Tải bản đầy đủ (.docx) (14 trang)

DOI MOI PHUONG PHAP CONG TRU SO NGUYEN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (148.32 KB, 14 trang )

<span class='text_page_counter'>(1)</span>PHẦN I - ĐẶT VẤN ĐỀ I. Lí do chọn đề tài 1. Cơ sở lí luận - Số học là một môn khoa học có vai trò quan trọng trong việc rèn luyện tư duy sáng tạo cho học sinh. Số học giúp chúng ta có cái nhìn tổng quát hơn, suy luận chặt chẽ, logic hơn. Thế giới những con số cũng thật gần gũi nhưng cũng đầy những bí ẩn. - Ở trường THCS phân môn số học tuy chỉ được học ở lớp 6 nhưng nó xuyên suốt quá trình học toán ở các cấp. - Toán học ngày một phát triển không ngừng, trong đó phân môn số học được mệnh danh là “Bà chúa của toán học”, môn học mà chỉ được gọi tên chính thức ở lớp 6, nhưng kiến thức cơ bản của nó thì xuyên suốt quá trình học toán ở bậc phổ thông. - Đối với học sinh THCS, Số học là một mảng khó trong chương trình toán THCS. Phần lớn học sinh chưa có phương pháp giải bài tập. Nguyên nhân cơ bản của những khó khăn mà học sinh gặp phải khi giải bài tập số học chính là ở chỗ: lúc đầu giải bài tập mới - học sinh thấy có sự đứt quãng giữa cụ thể của những điều kiện bài toán và sự phụ thuộc toán học trừu tượng diễn ra trong những điều kiện đó hoặc học sinh chỉ thu nhận kiến thưứ về cách giải một bài tập cụ thể nào đó nhưng kỹ năng chung về việc giải toán khác thì yếu. Trong đó ý muốn cơ bản của việc dạy cách giải bài tập toán phải là dạy cho học sinh tự giải những bài tập tương đối mới, những bài học không chỉ đòi hỏi sự tìm tòi sáng tạo trong cách giải. - Việc học môn toán (với mức độ SGK) không đòi hỏi học sinh phải có trí thông minh đặc biệt nào. Tuy nhiên không thể suy rằng mọi học sinh đều học tập dễ dàng như nhau, có học sinh tiếpthu rất nhanh chóng và sâu sắc mà không cần sự cố gắng đặc biệt, trong khi đó một số em khác có cố gắng nhiều nhưng không đạt kết quả như vậy..

<span class='text_page_counter'>(2)</span> - Nhiệm vụ của giáo viên dạy toán là tìm hiểu, nghiên cứu những mặt mạnh và khắc phục những mặt yếu cho học sinh. Có như vậy mới giúp cho học sinh phát triển và làm cho học sinh nắm được bài cũng như có hứng thú hơn với môn học. 2. Cơ sở thực tiễn - Trong thực tiễn học toán hiện nay của học sinh, đa phần các em chưa nắm vững được các kiến thức cơ bản, trọng tâm của mỗi bài học cũng như phương pháp học tập để tiếp thu, nắm vững và làm chủ những kiến thức trọng tâm đó. - Chúng ta đều biết việc nắm vững và thực hiện tốt cộng, trừ các số nguyên là một việc hết sức quan trọng. Nó không chỉ đơn thuần chỉ là cộng và trừ giữa hai số nguyên với nhau mà nó còn liên quan đến nhiều kiến thức khác như: cộng từ phân số, hỗn số,… ở chương trình số học 6 mà còn cả ở các lớp cao hơn. Có thể nói việc nắm vững cách cộng, trừ số nguyên là vấn đề then chốt cho việc học toán sau này của học sinh. - Chính vì những lí do trên mà tôi mạnh dạn thực hiện áp dụng “Đổi mới phương pháp dạy học cộng, trừ số nguyên” cho học sinh lớp 6 nhằm giúp học sinh nắm vững hơn kiến thức để có thể học tốt hơn các phần sau này. II. Mục đích nghiên cứu - Nghiên cứu thực trạng việc dạy và học cộng, trừ số nguyên cho học sinh lớp 6. - Những đề xuất, giải pháp dạy học nhằm đạt hiệu quả tốt hơn khi dạy cộng, trừ số nguyên cho học sinh lớp 6 trường THCS Duy Minh. - Giúp học sinh có khả năng vận dụng cộng, trừ số nguyên đã học để vận dụng vào thực hiện tốt các kiến thức cơ bản lien quan sau này cũng như làm tốt các bài tập trong sách giáo khoa và sách nâng cao. III. Nhiệm vụ nghiên cứu - Nghiên cứu, xác định nội dung, phương pháp, mức độ yêu cầu của việc dạy cho học sinh lớp 6 cộng, trừ số nguyên..

