Tải bản đầy đủ (.pdf) (1 trang)

De thi Hoc sinh gioi Phu Tho nam 2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (58.97 KB, 1 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>SỞ GIÁO DỤC VÀ ðÀO TẠO </b>
<b>PHÚ THỌ</b>


<b>KỲ THI CHỌN HỌC SINH GIỎI LỚP 12 THPT CẤP TỈNH </b>
<b>Năm học 2010-2011</b>


<b> Mơn Tốn </b>


Thời gian làm bài: 180 phút, không kể thời gian giao ñề
<i> ðề thi có 01 trang </i>


---


<b>Câu 1 (4 </b>ñiểm)


Giải phương trình:


2 2


2 2sin 2 .


tan<i>x</i> cot 2<i>x</i> <i>x</i>


+ <sub>=</sub> <sub>+</sub>


+


<b>Câu 2 (4 </b>ñiểm)


Giải hệ phương trình:



2 2


2


1 4


( , ).
2


1


<i>x</i> <i>y</i> <i>xy</i> <i>y</i>


<i>x y</i> <i>R</i>


<i>y</i>


<i>x</i> <i>y</i>


<i>x</i>


 <sub>+ +</sub> <sub>+</sub> <sub>=</sub>







+ − =



+


<b>Câu 3 (3 </b>điểm)


Tìm tất cả các nghiệm nguyên dương của phương trình:


+ + = +


<i>x</i> <i>y</i> <i>xy</i> <i>x</i>2 <i>y</i>2


2( ) .


<b>Câu 4 (2 </b>ñiểm)


Cho dãy số (<i>v<sub>n</sub></i>) với <i>v<sub>n</sub></i> =<i>nn</i>+1−

(

<i>n</i>+1

)

<i>n</i>, <i>n</i>≥3.
a) Chứng minh (<i>v<sub>n</sub></i>) là dãy tăng với mọi <i>n</i>≥3.


b) Tìm α lớn nhất sao cho <i>nn</i>+1≥

(

<i>n</i>+1

)

<i>n</i> +

α

, ∀ ∈<i>n</i> <i>N</i>, <i>n</i>≥3.


<b>Câu 5 (5 </b>ñiểm)


Cho tam giác <i>ABC</i> thỏa mãn <i>a</i>2 =4 cot<i>S</i> <i>A</i>, trong đó <i>BC</i>= <i>a</i> và S là diện tích
tam giác <i>ABC</i>. Gọi <i>O</i> và <i>G</i> lần lượt là tâm đường trịn ngoại tiếp và trọng tâm của tam
giác <i>ABC</i>. Chứng minh hai đường thẳng <i>AG</i> và <i>OG</i> vng góc với nhau.


<b>Câu 6 (2 </b>ñiểm)


ðiền 896 số 1 và -1 vào bảng ơ vng kích thước 14 x 64 (14 hàng và 64 cột).


Biết rằng với hai cột bất kỳ, số lần xuất hiện hai số cùng dấu ở trên cùng một hàng
không vượt quá 7. Chứng minh rằng số số 1 trong 896 số ñã cho không lớn hơn 511.


--- Hết ---
Họ và tên thí sinh: ... SBD: ...
<i><b>Ghi chú: Cán bộ coi thi khơng giải thích gì thêm. </b></i>


</div>

<!--links-->

×