Tải bản đầy đủ (.pdf) (11 trang)

De thi thu Toan THPT Le Xoay

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.75 MB, 11 trang )

<span class='text_page_counter'>(1)</span>www.VNMATH.com. xoev z0t0-z0n. Ot 1'fff 1'fftl DAI HOC - f,AN fff ,oU*rlio\rfrort. TRUoNG rHPr LE Nim hec. MU*,. f::ryNurEN. 1:. 4'-. (l) + 3x2 Cho him s6 y = Khio s6t sU bii5n thi€n vi v€ <16 thi (C) cua him sO (t).. Cf,u. 1.. -r'. -4.. Chrmg minh r6ng: Mgi duong thqg qua I(l; -2).v6ihp s6 g6c k < 3 dAu cit gO thi (C) tei ba di6m ph6n bigt trong d6 mQt diiAm h trung dii6m cria ttoan thAng n6i trai tti€m cdnl4i.. 2.. Ciu2z. l.. Giaiphuongtrinh: tanx.tan3x. 2. Giii phuong 3. !* * x. trinh:. ,12-x'. a3=-2 I + cos2x. .. =2.. . Giai bAt phuong trinh: logo (9' - l).log* ,?,. =. j. '22. Ciu. 3:. Tinh tich ph6n:. f = Jd+sinr.* 0. Cffu 4: Cho hinh vu6ng ABCD c6 cenh ld ali. L6y H thuQc do4n AC sao cho ATI: a/2. Kd Hx *Qng g6c vqr (ABCD) vi 6y <Ii6m S thuQc Hx sao cho g6c ,lSC Uing 45o. Tinh b6n kfnh mat cdu ngo4i ti€p S.ABCD. ry,. Ciu 5: ciai. he phuong. trinh:. {f1.. J7;)0. +. '[v'. +t) =t. lzt' - yt +(l+3x212' +3x.22r * ! =2. CAU 6:. l.. Trong mat ph6ng vdi hq trgc to4 tlQ Oxy cho iludrng trdn (C): x ' + y' - 4x + 6y =36 . Dudng thang A qua f(-2:.0) vi cit duong trdn t4i hai <li€m P, Q. Vi6t phuong trinh cria A sao cho doan PQ ngin nhdt.. 2.. Trong kh6ng gian v6i hQ tryc to4 ttQ axyz. Cho A (-5; -3; 2); B(-2;0; -$;C(1; 0; -1). Lfp phucmg trinh mat phing qua OA vi chia tti di$n OABC thanh 2 ph,an c6 t1i s6 th€ tich bAng 2. (DiCm B thu$c ph6n c6 the tich lcm hon),.

<span class='text_page_counter'>(2)</span> www.VNMATH.com. oApAN. L. HQc- r,AN ur HQc rV NrrrSN KiroA' sAI'{. of rm rrffDAr rnrOr*. !=-x3. +3xz. itoii--. -4. TXD: R C6c gioi h4n:. limy--@;limY=+o J-+4 '#6-. Xdt sg bi€n thi€n:. Y'=-3xz +6x. [x=0. ./'=0el*=Z. tren Hdm s6 idng Ui6n tren (0; 2) vd nghich bi6n. \,/'\. Dths. cit oy. @l!lL. tat 9X. (-*;. 0). vi. (2; +o). +.

