ năng tính tốn, đo lường, và
giải các bài tốn có nội dung thiết thực trong đời sống. Mục tiêu quan trọng hơn
là phát triển năng lực tư duy, khả năng suy luận hợp lí, phát hiện và giải quyết
các vấn đề đơn giản gần gũi trong cuộc sống, kích thích trí tưởng tượng và bước
đầu hình thành phương pháp tự học, tự làm việc một cách khoa học, linh hoạt và
sáng tạo.
Chương trình sách giáo khoa tốn mới ở bậc tiểu học nói chung, ở lớp 4-5
nói riêng đã kế thừa chương trình sách giáo khoa cũ đồng thời đã được các nhà
nghiên cứu sửa đổi, bổ sung, nâng cao cho ngang tầm với nhiệm vụ mới, góp
phần đào tạo con người theo một chuẩn mực mới. Song trên thực tế, để đạt được
mục tiêu do Bộ và ngành Giáo dục đề ra và theo xu hướng phát tiển của nền
giáo dục nói chung đòi hỏi người giáo viên phải thật sự nỗ lực trên con đường
tìm tịi và phát hiện những phương pháp giải pháp mới cho phù hợp với từng nội
dung dạy học, từng đối tượng dạy học. Bởi có nhiều kiến thức khó và càng khó
hơn đối với học sinh ở những vùng nông thôn miền núi. Thật vậy, khi hướng dẫn
học sinh giải các bài tốn có lời văn, đặc biệt là giải tốn về có lời văn liên quan
đến phân số, giáo viên còn gặp nhiều lúng túng.
Các bài tốn có lời văn liên quan đến phân số có nội dung thiết thực và
phổ biến trong đời sống, có lẽ vì vậy, chương trình tốn cải cách cuối bậc tiểu
học đã đề cập đến vấn đề này một cách đầy đủ (yêu cầu kiến thức, kĩ năng, mức
độ vận dụng cao hơn hẳn so với chương trình chưa cải cách) với nhiều dạng tốn
có lời văn liên quan đến phân số:
1/ Các bài toán về sự tăng giảm tử số và mẫu số của phân số.
2/ Tìm hai số khi biết tổng và tỉ số của hai số.
3/ Tìm hai số khi biết hiệu và tỉ số của hai số.
4/ Các bài tốn rút về đại lượng khơng đổi.

5/ Các bài tốn về cơng việc chung….
So với các bài tốn có lời văn liên quan đến phân số thì các bài tốn về sự
tăng giảm tử số và mẫu số gắn liền với tính chất cơ bản của phân số hơn. Tuy
mức độ tư duy không quá phức tạp như nhưng dạng khác nhưng khi các em làm
các bài tốn liên quan đến các dạng này vẫn cịn chưa đúng và gặp nhiều nhầm
lẫn. Vì vậy, để giúp các em làm tốt các bài tập dạng này tôi đã nghiên cứu để tìm
ra các giải pháp tối ưu giúp các em để khắc phục cho sự sai sót đó.


Qua thực tế những năm giảng dạy lớp 4-5, khi tổ chức các hoạt động học
tập cho học sinh, tôi nhận thấy học sinh thường mơ hồ đối với các bài tập có nội
dung nói trên. Sự trừu tượng của yếu tố thể hiện ngay ở những từ ngữ khi giáo
viên hướng dẫn học sinh định dạng bài tập. Học sinh gặp khó khăn ngay ở khâu
phân tích đề tốn, tóm tắt đề, cho đến khi giải đề tốn. Điều đó góp phần làm
giảm chất lượng dạy học mơn tốn nói chung và dạy học giải tốn có lời văn về
phần số nói riêng. Vì vậy, tơi đã nghiên cứu và tìm tịi được một số giải pháp
giúp học sinh hiểu nhanh đề tốn, biết cách tóm tắt và dễ dàng vận dụng vào
việc giải tốn. Nay tơi tiếp tục bổ sung, hoàn thiện và mạnh dạn viết ra một số
kinh nghiệm rồi đúc kết thành đề tài “Một số giải pháp nâng cao kĩ năng giải
các bài toán về sự tăng giảm tử số và mẫu số của phân số cho học sinh lớp 45”, mong được sẻ chia với bạn bè đồng nghiệp, cũng là để củng cố và trau dồi kĩ
năng chun mơn cho bản thân.
Để góp phần nâng cao chất lượng dạy học mơn tốn ở lớp 4-5 nói chung
và dạy giải tốn có lời văn về phân số nói riêng, cũng cịn rất nhiều vấn đề cần
nghiên cứu xoay quanh các hoạt động dạy học như: Các phương pháp dạy học
đặc trưng, các hình thức tổ chức dạy học mang lại hiệu cao..., nên tôi chỉ đi sâu
nghiên cứu một số giải pháp giúp học sinh biết phân tích đề, tóm tắt và giải các
bài toán về sự tăng giảm tử số và mẫu số của phân số. Mặt khác, các bài toán về
phân số cũng rất đa dạng về hình thức, phong phú về nội dung. Có bài tập xuất
hiện xen kẽ với các yếu tố khác theo ngun tắc tích hợp, có bài mang tính chất
riêng rẽ chỉ ở phần phân số. Ở đề tài này, tôi chỉ tập trung nghiên cứu các bài tập