<span class='text_page_counter'>(3)</span> - Nghiên cứu nhiều loại sách có lien quan đến đề tài để tìm cơ sở cho việc dạy cộng, trừ số nguyên. - Tìm hiểu qua dự giờ, nghiên cứu giáo án của giáo viên, kiểm tra đánh giá kết quả học tập của học sinh. - Dạy thử nghiệm, đối chứng, kiểm tra kết quả và rút ra kết luận, đề xuất phương pháp giảng dạy cộng, trừ số nguyên cho học sinh để đạt kết quả cao. IV. Đối tượng nghiên cứu. Nghiên cứu thực trạng dạy cộng, trừ số nguyênc ho học sinh lớp 6 trường THCS Duy Minh. V. Phạm vi nghiên cứu Việc dạy toán nói chung và việc dạy cộng, trừ số nguyên cho học sinh lớp 6 nói riêng là một vấn đề lớn nhưng với thời gian nghiên cứu thực nghiệm và năng lực bản than có hạn, vậy trong đề tài này tôi xin nghiên cứu về “Đổi mới phương pháp dạy học cộng, trừ số nguyên” cho học sinh lớp 6 trường THCS Duy Minh. VI. Phương pháp nghiên cứu. - Đọc sách, nghiên cứu các tài liệu có liên quan đến cộng, trừ số nguyên. - Điều tra thực nghiệm. - Dự giờ rút kinh nghiệm. - Khảo sát chất lượng học sinh. - Dạy thử nghiệm. - Khảo sát lớp thử nghiệm và lớp đối chứng..

<span class='text_page_counter'>(4)</span> PHẦN II - NỘI DUNG - Trong chương trình toán ở bậc tiểu học, học sinh chỉ được học cộng, trừ số tự nhiên. Trong đó phép cộng luôn thực hiện được và phép trừ thì không phải lúc nào cũng thực hiện được. - Việc thực hiện cộng, trừ số nguyên sẽ được quy về những dạng toán cơ bản nào mà học sinh đã biết và đã thực hiện thành thạo. - Vì vậy khi dạy cho học sinh lớp 6 cộng, trừ số nguyên, ta phải hướng dẫn học sinh biến đổi sao cho trở về dạng toán cộng, trừ số tự nhiên mà học sinh đã được học ở tiểu học. - Trước khi học cộng, trừ phân số cần có định hướng cho học sinh cần ôn tập nắm vững những đơn vị kiến thức cơ bản nào để vận dụng trong bài học mới. I. Các bài cộng, trừ số nguyên được dạy cho học sinh lớp 6. - Cộng hai số nguyên cùng dấu. - Cộng hai số nguyên khác dấu. - Tính chất của phép cộng các số nguyên - Phép trừ hai số nguyên. 1. Phép cộng và trừ số nguyên được dạy cho học sinh lớp 6. a) Cộng hai số nguyên cùng dấu. Đối với bài cộng hai số nguyên cùng dấu được chia ra làm hai phần. Trong đó: - Phần 1: Cộng hai số nguyên dương được xây dựng dựa trên phép cộng hai số tự nhiên. - Phần hai: Cộng hai số nguyên âm được xây dựng từ ví dụ thự tế và qua minh hoạ trục số, từ đó học sinh suy luận để ra quy tắc. b) Cộng hai số nguyên khác dấu. Đối với bài cộng hai số nguyên khác dấu thì quy tắc được xây dựng cũng dựa trên ví dụ thực tế và minh hoạ bằng trục số để tìm ra quy tắc. c) Tính chất cơ bản của phép cộng số nguyên.