<span class='text_page_counter'>(3)</span> www.VNMATH.com. t.2 1.I. : K(x - 1)r, --2z A: y: k:> pt he so goc l(:> vdiTalild6c Y k(x Pt a: Gqi A li tlulng th6ng qua I v0i phuong trinh hoinh <tQ giao iti€m cira (C) ve A: - xl + 3r2 - 4 = k(x-l). e (x-lXx' -2x + k -2)= 0 e. [i=l. l*, _2, + k -2= 0 (3). Xet(3)c6A: l+2-k=3'k Th"y-;=lvdo(3)=>k=3 Vflyvoi k < 3 thi (2) c6 3 nghigm. - 2. {Z). ph6n biQt kh6c. l;. 0,25. 0,25. l'. xlx2 <=> (2) c6 3 nghiQm Phdn biQt -> L cilt(C) tai 2 dilmphan biet A(xr;v');I$;a);B(xz;lz). \* xz =2;!t = k(xt-1) - Z;Yz = k(xr-l)-2 ) fr * lz = k(xt * xz -2) - 4 = 4. Viv I li trune <ti€m lcosx * Di0u ki9n:. {. cria AB. 0. 0,25. ^. [cos3r + 0 Phucmg trinh: <+ tan x.tan 3x + 3 = I + tan2 x <+ tan x(tan 3x. -. tan x) + 2 = 0. sin2x +2=0e 2sin2 -:- x +2=0el-cos2x+cos4x+cos2x=0 <)tanx.cos3xcosx cos3xcosx e cos4x - -l <+ 4v = (2k +l)n e t =4** 42. 0,25 0,25. B6i ctri6u itiAu ki€n th6y thoi mdn.. ,rTkr =;+-;. D6p s0: x. Giai b6t phuong trinh:. I+. =2(t). x. Dk: x .FJ1;J7)vax+o. D$ Jz-x'z = t;(/. > o). ft l-.+ I- =2. Taduoc: {x t 'l lxz +t2 =2 Di€u kiqn:. 9'. -l > 0 c+ x > 0. Bpt. elrog,ls' -t,{+)tor, <+. (logr(9' - 1))'. -. =I*log,(e'. 4lo Er(9'-1)+3>0. (9' - 1) > 3 < [log, (9' - l). el ftog,. 1. ol. ?. [g'-r>8<+l[g'>g le'. -t<z L9' '3. DS : x. e(0;/riv[;+o). -r)'[og,(e' -r) -tog, 16l> -3 0,25. 0.25.

<span class='text_page_counter'>(4)</span> www.VNMATH.com m 1.1. 2tr. 2"- [. X. tX ' + cos'tX + zsln-cos-.dr /= J".G-;.ar= fisin -2222r2 x x\ srn-+cos- *:M'o;<;.? 2 2) X. a,25. I. I+ ?-+. Det. t=. OOi. c4n:. '. 24. ax. xl 0 I tI. rll4l. 0,25. =2dt 2n 5ft/4. 5r/ /4. I =2J7 [lti"tlat. =z. [l,intlat. i'!r^0.). 0,25. % =. IV 1it. rJt(-. cos4:/. *. "o'. tl'/') = 4Jl. 0,25. Dung tryc d cira dudng trdn ngo?i ti6p hinh w6ng ABCD (d qua tAm I cira hinh vudng vd vu6ng g6c voi (ABCD)) Vfly d song song vsi SH vi d thuQc m{t phdng (SAC) Trong tam gi6c SAC, dYng dudmg thdng trung truc .atttt 54 c6t d tai O :> O litdm m{t c6u ngo4i ti€p S.ABCD Ap dUttg dinh l)t sin trong t.gi6c SAC:. AC-. + r?o, =2R+2p= Sin45" =. sinlSC. R=. 4,25. 0,25 0,25. all. \l. 0,25. V$y mat cdu ngo4i tii5p S. ABCD c6 ban kinh:. R=. c.5 1d. l\. ali. y*.{y+. *t1=t. \\. ^,2;1.^. ne: {[(r*Jr'*rX ulal Lz" -.yt + (1 +3xz)23.+3x.22' - f =2 Q) Nhan 2v6, cia(l) voi * *J *' *t + 0 tadusc: - (y +,[y\l) = x -'{ ; Nhen. 2vEctn(l)vdi. y-Jfe+0. taducr.c:. \. (1). -(x+. ,!.\l)-y-,tfi. 1. =) X: -y Th6 vdo (2): 23' + x' + (1 + 3x2 )2' +3x22' * x = 2 e23' +3x.22'+3x22' +x'+ 2" +x=2. 0,25. o(z'*r|*Q'**)-z=o. 0,25. D{t r = 2' +x. Ta c6:. t3+t-2=0et=l Ydy 2'rx = I e2' =1-.r. 0,25. (3). Vsi x = 0 thi thon m6n (3) Voi x ) 0, x < 0 dAu kh6ng thoimdn (3) (vi I vii > 1, I VAv nehi€m cria h€ (0: 0). vi5. <. l) 0,25. c6.1. (C) c6 tam I(2; -3); ban kinh R=7. Jre. :). A nim trong (C) =5<R Gqi H la hinh chiiSu cira I tr6n PQ. AI =. 0,25.