cơ bản và mở rộng một chút với một số ví dụ minh họa để làm sáng tỏ các giải
pháp được đưa ra.
Trường Tiểu học Hoàng Hoa là một trường vùng núi của huyện Tam
Dương. Điều kiện kinh tế ở đây cịn nhiều khó khăn, trình độ dân trí chưa cao
nên đã kéo theo đại đa số phụ huynh học sinh của trường còn đi làm ăn xa, thiếu
quan tâm đến việc học tập của con em mình. Cùng với đó là cơ sở vật chất, đội
ngũ giáo viên của nhà trường cịn chưa đủ, từ đó dẫn đến chất lượng các mơn
học, nhất là mơn Tốn cịn rất nhiều hạn chế.
Ngay từ đầu năm học, được Ban giám hiệu nhà trường phân công chủ
nhiệm lớp 5A, tôi nhận thấy các em vẫn còn hạn chế rất nhiều trong phần phân
số. Các em chưa thật sự nắm được cách giải dạng toán về phân số một cách
vững chắc, chưa phát huy được khả năng của mình, thiếu tính linh hoạt trong
một số tình huống nhất định. Điều đó sẽ làm cho các em khó đạt được thành tích
tốt trong học tập.


Xuất phát từ những lý do trên, tôi lựa chọn đề tài “Một số giải pháp nâng cao kĩ
năng giải các bài toán về sự tăng giảm tử số và mẫu số của phân số cho học
sinh lớp 4-5”.
2. Tên sáng kiến
“Một số giải pháp nâng cao kĩ năng giải các bài toán về sự tăng giảm tử
số và mẫu số của phân số cho học sinh lớp 4-5”.
3. Tác giả sáng kiến
- Họ và tên: Nguyễn Văn Đủ
- Địa chỉ tác giả sáng kiến: Trường Tiểu học Hoàng Hoa – huyện Tam
Dương – tỉnh Vĩnh Phúc.
- Số điện thoại: 0987465248. Email:
4. Chủ đầu tư tạo ra sáng kiến
Nhà giáo Nguyễn Văn Đủ – Giáo viên trường Tiểu học Hoàng Hoa – Tam
Dương – Vĩnh Phúc.

5. Lĩnh vực áp dụng sáng kiến
Học sinh lớp 4-5 - “Một số giải pháp nâng cao kĩ năng giải các bài toán
về sự tăng giảm tử số và mẫu số của phân số cho học sinh lớp 4-5”.
6. Ngày sáng kiến được áp dụng lần đầu hoặc áp dụng thử
Ngày 24 tháng 9 năm 2018
7. Mô tả bản chất của sáng kiến
7.1. Về nội dung của sáng kiến
Q trình dạy học tốn trong chương trình tiểu học được chia thành hai
giai đoạn: giai đoạn các lớp 1, 2, 3 và giai đoạn các lớp 4, 5. Ở giai đoạn lớp 1,
2, 3 có thể coi là giai đoạn học tập cơ bản còn giai đoạn lớp 4, 5 có thể coi là
giai đoạn học tập sâu (so với giai đoạn trước). Ở lớp 1, 2, 3 học sinh chủ yếu chỉ
nhận biết khái niệm ban đầu, đơn giản qua các ví dụ cụ thể với sự hỗ trợ của các
vật thực hoặc mô hình, tranh ảnh, ... do đó chủ yếu chỉ nhận biết “cái toàn thể”,
“cái riêng lẻ”, chưa làm rõ các mối quan hệ, các tính chất của sự vật, hiện tượng.
Giai đoạn lớp 4, 5 học sinh vẫn học tập các kiến thức và kĩ năng cơ bản của mơn
tốn nhưng ở mức sâu hơn, khái quát hơn, tường minh hơn. Nhiều nội dung tốn
học có thể coi là trừu tượng, khái quát đối với học sinh ở giai đoạn lớp 1, 2, 3 thì
đến lớp 4, 5 lại trở nên cụ thể, trực quan và được dùng làm chỗ dựa (cơ sở) để
học các nội dung mới. Một minh chứng cụ thể cho điều này là nội dung tỉ số
phần trăm ở tiểu học thì phải đến lớp 5 học sinh mới được học. Chính vì điều


này mà yêu cầu về kiến thức, kĩ năng, phương pháp dạy ở mỗi giai đoạn cũng có
sự khác nhau.
Bản thân tơi là một giáo viên đã có nhiều năm làm công tác dạy học khối
lớp 5 nên tôi cũng đã nghiên cứu sâu về phân mơn tốn học. Khi dạy, tôi rất
quan tâm và đầu tư cho phần số học vì đây là một nội dung khó và mảng kiến
thức tương đối rộng với học sinh. Kiến thức về phân số có ở trong phần số học
lớp 4 - 5.
Kiến thức về phân số và các bài toán liên quan đến phân số tưởng như đơn