<span class='text_page_counter'>(5)</span> Bài này xây dựng dựa trên các tính chất của phép cộng số tự nhiên đã được học ở tiểu học và bổ sung thêm tính chất cộng với số đối. d) Phép trừ hai số nguyên Quy tắc của bài này được xây dựng thông qua các ví dụ minh hoạ và bằng phương pháp quy nạp để đưa ra. 2. Phương pháp Tóm lại tất cả các loại bài trên đều được xây dựng dựa theo cách từ nghiên cứu ví dụ thực tế, hình ảnh minh hoạ và các hoạt động thảo luận nhóm rồi bằng phương pháp quy nạp để đưa ra kiến thức cơ bản của bài. Vấn đề đặt ra là khi xay dựng như vậy trong một tiết học sẽ mất một thời gian nhất định, thời gian dành cho việc vận dụng để thực hiện hay tìm ra đặc điểm chung cho mỗi dạng toán để có cách nhìn nhận và áp dụng thực hiện gặp khó khăn. II. Phương pháp. Đối với mỗi bài trên ta cần xậy dựng một cách sao cho dễ hiểu hơn đối với học sinh, nhất là đưa về dạng toán học sinh đã được học để học sinh có thể dễ dàng vận dụng và dễ nhớ. Đặc biệt là cần xây dựng sao cho học sinh có thể nắm vững được khi nào thì nên áp dụng kiến thức nào vào để thực hiện giải bài toán đó. Qua đó cho học sinh lấy ví dụ thực tế minh hoạ. Cụ thể đối với từng bài như sau: 1. Cộng hai số nguyên cùng dấu. - Phần 1: Cộng hai số nguyên dương + Trước tiên cần cho học sinh chỉ ra được hai số nguyên dương thực chất là loại số nào mà chúng ta đã được học. Từ đó cho học sinh nêu cách thực hiện + Ví dụ: +5 + (+ 3). Hai số + 5 và + 3 thực chất là hai số tự nhiên khác 0, cho nên ta có: + 5 + ( + 3) = 5 + 3 = 8 - Phần 2: Cộng hai số nguyên âm.

<span class='text_page_counter'>(6)</span> Ta cần cho học sinh nắm được để cộng hai số nguyên âm ta chưa biết cách thực hiện, vậy để thực hiện được ta sẽ cộng như thế nào. Dẫn dắt học sinh chỉ ra được công hai số tự nhiên. Vậy để từ cộng hai số nguyên âm thành cộng hai số tự nhiên thì ta làm như thế nào (hai số nguyên âm được viết thành hai số tự nhiên khi ta áp dụng kiến thức nào). Học sinh chỉ ra áp dụng kiến thức giá trị tuyệt đối. Vậy khi đó dấu trừ của số nguyên được sử lí ra sao. Qua đó cho học sinh chỉ ra được cộng hai số nguyên âm thực chất ta chỉ việc cộng hai số tự nhiên là hai số đối của hai số đó (giá trị tuyệt của hai số đó) và đặt dấu “-“ trước kết quả. Ví dụ: - 5 + (- 3) = - (5 + 3) = - 8 Trong bài này cũng cần phải lưu ý cho học sinh đối với số nguyên âm từ vị trí thứ hai trở đi bắt buộc phải đưcợ đặt trong cặp dấu (). 2. Cộng hai số nguyên khác dấu. Cần cho học sinh chỉ ra với hai số nguyên đối nhau có mấy trường hợp xảy ra? (Hai số nguyên đối nhau và hai số nguyên không đối nhau). Vậy khi thực hiện cộng hai số nguyên có cần chia ra thành hai trường hợp đó hay là để nguyên là một trường hợp cộng hai số nguyên khác dấu. Sau khi học sinh nắm được các yếu tố đó ta có thể giới thiệu luôn quy tắc, bởi vì việc xây dựng quy tắc theo phương pháp trong sách giáo khoa thì học sinh sẽ rất khó hiểu bởi vì nó rất trừu tượng mặc dù là qua ví dụ thực tế và minh hoạ bằng trục số hay câu lệnh ?. Chặng hạn lệnh ? 2/ 76 – SGK/ có yêu cầu học sinh tính và nhận xét kết quả: 3 + (- 6) và. |6|−|3| . Với. |6|−|3|. thì học sinh có thể dễ dàng tính. được dựa trên kiến thức giá trị tuyệt đối và trừ hai số nguyên. Nhưng đối với phép toán 3 + (- 6) thì rõ ràng học sinh sẽ rất khó thực hiện thông qua trục số mà đây lại là phép cộng hai số nguyên khác dấu. Vậy theo tôi ở đây ta nên đưa ra quy tắc ngay và yêu cầu học sinh cần chỉ ra và cần nắm vững các bước thực hiện như sau:.