<span class='text_page_counter'>(5)</span> www.VNMATH.com c6 PQ=2PH. =2Jm. => PQ nhO nh6t khi IH ton nfr6t Khi dri: H trung voi A => A qua Ặ2; 0) vd nhfn ViY A c6 pt: 4(x + 2) - 3y:0 Hay 4x 3y + g -. 0,25. frg;_Z) lim. :0. Gii. sri (o). Vnor,. rapr. 4,25 0,25. h mp can tim. (o). -" ^. Soou,. ffi=2effi=z BM. fr=2+ BM =2MC Gii sri M(xoiloizo) fxo +2 = 2(l- xo) = Jro +o =2(o- yo) [xo ++. =2(-l-xo). =) M (0;0; -3). oM(a;0;-3);oA(-s;-3;2) 1 r_ _1 ) n =lou,o,ll= (- l;rs;o) ,. 0,25. phuong vor ir= (-3; 5; 0) Mp (OAM) qua O vd nh6n ta- v6cto ph6p tuyi5n. => pt (OAM) ld: -3x * 5y = g. n cirng. 0,25. i,. 0,25. C\/. -----atl.

<span class='text_page_counter'>(6)</span> 4k_" rrl 7 Dt rrrr rHU DAr--Hgg;l'AN. www.VNMATH.com. \rnr-roNc ^^-. NA-. THPT r'fl. xoaY. hgc 2010-2011. Ciuf.. Thdi gian ldm bdi. t'. n'roo inii. 1oful. gian giaod€ ttti pntii'r'0"erc thdi. +9x ' x3 dd thi him sO ! = -6xz vdvd i. fnao tnAng d"v=-x'4'lfim *t +(m+Z)x-m co AO tfri (c')vd duong 2. Cho d6i ximg nhau €lua x+l t4i hai di0m phdn biet nhau dvd dvir(c",)c6t ,, dC duong th6ngr dudngthing !=x' ta x'e' Ciu II 1. TinhtichPhdn/ = o1,' lG*z)' -, A+B. ar=L. s6t. I#. J-+ .). 2. Nhan dang. Mncbi6t:. J 3. Tinh gioi h4n =lill. *fi{) Ciu. ,. Ban co oa"". )/.. )r-q;;i ,--j *+&'T]t. III trinh: 1. Giai Phuong. z.chohQphuonu,. + atan A + b tan B = lo. b)tan:l-. *[i]-@. (.F *r)'. x-1. *:i(r-'l. {f7: F=o. .. c6 nghiQmthgc' Tim ,, eC hQ dd cho. phuong Dubng thrngBcc6 le trung rou uo.rrryIlS?.* "uotl. rrong hg truc dinh/gr6m.tr€n dudng thdngx+zv -3 =o'Di0mM(z;o) 2' tigh c11n6 bhne trinhr- v - 4 =o ; ro yl.'^,!i6iolen m[t phing (or) chira ^ di.m cuaAc. Tim to11O "* 'vi6t;;;;;i'ior' hefruc 2. rrong mflt phing * v +22 = am6t g6c oo0 ' Wi tu o*1"9 :*n d, g6c gifra trvc oxvd t4o vdi m{t nr'a"e z.a;,yg thang AB,CDbhng. #:r.. i*. ;il' ;;'. 3. Cho. -f". ttl di€.n lncp|rJno*9:* eiui. chirngb6nga'blftts=o'ci=l'ir"rtth€tichtirdiQnABCD' -----HCt---. """"""""':"":. Hs vdt€n thi sinh: gi th€m' A;;O;;i thi khong gi6i thich. """""'SO. b6o. danh:';""""""".

<span class='text_page_counter'>(7)</span> iy*: fri l{'a cs K*{ t) www.VNMATH.com. ?6^?,. +Ulr '. ryn-. D=R _p .. fu'vt"ut =. ,tt-ll rcI 7, , 5t>-. j. rc lLt<+3. ,!'=u e) f :;3, B{;t. +oo+ .-. ws. i9 t";+. \r.u. t2+. ArJ. ,/.. -*, 4) ) (, u4,. .(. la l+tt Re dd u) +,. 1t, +); a ,14 (s,c). K> rrrg. . fu-W' h"q'fr 1^$7t). rtFr**_tr,r; q;. i. t^.L. *. Lw+t)u. =. r+,1. €. t ). LtL'+ (rr^+))r +. t+-L. (, nd' t^' )i e ' 'l. I. _ rr_. v. +-tn a) (,t). r i u' ,pb r'1-; fT a' ' i'. \*Lyu. J. h' + Lu+ + rt r 7a. " qT L*,* d ' =. (v) f \er. ,. t4"+-fL. [*'; 'iiPrm A(k.tt yt) ) [t(',v V -). h,te G l{od I, <tt 4. , /\,1, +*. r -. +, I f "; 't. 1q+*u Z. 1* "+t' % = rq<)_ W1 4'ri; ,+g & f g '#f-)'-w -u)=^F+t)'ry -+). L4c*.. }( ry. cz). :U$ ='+4-q' €. m=4. atd.