giản nhưng khi dạy đến nó, tơi thấy mình cịn gặp nhiều khó khăn về phương
pháp dạy. Song với trách nhiệm của một giáo viên, tơi đã có được sự đầu tư nhất
định trong việc nghiên cứu, tìm tịi để đưa ra một phương pháp dạy phù hợp
giúp cho q trình dạy tốn của mình đạt hiệu quả. Trong khn khổ bài viết tơi
xin được nêu ra một số kinh nghiệm về “Một số giải pháp nâng cao kĩ năng giải
các bài toán về sự tăng giảm tử số và mẫu số của phân số cho học sinh lớp 45”.
Những năm học trước, khi dạy về phần phân số, do chưa có kinh nghiệm
nên tôi thường gặp đâu dạy đấy, không dạy theo một hệ thống phương pháp hay
một quy tắc nào. Hơn nữa là sự chủ quan của bản thân vì tơi cho rằng đếm hình
là dễ đối với học sinh, chỉ dùng phương pháp dạy học máy móc học sinh cũng
có thể giải được những bài toán đơn giản chứ chưa thể làm được những bài toán
mở rộng hơn. Dẫn đến học sinh nắm bài một cách thụ động, chưa sâu, kết quả
bài làm chưa cao.
Trong chương trình tốn lớp 4 - 5 hiện hành, phân số và giải toán về phân
số được đưa vào chính thức từ học kỳ hai lớp 4 và phần đầu học kỳ I lớp 5, trong
đó phần lớp 5 chủ yếu là các tiết ôn tập và mở rộng. Cịn lại là những bài tốn
liên quan đến phân số - tỉ số được nằm rải rác, xen kẽ với các yếu tố khác trong
cấu trúc chương trình. Phân số là một phần quan trọng trong chương trình tốn
học Tiểu học và là một khái niệm mới mẻ so với các lớp học dưới, mang tính
trừu tượng cao.
Tôi áp dụng đề tài này tại Trường tiểu học Hoàng Hoa - huyện Tam
Dương, Trường nằm trên địa bàn xã Hồng Hoa. Một xã cịn nghèo nàn về cơ sở
vật chất cộng với đời sống nhân dân trong xã cịn gặp nhiều khó khăn do khơng
có việc làm ổn định. Học sinh chủ yếu là con nhà nông dân, nên các em thường
phải lo phụ giúp gia đình, điều đó ảnh hưởng khơng ít đến chất lượng dạy học
nói chung và chất lượng dạy học các yếu tố của phân mơn tốn ở bậc tiểu học
nói riêng.


Qua thực tế giảng dạy chương trình tốn lớp 4-5 cải cách, khi dạy học yếu

tố giải toán về tỉ số phần trăm tôi nhận thấy những hạn chế học sinh thường gặp
phải là:
Thứ nhất, học sinh chưa kịp làm quen các bài toán liên quan đến phân số.
Thứ hai, học sinh khó định dạng bài tập. Dạng bài tập liên quan đến sự
tăng giảm tử số và mẫu số của phân số.
Thứ ba, nhiều em xác định được dạng tốn nhưng lại vận dụng một cách
rập khn, máy móc mà không hiểu được thực chất của vấn đề cần giải quyết
nên khi gặp bài tốn có cùng nội dung nhưng lời lẽ khác đi thì các em lại lúng
túng.
Bản thân những bài tốn có lời văn về phân số vừa thiết thực, song lại rất
trừu tượng, học sinh phải làm quen với nhiều thuật ngữ mới như: “gấp đôi”,
“gấp rưỡi”, ..., địi hỏi phải có năng lực tư duy, khả năng suy luận hợp lí, cách
phát hiện và giải quyết vấn đề, về mặt này học sinh tiểu học ở các vùng miền
khác nhau thì khả năng nói trên cũng khác nhau.
Hai năm học liên tiếp (năm học 2016-2017 và năm học 2017-2018), khi
dạy giải toán về phân số, tơi thật sự lúng túng. Khi hình thành kiến thức mới,
giáo viên phải làm việc tương đối nhiều, việc tổ chức dạy học theo tinh thần lấy
học làm trung tâm chưa hiệu quả khi dạy học yếu tố này. Chuyển sang khâu
luyện tập thực hành, giáo viên vẫn phải theo dõi và giúp đỡ rất nhiều học sinh
mới hoàn thành các bài tập đúng tiến độ.
Về phía giáo viên, tơi cho rằng, phần lớn là do thói quen, chủ quan,
thường hay xem nhẹ khâu phân tích các dữ liệu bài tốn. Mặt khác, đơi khi cịn
lệ thuộc vào sách giáo khoa một cách máy móc, dẫn đến học sinh hiểu bài chưa
kĩ, giáo viên giảng giải nhiều nhưng lại chưa khắc sâu được bài học, thành ra
lúng túng. Thực trạng này cũng góp phần làm giảm chất lượng giảng dạy yếu tố
nói trên của phân mơn.
Trước thực trạng này, thiết nghĩ, cần phải có một giải pháp cụ thể giúp
học sinh biết phân tích đề tốn để làm rõ những điều kiện bài toán cho và yêu
cầu cần giải quyết, tránh sự nhầm lẫn nói trên. Từ đó biết tóm tắt đề bài sao cho
khi nhìn vào phần tóm tắt học sinh có thể tự tin mà lựa chọn phương pháp giải

thích hợp. Vì vậy tơi đã:
- Tìm hiểu cơ sở lí luận và thực tiễn về các dạng tốn liên quan đến dạng
toán sự tăng giảm tử số và mẫu số của phân số.