<span class='text_page_counter'>(7)</span> * Hai số nguyên đối nhau có tổng bằng 0 Ví dụ: - 10 + 10 = 0 * Hai số không đối nhau thì thực hiện như sau: - Tính và so sánh giá trị tuyệt đối. - Lấy giá trị tuyệt đối lớn trừ đi giá trị tuyệt đối nhỏ. - Đặt trước kết quả tìm được dấu của số có giá trị tuyệt đối lớn hơn. Trong đó cần chú ý trong thực hành bước hai và bước ba được thực hiện gộp. Ví dụ: - 21 + 11 = - (21 - 11) = - 10 - 15 + 30 = 30 – 15 = 15 * Qua hai bài cộng trên học sinh cần nắm vững được là đối với cộng hai số nguyên cùng dấu thì luôn được thực hiện cộng hai số tự nhiên và dấu là dấu chung. Còn cộng hai số nguyên khác dấu luôn là trừ hai số tự nhiên (Giá trị tuyệt đối lớn trừ đi giá trị tuyệt đối nhỏ) và dấu của số có giá trị tuyệt đối lớn hơn. Học sinh có nắm vững được hai điều chú ý đó thì khi tiến hành cộng học sinh sẽ không nhầm lẫn giữa cộng cùng dấu và khác dấu (khi nào thì cộng và khi nào thì trừ) 3. Tính chất của phép cộng số nguyên Bài này tôi hoàn toàn đồng ý với cách xây dựng trong sách giáo khoa. Tuy nhiên vấn đề cơ bản là học sinh vận dụng như thế nào chứ không phải học sinh nắm được các tính chất, bởi vì các tính chất này cũng giống như tính chất của phép cộng số tự nhiên chỉ bổ sung thêm tính chất cộng với số đối mà cộng số tự nhiên không có. Vậy học sinh cần nhớ gì để khi vận dụng được dễ dàng. Ai cũng biết đó là khi thực hiện các phép toán ta nên áp dụng các tính chất một cách phù hợp để tính một cách hợp lí. Nhưng vấn đề đặt ra là thế nào là phù hợp và khi nào thì vận dụng tính chất nào cho hợp lí. Theo tôi cần cho học sinh nắm được là trong một dãy phép toán nếu chỉ có một phép toán là phép toán cộng thì ta nên nghĩ đến việc áp dụng tính chất kết hợp hoặc.

<span class='text_page_counter'>(8)</span> giao hoán. Nếu có hai số chỉ khác nhau về dấu ta áp dụng ngay tính chất cộng với số đối. Ví dụ: 12 + (- 50) + 38 Ở đây ta thấy ngay chỉ có một phép toán cộng nên ta nghĩ đến việc áp dụng tính chất giao hoán hoặc kết hợp hoặc cả hai 12 + (- 50) + 38 = (12 + 28) + (- 50) = 50 + (- 50) Đến đây hai số 50 và (- 50) là hai số chỉ khác nhau về dấu nên áp dụng tính chất cộng với số đối: 50 + (- 50) = 0 Việc này cần cho học sinh nắm vững và áp dung thường xuyên để tạo thành phản xạ có điều kiện để khi nhìn thấy dạng toán như vậy là học sinh có thể nghĩ ngay đến việc áp dụng những tính chất như thế nào cho phù hợp. 4. Phép trừ hai số nguyên Trong sách giáo khoa chỉ giới thiệu quy tắc đó là chuyển phép trừ thành phép cộng số bị trừ với số đối của số trừ. Tuy nhiên trong thực tế là bài nếu làm như vậy sẽ khó khăn hơn. Chẳng hạn: 30 – 15, trong trường hợp này nếu ta theo quy tắc sẽ được viết thành: 30 + (- 15) và áp dụng kiến thức cộng hai số nguyên khác dấu thì rõ ràng là sẽ theo kiểu mua thêm đường. Vậy ở đây ta có thể áp dụng luôn kiến thức ở tiểu học, đó là: 30 – 15 = 15. Từ đó ta có thể hướng dẫn cho học sinh thành các trường hợp phù hợp như: - Số nguyên dương trừ số nguyên dương: + Số bị trừ lớn hơn số trừ: Thực hiện như hai số tự nhiên. Ví dụ: 30 – 15 = 15 + Số trừ lớn hơn số bị trừ: kết quả mang dấu âm và lấy giá trị tuyệt đối lớn trừ giá trị tuyệt đối nhỏ. Ví dụ: 15 – 30 = - (30 - 15) = - 15 - Số nguyên âm trừ số nguyên âm: Chuyển thành cộng hai số nguyên khác dấu. Ví dụ: - 13 – (- 17) = - 13 + 17 = 4.

