Tải bản đầy đủ (.ppt) (21 trang)

Math Reviews

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (445.08 KB, 21 trang )

<span class='text_page_counter'>(1)</span>Mathematics for Economists. 1.

<span class='text_page_counter'>(2)</span> 2.1 Endogenous & Exogenous Variables; constants, parameters .   TR – TC (identity) Qd = Qs (equilibrium condition) Y = a + bX0 (behavioral equation) Y: endogenous variable X0: exogenous variable a: constant b: parameter and the coefficient of exogenous variable X0 2.

<span class='text_page_counter'>(3)</span> 2.4 Functions and Relations. Function:. a set or ordered pairs with the property that for (x, y) any x value uniquely determines a single y value, e.g., curves  or , e.g., mpp or cost curves Relation: ordered pairs with the property that for (x, y) any x value determines more than one value of y e.g., curves  or ,. 3.

<span class='text_page_counter'>(4)</span> 2.4 General Functions Y. = f (X) Y is value or dependent variable (w/ range, vertical axis) f is the function or a rule for mapping X into a unique Y X is argument or the independent variable (w/ domain, horizontal axis) 4.

<span class='text_page_counter'>(5)</span> 2.5 Specific Functions Algebraic. Y Y Y Y Y Y. = = = = = =. functions. a0 (constant: fixed costs) a0+ a1 X (linear: S&D) a0 + a1X + a2X2 (quadratic: prod.) a0 + a1X + a2X2 + a3X3 (cubic: t. cost) a/X (hyperbolic: indiff.) aXb (power: prod. fn). Transcendental. functions (Ch. 10). Y = aX (exponential: interest) lnY = ln(a) + b ln(X) (logarithmic: easier) (Chiang & Wainwright, p. 22, Fig. 2.8) 5.

<span class='text_page_counter'>(6)</span> 2.5 Digression on exponents. Rules for exponents  Xn = (X*X*X*...*X) n times Rule. I:. Xm * Xnm= Xm+n X.  X m n. Rule. II:. Rule Rule. III: X = IV: X0 = 1. Rule Rule Rule. V: X1/n =nx VI: (Xm)n = Xmn VII:Xm * Ym = (XY)m. Xn -n. 1 Xn. 6.

<span class='text_page_counter'>(7)</span> 2.7 Levels of generality Specific. function 1: specific form and specific parameters  Y = 10 - .5X. Specific. function 2: specific form and general parameters  Y = a – bX. General. function: general form and no parameters  Y = f(X)  f maps X into a unique value of Y 7.

<span class='text_page_counter'>(8)</span> 3.1 Find the equilibrium price (P*) and quantity (Q*)  Given.  Qd. quantity demanded.  Qs quantity supplied P price, where P* is the equilibrium price  Assume  Qd = Qs=Q*  Qd a decreasing linear function of P  Qs an increasing linear function of P  P* > 0  One equilibrium and two behavioral equations 8.

<span class='text_page_counter'>(9)</span> 3.1 The meaning of equilibrium Qd a. Qs = - c + dP (supply). Qd Qs Q *. P ,Q  *. *. Qd a  bP P. O. -c. (demand). P*. ceterus paribus.  Equilibrium:. a set of selected interrelated variables, e.g. P, Q, within the model adjusted to a state such that there no inherent tendency to change.. 9.

<span class='text_page_counter'>(10)</span> 3.1 Ingredients of a mathematical model A. mathematical economic model will consist of: ◦ ◦. Variables, Parameters,. Example:. Constants Equations and Identities. Supply-demand model. Qd = a - bP demand equation Qs = -c + dP supply equation Qd = Qs= Q* equilibrium condition. 10.

<span class='text_page_counter'>(11)</span> 3.2 Solving a linear market model Partial. equilibrium model of supply & demand 1) Qd = Qs=Q* equilibrium condition 2) a – bP = -c + dP 3) (a + c) – (b+d)P* = 0 where P=P* when Q=0 4) (a + c) – (b+d)P = Q more general form linear formulae 5) P* = (a+c)/(b+d) 6) Q* = (ad-bc)/(b+d) 11.