- Nghiên cứu về nội dung, mức độ và phương pháp trong dạy học về
Nâng cao kĩ năng giải các bài toán về sự tăng giảm tử số và mẫu số của phân
số.
- Các cách giải các bài tốn có lời văn liên quan đến phân số.
- Nghiên cứu về khả năng tiếp thu, vận dụng các kiến thức đã học vào giải
toán về phân số.
- Nghiên cứu một số kiến thức cần lưu ý khi dạy dạng toán này
a, Để kí hiệu một phân số có tử số bằng a, mẫu số bằng b (với a là số tự
nhiên và b là số tự nhiên khác 0) ta viết :

-

a
b

.

Mẫu số b chỉ số phần bằng nhau được chia ra từ 1 đơn vị, tử số a chỉ số phần
được lấy đi.
- Phân số còn hiểu là thương của phép chia a : b .
a
b

b, Mỗi số tự nhiên a có thể coi là một phân số có mẫu số bằng 1: a =


a
1

.

c, Nếu nhân cả tử số và mẫu số của một phân số với một số tự nhiên khác
0 thì được phân số bằng phân số đã cho:

a×n
b×n

=

a
b

(n khác 0)

d, Nếu ta chia cả tử số và mẫu số của một phân số cho cùng một số tự
nhiên khác 0 (gọi là rút gọn phân số) thì được phân số bằng phân số đã cho
= (m khác 0)
a:m
b:m

a
b

e, Phân số có mẫu số 10; 100;1000; …gọi là phân số thập phân.
g, Nếu ta cộng cả tử số và mẫu số của một phân số hoặc cả tử số và mẫu
số trừ đi cùng một số thì hiệu giữa tử số và mẫu số không thay đổi.

h, Nếu ta trừ đi ở tử và thêm vào ở mẫu (hoặc thêm và ở tử và trừ đi ở
mẫu) với cùng một số tự nhiên khác 0 thi tổng của tử số và mẫu số là một số
không đổi.
i,
;
a+b a b
= +
m
m m

a−b a b
= −
n
n n


Từ việc áp dụng các một số kiến thức cần lưu ý khi dạy dạng tốn này, tơi
đã rút ra các giải pháp sau để áp dụng vào quá trình dạy học
a, Giải pháp 1: Tìm hiểu và phân tích ngun nhân.
Sau khi điều tra tìm hiểu ngun nhân tơi thấy có 3 lí do dẫn đến chất
lượng bài làm thấp đó là:
- Nguyên nhân thứ nhất: Giáo viên hướng dẫn học sinh lĩnh hội kiến thức
khơng có hệ thống gặp đâu dạy đấy vì vậy học sinh nắm bài hời hợt.
- Nguyên nhân thứ hai: Trong quá trình dạy, giáo viên chưa biết cách giúp
học sinh ghi nhớ về phương pháp giải từng dạng bài.
- Nguyên nhân thứ ba là: Một số học sinh chưa nắm vững đặc điểm, bản
chất của một số bài tập cơ bản và nâng cao đã học.
* Biện pháp khắc phục: Qua quá trình nghiên cứu và áp dụng vào thực tiễn
vấn đề về “Một số giải pháp nâng cao kĩ năng giải các bài toán về sự tăng giảm
tử số và mẫu số của phân số cho học sinh lớp 4-5”, tôi thấy giáo viên phải nắm

được đặc điểm tâm lý lứa tuổi học sinh tiểu học: Tư duy cụ thể chiếm ưu thế
nhưng các em rất tò mò ham hiểu biết từ đó lựa chọn những nội dung phương
pháp phù hợp khơi dạy tính tị mị, tạo hứng thú học tập cho học sinh.
b, Giải pháp thứ hai: Nghiên cứu tài liệu sách tham khảo kết hợp với
những kinh nghiệm của bản thân để xây dựng cho mình một phương pháp dạy
phù hợp với trình độ và năng lực của học sinh. Cụ thể các phương pháp áp dụng
là: Gợi mở vấn đáp, luyện tập thực hành...
* Biện pháp khắc phục: Phải nắm vững cấu trúc của chương trình để đưa
ra nội dung, kiến thức ở mức độ phù hợp nhằm huy động tối đa những hiểu biết
vốn có của học sinh giúp học sinh có thể chiếm lĩnh kiến thức một cách chủ
động sáng tạo.
Chú trọng từng khâu từng phần trong mạch kiến thức. Không đốt cháy
giai đoạn bởi học sinh có nắm chắc phần kiến thức này thì mới có thể tiếp thu
phần kiến thức khác được.
c, Giải pháp thứ ba: Xây dựng hệ thống bài tập theo từng mức độ và từng
giai đoạn nhận thức của học sinh. Hệ thống bài tập gồm:
- Bài tập củng cố, khắc sâu.
- Bài tập xen kẽ với các dạng toán khác.
- Bài tập mở rộng và vận dụng thực tế.
* Biện pháp khắc phục: Giáo viên phải thấy được những khó khăn của
học sinh để giúp học sinh giải quyết vấn đề một cách thấu đáo.


