Tải bản đầy đủ (.pdf) (97 trang)

Nghiên cứu tổng hợp các chấm lượng tử bằng phương pháp keo ướt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.6 MB, 97 trang )

.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

BỘ Y TẾ

ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH
-----------------

HỒNG THÚY BÌNH

NGHIÊN CỨU TỔNG HỢP CÁC CHẤM LƯỢNG TỬ
BẰNG PHƯƠNG PHÁP KEO ƯỚT

LUẬN VĂN THẠC SĨ DƯỢC HỌC

Thành phố Hồ Chí Minh – Năm 2020

Ghi ro nguon tai lieu nay khi trich dan.


.

BỘ GIÁO DỤC VÀ ĐÀO TẠO

BỘ Y TẾ

ĐẠI HỌC Y DƯỢC THÀNH PHỐ HỒ CHÍ MINH
-----------------

HỒNG THÚY BÌNH



NGHIÊN CỨU TỔNG HỢP CÁC CHẤM LƯỢNG TỬ
BẰNG PHƯƠNG PHÁP KEO ƯỚT

Chuyên ngành: Công nghệ Dược phẩm và Bào chế thuốc
Mã số: 8720202

LUẬN VĂN THẠC SĨ DƯỢC HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. TRẦN LÊ TUYẾT CHÂU

Thành phố Hồ Chí Minh – Năm 2020

Ghi ro nguon tai lieu nay khi trich dan.


.

i

LỜI CAM ĐOAN
Tơi cam đoan đây là cơng trình nghiên cứu của tôi.
Các số liệu, kết quả nêu trong luận văn là trung thực và
chưa được ai công bố trong bất cứ cơng trình nào khác.
Tác giả

Hồng Thúy Bình

Ghi ro nguon tai lieu nay khi trich dan.



.

ii

Luận văn Thạc sĩ – Khóa: 2018 – 2020
Chuyên ngành: Công Nghệ Dược Phẩm và Bào Chế Thuốc Mã số: 8720202
NGHIÊN CỨU TỔNG HỢP CÁC CHẤM LƯỢNG TỬ
BẰNG PHƯƠNG PHÁP KEO ƯỚT
Hồng Thúy Bình
Người hướng dẫn: TS. Trần Lê Tuyết Châu
Đặt vấn đề
Chấm lượng tử (Quantum dots - QDs) là các tiểu phân nano bán dẫn được giới hạn
trong không gian ba chiều, thường có đường kính từ 2–10 nm [7] và kích thước vật
lý nhỏ hơn bán kính Bohr của exciton [15]. QDs có đặc tính điện tử và quang học độc
đáo chẳng hạn như hấp thu trong vùng bước sóng rộng, phát xạ quang mạnh và phụ
thuộc vào kích thước, hiệu suất lượng tử (Quantum yield-QY) cao với độ ổn định
quang học cao. Ngồi ra, QDs cịn có tính chất bề mặt phong phú, có khả năng được
chun biệt hóa với các phối tử chức năng hướng mục tiêu. Chính vì vậy, QDs ln
thu hút sự quan tâm của các nhà nghiên cứu thuộc lĩnh vực y sinh.
Đối tượng và phương pháp nghiên cứu
Lõi QDs-CdSe và QDs-CdSe/ZnS cấu trúc lõi-vỏ được tổng hợp bằng phương pháp
keo ướt. Khảo sát các yếu tố công thức gồm pH môi trường phản ứng, tỉ lệ mol
MSA/Cd2+ và tỉ lệ mol SeSO32-/Cd2+ sau đó tối ưu hóa cơng thức tổng hợp lõi QDsCdSe bằng thực nghiệm với sự hỗ trợ của phần mềm Design-Expert phiên bản 12.0.
Tiếp tục tổng hợp QDs-CdSe/ZnS cấu trúc lõi-vỏ, giai đoạn này khảo sát tỉ lệ mol
Zn2+/Cd2+ và tỉ lệ mol S2-/Zn2+. Đánh giá một số tính chất hóa lý và quang học của lõi
QDs-CdSe và QDs-CdSe/ZnS đã tổng hợp. Thử độc tính tế bào của QDs cấu trúc lõi
và lõi-vỏ.
Kết quả nghiên cứu
Quy trình tổng hợp lõi QDs-CdSe bằng phương pháp keo ướt đã được xây dựng trong

điều kiện nhiệt độ 30 ± 1 oC và khơng sử dụng khí trơ. Các yếu tố cơng thức đã được
khảo sát và thu được công thức tối ưu gồm: pH môi trường phản ứng = 10,44; tỉ lệ

Ghi ro nguon tai lieu nay khi trich dan.