<span class='text_page_counter'>(9)</span> - Số nguyên dương trừ số nguyên âm: Chuyển thành cộng hai số nguyên dương. Ví dụ: 13 – (- 17) = 13 + 17 = 30 - Số nguyên âm trừ số nguyên dương: Chuyển thành cộng hai số nguyên âm. Ví dụ: - 12 – 18 = - 12 + (- 18) = - 30 III. Kết quả. Với những giải pháp nêu trên tôi đã tiến hành thử nghiệm như sau: Để tiến hành dạy thử nghiệm theo mục đích để ra tôi đã tiến hành soạn 2 giáo án theo phương pháp thông thường và phương pháp mới đối với các bài: Cộng hai số nguyên cùng dấu, cộng hai số nguyên khác dấu, tính chất cơ bản của phép cộng số nguyên và phép trừ hai phân số và tiến hành dạy trên 2 lớp 6B và 6C. Lớp 6B dạy theo phương pháp thông thường và lớp 6C dạy theo phương pháp mới (lớp 6B có 29 học sinh và lớp 6C có 30 học sinh). Học lực của hai lớp này cũng tương đương nhau – căn cứ vào kết quả khảo sát chất lượng đầu năm Sau khi dạy xong tôi đã cho hai lớp tiến hành làm bài kiểm tra 30 phút với đề bài như sau (các bài này được in thành phiếu đến tay học sinh). Thực hiện các phép tính sau: 1) – 58 + 50; 2) – 49 + (- 21); 3) – 64 + 0; 4) 47 + (- 40); 5) – 14 + 25; 6) - 20 + (- 19); 7) 5 – 19; 8) – 8 – 17; 9) 71 – (- 29); 10) 11 – (- 22);.

<span class='text_page_counter'>(10)</span> 11) 197 + (- 50) + 2008 + (- 147); 12) – 999 + (- 3000) + (- 1); 13) – 249 + 197 + 248 + (- 197); 14) – 1 + 2 – 3 + 4 – 5 + …+ 2006 – 2007 + 2008 15) 297 + (- 13) + (- 297) + 15; Biểu điểm và đáp án 1) – 58 + 50 = - (58 - 50) = - 8 2) – 49 + (- 21) = - (49 + 21) = - 70 3) – 64 + 0 = - 64 4) 47 + (- 40) = 47 – 40 = 7 5) – 14 + 25 = 25 – 14 = 11 6) - 20 + (- 19) = - (20 + 19) = - 39 7) 5 – 19 = - (19 - 5) = - 14 8) – 8 – 17= - (8 + 17) = - 25 9) 71 – (- 29) = 71 + 29 = 100 10) 11 – (- 22) = 11 + 22 = 33 11) 197 + (- 50) + 2008 + (- 147) = [197 - (50 + 147 )] + 2008 = 0 + 2008 = 2008 12) – 999 + (- 3000) + (- 1) = - (999 + 1) + (- 3000) = - 1000 + (- 3000) = - 4000 13) – 249 + 197 + 248 + (- 197); = (197 - 197) + (- 249 + 248) = 0 + (- 1) = - 1 14) – 1 + 2 – 3 + 4 – 5 + …+ 2006 – 2007 + 2008 = (- 1 + 2) + (- 3 + 4) + …+ (- 2007 + 2008) = 1004 15) 297 + (- 13) + (- 297) + 15 = (297 - 297) + (15 - 13) = 0 + 2 = 2. 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 0, 5 điểm 1 điểm 1 điểm 1 điểm 1 điểm 1 điểm. Sau khi chấm bài của hai lớp kết quả cụ thể như sau: Điểm 9 - 10 Điểm 7 - 8 Điểm 5 - 6 Điểm dưới 5 SL % SL % SL % SL % 6B 29 2 6, 9 6 20, 7 11 37, 9 10 34, 5 6C 30 4 13, 3 7 23, 3 13 43, 3 6 20, 0 So sánh kết quả bài làm của học sinh hai lớp ta thấy: Hiệu quả giữa hai phương. Lớp. Sĩ số. pháp (phương pháp thông thường và phương pháp mới) về “Dạy cộng và trừ số.