Bao giờ cũng vậy trước khi giúp học sinh tìm tòi phát hiện một vấn đề
mới, cần củng cố và khắc sâu lại những kiến thức có liên quan tạo đà cho việc
chiếm lĩnh kiến thức mới.
d, Giải pháp thứ tư: Lên kế hoạch và tổ chức thực hiện kế hoạch, có đánh
giá rút kinh nghiệm.
* Biện pháp khắc phục: Sử dụng linh hoạt các hình thức dạy học để cho
kết quả học tập một cách cao nhất.

7.2. Khả năng áp dụng của sáng kiến.
Để khắc phục tình trạng trên tơi đã tìm tịi, nghiên cứu và đưa ra cho mình
một giải pháp dạy phù hợp với trình độ và năng lực của học sinh, nâng cao hiệu
quả dạy học
Dạng 1. Tử số và mẫu số cùng tăng hoặc cùng giảm.
* Bài 1.
Cho phân số . Hỏi phải trừ cả tử số và mẫu số của phân số đã cho cùng
43
31

một số tự nhiên nào để được phân số mới mà sau khi rút gọn được phân số

- Gợi ý: Ta có thể hiểu bài tốn này như sau

43 − a A 11
= =
31 − a B 5

11
5

; Tìm a

Giải
Hiệu của tử số và mẫu số là:
43 - 31 = 12
Khi trừ cả tử số và mẫu số của phân số đã cho cùng một số tự nhiên thì
được phân số mới có hiệu của tử số và mẫu số vẫn bằng 12.
Vì phân số mới sau khi rut gọn bằng
nên có

11
5

Tử số:
12
Mẫu số:
Hiệu số phần bằng nhau là:

?


11 - 5 = 6 (phần)
Tử số của phân số mới là:
12 : 6
11 = 22
×

Mẫu số của phân số mới là:
22- 12 = 10
Phân số mới là:
22
10

* Bài 2. Cho phân số

7
19

Số tự nhiên phải tìm là:
43- 22 = 21

(hoặc 31 - 10 = 21)
Đáp số: 21
. Hỏi phải cộng thêm vào tử số và mẫu số của phân số

đã cho cùng một số tự nhiên nào để được một phân số mới mà sau khi rút gọn
được phân số

2
3

?

- Gợi ý: Ta có thể hiểu bài tốn này như sau

7+a A 2
= =
19 + a B 3

Giải
Hiệu của mẫu số và tử số của phân số

; Tìm a

7
19

là :

19 - 7 = 12
Khi cộng tử số và mẫu số của phân số đã cho cùng một số tự nhiên thì

được phân số mới có hiệu của mẫu số và tử số vẫn bằng 12.
Vì phân số mới sau khi rút gọn bằng nên có:
2
3

Tử số:
Mẫu số:

12

Hiệu số phần bằng nhau là:


3-2=1
Tử số của phân số mới là:
12 x 2 = 24
Mẫu số của phân số mới là:
24 + 12 = 36
Phân số mới là:
24
36

* Bài 3. Cho hai phân số

6
7

Số tự nhiên cần tìm là:
24 - 7 = 17
(hoặc 36 - 19 = 17)

Đáp số: 17
và . Hãy tìm phân số sao cho khi thêm vào mỗi
2
9

a
b

phân số đã cho ta được hai phân số mới có tỉ số là 3?
- Gợi ý: Ta có thể hiểu bài tốn này như sau
; Tìm phân số
6 a
+
7 b =3
2 a
+
9 b

a
b

Giải
Hiệu số giữa hai phân số đã cho là:
- =
6
7

Khi cùng thêm phân số

a

b

2
9

40
63

vào phân số bị trừ và phân số trừ thì hiệu của

hai phân số mới vẫn bằng hiệu số của hai phân số đã cho nên vẫn bằng

40
63

Vì tỉ số giữa hai phân số mới là 3 nên phân số lớn gấp 3 lần phân số nhỏ. Vì
vậy

40
63

bằng mấy lần phân số nhỏ

3 – 1 = 2 (lần)
Phân số nhỏ:


40
63


Phân số

20
63

:2=

cần tìm là:

a
b

-

=

2
9

Thử lại: Phân số lớn là:

20
21

-

Đáp số:

* Bài 4. Cho hai phân số


số đã cho trừ đi phân số

7
9

a
b



5
11

20
63

6
7
a
b

2
21

20
63

=

=


x3=

20
21

2
21
2
21

. Hãy tìm phân số

a
b

sao cho đem mỗi phân

thì ta được hai phân số có tỉ số là 5.