<span class='text_page_counter'>(8)</span> t4 Lk_ Ll= lt L. #;! "!,,. I = =. 4. oLu=www.VNMATH.com r e-(( ,L+L). , \/= -J=&__ x_+L (+e)'. -_tc'aL 14rL Q-zriclL+ ln Jr, u+)-- lL' uHu _0 ; tLt lun. ' In -. b. Zl t1. .Q-. I. tD. 3. = a-. L+A :. +Qt. )-9. J. $. 4 olr** * Afu^g : q{ +b1 lr.^ N/-" ew A t^'4 + 9r' *$to*$ = (9,n A+e;ng ) ta'-& gal -9i,-U 9* A - q^ B! L e +. hreA "C4^. @- t-. lau'81 9",. i- l^^n = h*g L 9.u 4 -t9 --,. (-L). g). ry. I. __________J+ >o coa| . A,,. a-4 />. ryzD l-". i"). t*A 7. L *\cr* 2-. -"V It+ 4. 7L,. 1t^,. lr'- rI 3w'u. *'rl ;. a64Cul. tq -+(" l ,!,-* = L\4 A. =o. =4L2. I. 02lrf o>. 4^.

<span class='text_page_counter'>(9)</span> (hn. w www.VNMATH.com. t)rk -t, / TW. '?, e). (ry'\ t(ry)"=n. 94 Wl' (tro1 Fr!.d-y fr k =) \,. t+. l'-. t+f +4 ''o. L'd. =c \2ju). e. t '4- lVt). € (ry/^- L I. ). TX\D ;. 5 ).. ?L. =. 4.,&, Lr'. tt), Lf ,1 z,,t. q u',ffi ) v--- W. ('',Vzra). IP;i.&or4 iHrv,I ' lurL-tv'=brv-t_ ( *+ V = I * 1 u-v=u? lL. QX* W V .P"- {\, cui 'fr Y. $". l,a. J. /v +L f. @. 47ro. Uv2. Lt -, t,. /*"t. ,tv. ca). q4. f 'ab-. o. qu{. +12. 4 42. (w { +e43 _-, we Lt, kl f-L-. *n, y qbr. ry4. 6.

<span class='text_page_counter'>(10)</span> w. c6'N. *:;. uk. ro ct*. www.VNMATH.com Ac' + Ắú oQ =!dt+c'2. Jl' A(b-At t) l Jco vc) =- t dttult)Y gbtrl= V" ?ti A=? rt) t=4 ; 7 3 L u=-s/s --?) r-AIE,i) cr.,- AC' ud, u.o;. e A. /+(\ t 9,\a4.. d*e &t' t\.I *+z o. cft5r-a| e . (-f. (1,,t7. ,I). 7,. -. ,l. <"). t*, c) B. l). ". l,c- =. t =- 'l t '. h( Lr t-+)'' ;* 4, 'vca\cl oirYb''. Bc'=L. >"b. t *ho'. rytvt. (14; ) g* )a,'rr- tt -+ =u i'. ,d. 'a. n?:: f*: oo fr!rr, W'"f". 6 g" + lc 0c-. (,9)'r/6. Lt 1t- b). tt:;-l'^ri 8,Y. rct=rt. a. - k'--o. -. -6 z'a J'L =1t"clt^- 8-1V'c=4 LZ.Z u? e*4 C'-,. ar. ,^f. !. bv X* ir- [ ,!'rrtzo ,4 + )bzo. .- b= ++B(+,0/. (t+)t= L,a L t=L ] W-L/. ,!rY:j,. vrI. il^. = (0,. 9,1.

<span class='text_page_counter'>(11)</span> ('. C'& lv.. www.VNMATH.com. b A4T.l,4 nrutrN FcFo ryy' ? h.'.4,0;. U-z. l/o*r,. f. A. 1.,. t3. gr-{). I. 4-(nor='ulle^4 llrl 'lrl. l-'. :. W. W W=. '. ic'L *... ---'"-. ?o./,.1. Fl. Iro. -\. c*{. 1,,. r I. ). 7.

<span class='text_page_counter'>(12)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×