<span class='text_page_counter'>(11)</span> nguyên” đã có hiệu quả rõ rệt của phương pháp mới - chất lượng làm bài của lớp 6C (lớp thử nghiệm) cao hơn hẳn chất lượng bài làm của lớp 6B (lớp đối chứng) Với phương pháp dạy học mới rõ ràng học sinh nắm vững kiến thức và có tư duy chặt chẽ hơn.. PHẦN III - KẾT LUẬN I. Kết luận Toán về “Cộng và trừ số nguyên ở lớp 6” đóng vai trò quan trọng trong quá trình nhận thức và phát triển khả năng tư duy – suy luận – sáng tạo của học sinh, nó là tiền đề vững chắc cho học sinh học tập lên các lớp sau này. Kiến thức về “Cộng và trừ số nguyên” không khó với học sinh đại trà, song việc hướng dẫn học sinh hình thành kiến thức cần theo một trình tự chặt chẽ, logic để các em tự phát hiện ra được quy tắc một cách hợp lí và tự nhiên, từ đó giúp các em có thể nắm chắc và khắc sâu kiến thức hơn..

<span class='text_page_counter'>(12)</span> Trong quá trình dạy học giáo viên phối hợp nhiều phương pháp để học sinh nắm vững kiến thức, hiểu rõ trọng tâm của bài với quan điểm “Lấy học sinh làm trung tâm trong quá trình dạy học”. Trong đó giáo viên là người tổ chức, hướng dẫn, định hướng các hoạt động. Học sinh tự động vón kiến thức và kinh ngiiệm của bản than để tự chiếm lĩnh tri thức mới, vạn dụng các tri thức mới đó vào thực hành. Giáo viên cần chú ý rèn luyện cho học sinh việc giải toán có vận dụng quy tắc “Cộng và trừ số nguyên” ở các buổi phụ đạo bồi dưỡng ngoài giờ để các em có khả năng thực hành vận dụng giải các bài tập nâng cao, gây sự hứng thú cho các em học tập. II. Ý kiến đề xuất Qua quá trình nghiên cứu, tìm hiểu và dạy thử nghiệm “Cộng, trừ số nguyên cho học sinh lớp 6”. Để giúp các em học sinh nắm vững kiến thức, vận dụng linh hoạt sáng tạo khi làm bài tập. Tôi mạnh dạn đưa ra một vài đề xuất sau: 1. Đối với nhà trường - Thường xuyên tổ chức các buổi sinh hoạt chuyên đề để bồi dưỡng nâng cao trình độ của giáo viên. - Tạo điều kiện thuân lợi về cơ sở vật chất, phương tiện dạy học để góp phần nâng cao chất lượng giảng dạy. Tạo điều kiện để giáo viên có điều kiện phát huy tốt các khả năng chuyên môn của bản thân trong quá trình dạy học. 2. Đối với giáo viên. - Không ngừng học hỏi để nâng cao trình độ của bản thân. - Tự soạn bài, chuẩn bị kỹ nội dung câu hỏi trong phiếu giao việc cũng như hệ thống câu hỏi phát vấn của mỗi tiết học sao cho logic và phù hợp theo đúng trình tự của bài. - Bản thân phải thật sự nhiệt tình với công tác giảng dạy..

<span class='text_page_counter'>(13)</span> 3. Về phương pháp Để việc dạy và học “Cộng, trừ số nguyên cho học sinh lớp 6” đạt hiệu quả cao thì mỗi giáo viên phải biết vận dụng phối hợp linh hoạt các phương pháp dạy học sau: - Phương pháp hoạt động cá nhân: Sử dụng phiếu giao việcphát cho từng học sinh. - Phương pháp đàm thoại, vấn đáp: Để dẫn dắt học sinh tìm hiểu kiến thức. - Phương pháp giảng giải: Giúp học sinh nhận thức, ghi nhớ nội dung của bài. - Phương pháp luyện tập: Giúp học sinh vận dụng các kiến thức đã học để làm bài tập. Nghiên cứu đề tài “Đổi mới phương pháp dạy học cộng, trừ số nguyên cho học sinh lớp 6” không chỉ giúp cho học sinh yêu thích học bộ môn toán mà còn là cơ sở giúp cho bản thân có thêm kinh nghiệm trong giảng dạy. Mặc dù rất cố gắng khi thực hiện đề tài, song không thể tránh khỏi thiếu sót về mặt cấu trúc, ngôn ngữ và kiến thức khoa học. Vì vậy tôi mong sự quan tâm của các đồng chí, đồng nghiệp góp ý kiến chân thành để đề tài này hoàn thiện hơn. Tôi xin chân thành cảm ơn./. Duy minh, ngày 12 tháng 4 năm 2012 Người thực hiện. Lê Bảo Trung.

<span class='text_page_counter'>(14)</span>

<span class='text_page_counter'>(15)</span>

×