- Gợi ý: Ta có thể hiểu bài tốn này như sau

7 a

9 b = A = 5 =5
5 a B 1

11 b

Giải

Hiệu của hai phân số đã cho là:
=
7
9

5
11

32
99

; Tìm phân số

a
b


Nếu đem mỗi phân số đã cho trừ đi phân số

a
b

thì hiệu của hai phân số đã

cho vẫn khơng thay đổi. Vậy hiệu của hai phân số mới là

32
99

.


Do tỉ số của hai phân số là 5 nên ta có sư đồ:
Phân số lớn mới :
Phân số bé mới :

32
99

Hiệu số phần bằng nhau của hai phân số mới là:
5 - 1 = 4 (phần)
Phân số lớn mới là:
:4 x5=
32
99

40
99

Phân số

7
9

-

a
b

cần tìm là :


40
99

=

37
99

Đáp số:

37
99

Cách giải dạng 1. Giải bằng phương pháp Hiệu - Tỉ
Bước 1. Tìm hiệu giữa tử số và mẫu số hoặc ngược lại (vì khi ta cùng
tăng hoặc cùng giảm đi một số thì hiệu ln khơng thay đổi)
Bước 2. Xác định tỉ số.
Bước 3. Trình bày lời giải và phép tính.
Dạng 2. Tăng tử số và giảm mẫu số hoặc giảm tử số và tăng mẫu số.


* Bài 5. Cho phân số

19
3

. Hãy tìm một số tự nhiên sao cho khi lấy tử số của

phân số đã cho trừ đi số đó và lấy mẫu số của phân số đã cho cộng với số đó thì
được phân số mới mà sau khi rút gọn được phân số


- Gợi ý: Ta có thể hiểu bài này như sau
=
=
19 − a
3+ a

A
B

2
9

2
9

?

; Tìm a

Giải
Khi ta lấy tử số của phân số đã cho trừ đi một số tự nhiên và lấy mẫu số
của phân số đã cho cộng với số tự nhiên đó thì tổng của tử số và mẫu số của
phân số mới vẫn bằng tổng của tử số và mẫu số của phân số đã cho.
Tổng của tử số và mẫu số của phân số đã cho là.
19 + 3 = 22
Vì phân số mới sau khi rút gọn được phân số nên có:
2
9


Tử số :
Mẫu số:

22

Tổng số phần bằng nhau là:
2 + 9 = 11 (phần)
Tử số của phân số mới là:
22 : 11 2 = 4
×

Mẫu số của phân số mới là:
22 - 4 = 8
Phân số mới là:
4
18

Số tự nhiên phải tìm là:
19 - 4 = 15
(hoặc 18 - 3 = 15)
Đáp số: 15


* Bài 6. Cho phân số

3
37

. Hãy tìm một số tự nhiên sao cho khi lấy tử số của


phân số đã cho cộng với số đó và lấy mẫu số của phân số đã cho cộng với số đó
thì được phân số mới sau khi rút gọn được phân số

1
7

?

- Gợi ý: Ta có thể hiểu bài tốn này như sau
=
; Tìm a
3+ a
37 − a

1
7

Giải
Khi ta lấy tử số của phân số đã cho cộng với một số tự nhiên và lấy mẫu
số của phân số đã cho trừ đi số tự nhiên đó thì tổng của tử số và mẫu số của
phân số mới vẫn bằng tổng của tử số và mẫu số của phân số đã cho.
Tổng của tử số và mẫu số của phân số đã cho là:
3 + 37 = 40
Tổng số phần bằng nhau là:
1 + 7 = 8 (phần)
Tử số của phân số mới là:
40 : 8 1 = 5
×

Mẫu số của phân số mới là:

40 - 5 = 35
Phân số mới là:
5
35

Số tự nhiên phải tìm là:
5 - 3 = 2 (hoặc 37 - 35 = 2)
Đáp số: 2
* Bài 7. (Tăng tử số và giảm mẫu số đi một số lần)
Tìm một phân số biết rằng nếu gấp tử số của nó lên 2 lần và đồng thời
giảm mẫu số của nó đi 3 lần thì được một phân số mới hơn phân số ban đầu

đơn vị.

25
12


- Gợi ý: Ta có thể hiểu bài tốn này như sau

2
b:3

; Tìm

a
b

Giải
Nếu gấp tử số lên 2 lần và giảm mẫu số đi 3 lần suy ra phân số mới gấp 2

x 3 = 6 (lần) phân số ban đầu.
Phân số ban đầu:
25
12

Phân số mới:
Phân số ban đầu là:
:5=
25
12

5
12

Đáp số:

* Bài 8. Cho hai phân số

1
9

và bớt

a
b



6
7


6
7



1
9

. Hãy tìm phân số

a
b

sao cho khi thêm

thì được hai phân số mới có tỉ số là 3?

