Tải bản đầy đủ (.pdf) (1 trang)

DE THI TOAN TS 20112012

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (122.82 KB, 1 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>SỞ GD&ĐT TRÀ VINH </b>
<b> ********** </b>


<b>ĐỀ CHÍNH THỨC </b>


<b>KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN </b>
<b> NĂM HỌC 2011-2012 </b>


<b>MƠN THI : TỐN ( TOÁN CHUNG ) </b>
Thời gian làm bài<i><b> : 120 phút ( Không k</b>ể thời gian giao đề )</i>
<b>Câu 1</b> .(2.5 điểm )


Cho biểu thức


2


2


2

2

8

4

14



.



2

2

4



<i>x</i>

<i>x</i>

<i>x</i>

<i>x</i>

<i>x</i>



<i>P</i>



<i>x</i>

<i>x</i>

<i>x</i>

<i>x</i>



<sub></sub>

<sub></sub>

<sub></sub>

<sub></sub>

<sub></sub>

<sub></sub>

<sub></sub>




<sub></sub>

<sub> </sub>

<sub></sub>







1) Rút gọn biểu thức P.


2) Với giá trị nào của x thì biểu thức P có giá trị ngun . Tính các giá trị ngun đó .





<b>Câu 2</b> .(2.0 điểm )


Cho Parabol ( P ) 1 2
2


<i>y</i>  <i>x</i> và đường thẳng ( d ) y = mx – m + 2 ,(với m là tham số )


1) Tìm m để ( d ) cắt ( P ) tại điểm có hồnh độ bằng 4 .


2) Chứng minh rằng với mọi giá trị của m , ( d ) luôn cắt ( P ) tại hai điểm phân biệt.


<b>Câu 3</b> .(2.0 điểm )


1) Giải hệ phương trình :



2 2


3 3


1



3

3



<i>x</i>

<i>y</i>

<i>x y</i>



<i>x</i>

<i>y</i>

<i>x</i>

<i>y</i>












2) Giải phương trình :


1

1



2



2

4



<i>x</i>

<i>x</i>

 

<i>x</i>




<b>Câu 4</b> .(3.5 điểm )


Cho hình bình hành ABCD có đỉnh D nằm trên đường trịn đường kính AB . Hạ BN


và DM cùng vng góc với đường chéo AC . Chứng minh rằng :


a) Tứ giác CBMD nội tiếp trong đường tròn .


b) Khi D di động trên đường trịn đường kính AB thì số đo của : <i>BMD</i> <i>BCD</i>


không đổi .


c) Chứng minh rằng : DB.DC = DN . AC


</div>

<!--links-->

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×