<span class='text_page_counter'>(12)</span> 3.2 Solving a Linear Market Model Partial. equilibrium model of supply & demand Qd = Qs =Q* equilibrium condition Qd = 21 - 2P ; a=21, b=2 Qs = -4+ 8P ; c=4, d=8. linear formula P* = (a+c)/(b+d) = (21+4)/(2+8)=25/10=2.5 Q* = (ad-bc)/(b+d) = (21)(8)-(2)(4)/10 = 160/10 = 16 12.

<span class='text_page_counter'>(13)</span> Root of a Linear Market Model Let a 21, b 2, c 4, d 8 Qd a  bP (blue) Qs  c  dP (black) Qd Qs Q * a  bP  c  dP (a  c)  (b  d ) P * 0 (a  c)  (b  d ) P Q. (root) (function, red) 13.

<span class='text_page_counter'>(14)</span> 3.3a Quadratic Market Model 1) Qd = 4 – P2 demand equation 2) Qs = -1 + 4P supply equation 3) Qd = Qs = Q* equilibrium equation 4) 4 - P2 = -1 + 4P 5) P*2 + 4P* -5 = 0 root 6) P2 + 4P -5 = Q function  How. do you solve for P*? ◦ Graphically? ◦ Factor? ◦ Quadratic formula? 14.

<span class='text_page_counter'>(15)</span> 3.3 eq.(3.6) Roots of a quadratic model. Qd 4  P 2 (black) Qs  1  4 P (blue) Qd Qs Q * 4  P 2  1  4 P. P 2  4 P  5 Q (red) P *2  4 P *  5 0. P. *. . .  5 P *  1 0. P *   5,. 1. Q *   21,. 3 15.

<span class='text_page_counter'>(16)</span> 3.3b Deriving the Quadric formula  Take. ax2 + bx + c = 0, solve for x in terms a, b, c  x2 + bx/a + c/a = 0  x2 + bx/a + b2/4a2 = b2/4a2 - c/a  (x + b/2a)2 = (b2-4ac)/4a2  x + b/2a = (b2-4ac)½/2a  x = (-b (b2-4ac)½)/2a quadratic formula  Solve the system of eq. for P and set P = 0 by moving all terms to one side, then apply quadratic formula.. 16.

<span class='text_page_counter'>(17)</span> 3.3b Solving a Quadratic Market Model Using the Quadratic Formula ax2. + bx + c = 0  P*2 + 4P* -5 = 0. . 2.  b  b  4ac P  2a *. . 1. 2.  4 16  (4)(1)( 5)   2 1. 4 16  20 P  2 *. 1/ 2. 1. 2. 4 6  1, 5 2. 17.

<span class='text_page_counter'>(18)</span> Cubic formula: take ax3+bx2 +cx+d= 0 solve for x in terms of a, b, c, d 18.

<span class='text_page_counter'>(19)</span> Finding the roots of a cubic function Find the rational roots of the following cubic equation 3 3 1 x 3  x 2  x  0 4 8 8 8 x 3  6 x 2  3 x  1 0 x c (1,1 8,1 4 ,1 2) let c  1 8. 6 3 1 8 2 1 1 8  2 1 0 8 x 2  2 x  1 0 2 4 8 2 4 2. ( 8). 8 x 2  4 x  2 x  1 0 4 x 2 x  1  1 2 x  1 0  4 x  1 2 x  1 0  x  1 4 x  1 2 x  1 0 x   1,  1 4,1 2 19.

<span class='text_page_counter'>(20)</span> 3.4 Two-commodity market model Qd 1  Qs1 0 Q d 2  Q s 2 0 Qd 1 a 0  a1 P1  a 2 P2 Qs1 b0  b1 P1  b2 P2 Qd 2  0   1 P1   2 P2 Qs 2   0  1 P1   2 P2. 20.

<span class='text_page_counter'>(21)</span> Summary Elimination. of variable method is ok for v. simple models only, e.g., three linear or two linear and one quadratic equation models Complexity increases geometrically w/ increase in # equations, e.g., six eq. Linear model Need a better way to handle the nequation linear models -> matrix algebra! 21.

<span class='text_page_counter'>(22)</span>

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×