- Ta có thể hiểu bài tốn này như sau:

6 a

7 b =3
1 a
+
9 b

; Tìm

a

b

Giải
Tổng của hai phân số đã cho là:
+
=
6
7

1
9

61
63

5
12

a
b

vào


Khi thêm

vẫn bằng

a
b


61
63

vào

1
9

và bớt

a
b



6
7

thì tổng của hai phân số khơng thay đổi nên

.

Hai phân số có tỉ số là 3 nghĩa là phân số lớn bằng 3 lần phân số nhỏ.
Vậy phân số nhỏ là :
: (3 + 1) =
61
63

61

252

Phân số

61
252

-

a
b

cần tìm là :

=

1
9

33
252

=

11
84

Đáp số:

a

b

=

11
84

Cách giải dạng 2. Giải bằng phương pháp Tổng - Tỉ
Bước 1. Tìm tổng giữa tử số và mẫu số (vì khi ta tăng và giảm mẫu số
hoặc giảm tử số và tăng mẫu số cùng một số thì tổng ln khơng thay đổi)
Bước 2. Xác định tỉ số.
- Tử giảm, mẫu tăng lên một số lần hoặc ngược lại.
Bước 3. Trình bày lời giải và phép tính.
Dạng 3. Tăng (giảm) tử số hoặc tăng (giảm) mẫu số. Đưa về bài toán hai tỉ số.
* Bài 9. (Giảm mẫu số) Cho phân số =
. Nếu bớt Y đi 21 đơn vị và giữ
x
y

7
13

nguyên X thì được phân số mới có giá trị bằng

7
10

Giải
Theo bài ra ta có:
=

(1)
x
y

7
13

. Tìm

x
y

?


x
y − 21

=

(2)

7
10

Từ (1) và (2)
Nếu coi x = 7 phần bằng nhau thì y = 13 phần cịn
y – 21 bằng 10 phần như thế.
Giá trị một phần là: 21 : 3 = 7
x = 49 ; y = 91

=
x
y

Đáp số :

49
91

x
y

=

49
91

* Bài 10. (Tăng tử số)
Cho phân số = . Nếu tử số cộng thêm 28 đơn vị và giữ ngun mẫu số thì
a
b

4
5

được phân số mới có giá trị bằng

24
23


. Tìm

a
b

?

Giải
+ Cách 1. Lập biểu thức
Theo bài ra, ta có:
=
-

a + 28
b

Hay

a
b

28
b

24
23

=

4

5

28
115

Nên b = 115
Vậy
=
a
b

92
115

Đáp số :

a
b

=

92
115

+ Cách 2. Đưa về bài toán Hai tỉ số
28 đơn vị so với mẫu số b của phân số cần tìm bằng:


24
23


-

4
5

=

(mẫu số)

28
115

Mẫu số b là: 28 :

= 115

28
115

Tử số a là: 115 : 5

×

4 = 92

Vậy phân số cần tìm là:

Đáp số:


=

a
b

92
115

92
115

* Bài 11. (Giảm mẫu số)
Một phân số sẽ thay đổi như thế nào khi mẫu số giảm đi

1
4

của nó và tử

số khơng thay đổi.
Giải
- Gọi phân số phải tìm là

- Mẫu số giảm đi

1
4

a
b


của nó tức là giảm đi

b
4

.

Phân số mới sẽ có mẫu số là
b- =
b
4

3× b
4

Phân số mới sẽ là
=
a
3× b
4

Gấp

4
3

4 a
×
3 b


phân số ban đầu nghĩa là lớn hơn phân số ban đầu

1
3

của nó.


Vậy khi cho mẫu số của một phân số giảm

đổi thì phân số mới gấp

4
3

1
4

của nó và tử số khơng thay

phân số ban đầu.

* Bài 12. (Tăng tử số)
Một phân số sẽ thay đổi như thế nào khi tử số tăng lên

1
3

của nó và mẫu


số khơng thay đổi.
Giải
- Gọi phân số phải tìm là

- Tử số tăng lên

1
3

a
b

của nó tức là tử số tăng lên

a
3

Phân số mới sẽ có tử số là:
a+
=
a
3

4× a
3

Phân số mới sẽ là:
=
=


4 xa
3
b

Gấp

4
3

4 × a
b
3

4×a
3× b

phân số ban đầu.

Vậy khi tử số của một phân số tăng

thì phân số đó gấp

4
3

1
3

của nó và mẫu số không thay đổi


phân số ban đầu.

* Bài 13. (Tăng thêm tử số và gấp mẫu số lên một số lần)


Tìm phân số có mẫu số bằng 7. Biết rằng khi cộng tử số với 16 và nhân
mẫu số với 5 thì giá trị phân số đó khơng thay đổi?
Giải
- Gọi phân số phải tìm có dạng

a
7

.

- Theo bài ra ta có:
a + 16
7×5

=

a + 16
7×5

a
7

a


×

=

a + 16 = a

5
7×5

×

5

4 = 16

a= 4
Vậy phân số phải tìm là:

4
7

* Bài 14. Thương của hai số thay đổi như thế nào nếu ta nhân số bị chia với 75%
và số chia với 25%? Tại sao?
Giải
- Khi nhân số bị chia với 75% hay nhân với thì thương số được gấp lên .(1)
3
4

- Khi ta nhân số chia với 25% hay nhân với


Từ (1) và (2) suy ra thương mới tăng lên

1
4
3
4

3
4

thì thương số sẽ giảm đi

:

1
4

1
4

. (2)

= 3 (lần)

Cách giải dạng 3. Giải bằng phương pháp Lập biểu thức
Bước 1. Lập biểu thức
Bước 2. Biến đổi biểu thức để suy ra kết quả
Dạng tốn này có thể giải bằng phương pháp giải bài tốn "Tìm hai số
khi biết hai tỉ số của hai số đó?"
Dạng 4. Gắn với yếu tố thực tế, gắn với bài tốn về tính tuổi, gắn yếu tố

hình học.


* Bài 15. Số con gà bằng

gà bằng

9
10

3
4

số con vịt. Nếu mua thêm 36 con gà nữa thì số con

số con vịt.Tính số con gà và số con vịt lúc đầu?

Giải
Cách 1
Lập biểu thức - Giải theo bài 10.
Cách 2
36 con gà ứng so với số con vịt bằng:
- =
(Số con vịt)
9
10

3
4


3
20

Số con vịt lúc đầu là:
36 :
= 240 (con)
3
20

Số con gà lúc đầu là:
240
= 180 (con)
× 3
4

Đáp số: gà: 180 con; vịt: 240 con
* Bài 16. Hiện nay tỷ số giữa tuổi em và tuổi anh là . Sau 14 năm nữa thì tỉ số
1
3

giữa tuổi em và tuổi anh là

4
5

. Tính tuổi của mỗi người hiện nay?

Giải
Cách 1.
Lập biểu thức - Giải theo bài 10.

Cách 2


Vì hiệu số tuổi anh và tuổi em ln khơng thay đổi theo thời gian nên theo
bài ra ta có: Tuổi em hiện nay bằng

hiệu số tuổi của hai anh em.

1
2

Tuổi em 14 năm nữa bằng 4 lần hiệu số tuổi của hai anh em . Vậy:
14 năm só với hiệu số tuổi bằng:
4 - = (hiệu số tuổi)
1
2

7
2

Hiệu số tuổi của hai anh em là:
14 : = 4 (tuổi)
7
2

Tuổi em hiện nay là:
4 : 2 = 2 (tuổi)
Tuổi anh hiện nay là:
2 + 4 = 6 (tuổi)
Đáp số: - anh: 6 tuổi.

- em: 2 tuổi.
* Bài 17. Tính diện tích hình chữ nhật có chiều dài gấp rưỡi chiều rộng. Nếu
tăng chiều rộng thêm 3 m và giữ nguyên chiều dài thì được hình vng.
Giải
Cách 1
Lập biểu thức - Giải theo bài 10.
Cách 2
Theo bài ra, lúc đầu chiều rộng bằng

2
3

chiều dài. Sau khi tăng chiều rộng

lên 3m và giữ nguyên chiều dài thì hình chữ nhật trở thành hình vng, có nghĩa
là chiều rộng bằng chiều dài. Như vậy ta có:
3 mét so với chiều dài bằng:
1 - = (Chiều dài)
2
3

1
3

Chiều dai của hình chữ nhật là:


3:

= 9 (m)


1
3

Chiều rộng của hình chữ nhật là:
9
= 6 (m)
×

2
3

Diện tích của hình chữ nhật đó là:
6 9 = 54 (m )
×

2

Đáp số: 54 m

2

Dạng 5. Một số bài tốn chứa nhiều bài tốn phụ có liên quan:
Tóm lại: MƠ HÌNH DẠNG TỐN NÀY
Phân số ban đầu

Thành phần
tăng giảm

Phân số mới


+ Xuất hiện
+ Thêm bớt đơn
+ Thường xuất
dạng:
vị, gấp giảm số
hiện dạng tỉ
phân số cụ thể;
lần.
số,..
phân số tổng
+ vị trí: Tử số,
+ Cho biết/đi
qt, tỉ số%
mẫu sốhoặc cả
tìm
+ Số lượng: 1
tử số, mẫu số.
hoặc 2, …
+ Cho biết/ đi
+ Cho biết hoặc
tìm
đi tìm
Cách giải chung:
Cách 1. Chuyển về dạng toán Tổng – Tỉ ; Hiệu – Tỉ; Hai tỉ số
Cách 2. Lập biểu thức
Trên đây là những giải pháp hướng dẫn HS giải toán về sự tăng giảm tử số
và mẫu số của phân số với ba dạng cơ bản. HS nắm vững ba dạng bài cơ bản
này sẽ là cơ sở để các em tiếp tục vận dụng giải các bài tốn có liên quan đến
phân số - tỉ số trong chương trình.

8. Những thơng tin cần được bảo mật (khơng có)


×