.

iii

mol MSA/Cd2+ = 1,22 tỉ lệ mol SeSO32-/Cd2+ = 0,44. Lõi QDs-CdSe phát huỳnh
quang tại bước sóng 505,4 ± 0,46 nm và QY đạt 62,86 ± 0,94%.
QDs-CdSe/ZnS được tổng hợp có cấu trúc lõi-vỏ với các điều kiện được xác định là
tỉ lệ mol Zn2+/Cd2+ = 0,20 và tỉ lệ mol S2-/Zn2+ = 0,25. QDs-CdSe/ZnS phát huỳnh
quang ở bước sóng 512,3 ± 0,83 nm và QY đạt 62,81 ± 1,23%.
Độc tính trên tế bào do sự rị rỉ ion Cd2 của chấm lượng tử cấu trúc lõi-vỏ (QDsCdSe/ZnS) giảm đáng kể so với cấu trúc lõi đơn thuần. Ở nồng độ dưới 50 µg/ml,
QDs-CdSe/ZnS khơng thể hiện độc tính cấp trên tế bào.
Kết luận
Đề tài đã tối ưu hóa phần lõi QDs-CdSe và tổng hợp được QDs-CdSe/ZnS cấu trúc
lõi-vỏ bằng phương pháp keo ướt. QDs tạo thành có bề mặt thân nước, QY cao
(khoảng 62%) và có tiềm năng tiếp tục phát triển cho các ứng dụng y sinh.

Ghi ro nguon tai lieu nay khi trich dan.


.

iv

Master’s thesis – Academic course: 2018 – 2020

Speciality: Pharmaceutical technology and Pharmaceutics Speciality code: 8720202
PREPARATION OF QUANTUM DOTS
BY AQUEOUS COLLOIDAL SYNTHESIS METHOD
Thuy Binh Hoang
Supervisor: Le Tuyet Chau Tran, Ph.D

Introduction
Quantum dots (QDs) are semiconductor nanoparticles that are restricted in threedimensional space, typically with a diameter of 2–10 nm [7]. They are defined as
particles with physical dimensions smaller than the exciton Bohr radius [15]. QDs
have unique electronic and optical properties such as broad absorption spectra, sizetunable emission, high quantum yield (QY) and high photostability. In addition, QDs,
which contains diverse surface properties can be functionalized by connecting with
targeting biomolecules. Therefore, QDs have attracted great interest of biomedical
researchers in the recent years.
Materials and method
QDs-CdSe (core) and QDs-CdSe/ZnS (core-shell) were synthesized by aqueous
colloidal systhesis method. Factors including environmental pH, molar ratio of
MSA/Cd2+ and molar ratio of SeSO32-/Cd2+ were investigated and then were
optimized using Design–Expert software version 12.0. Next, CdSe/ZnS core-shell
QDs were synthesized. The molar ratio of Zn2+/Cd2+ and the molar ratio of S2-/Zn2+
were investigated in this stage. Then, some physical and optical properties of QDsCdSe and QDs-CdSe/ZnS were characterized. Finally, the cytotoxicity of coretype QDs and core-shell-type QDs were tested.
Results
The synthesis process of QDs-CdSe by aqueous colloidal systhesis method was
established at 30 ± 1 oC and in ambient air. Factors including environmental pH, molar
ratio of MSA/Cd2+ and SeSO32-/Cd2+ were optimized using Design–Expert software.

Ghi ro nguon tai lieu nay khi trich dan.


.


v

QDs-CdSe, which were synthesized with optimal conditions (pH = 10.44; MSA/Cd2+
molar ratio = 1.22 and SeSO32-/Cd2+ molar ratio = 0.44), exhibit a
photoluminescence emission peak at 505.4 ± 0.46 nm and QY up to 62.86 ± 0.94%.
QDs-CdSe/ZnS synthesized with the conditions determined (molar ratio of Zn2+/Cd2+
= 0.20; molar ratio of S2-/Zn2+ = 0.25) exhibit a photoluminescence emission peak at
512.3 ± 0.83 nm and QY about 62.81 ± 1.23%.
The result of cytotoxic test shows that, core-shell-type QDs (CdSe/ZnS) has
significantly reduced cytotoxicity due to the leakage of ion Cd2+ compared to coretype QDs.
Conclusion
The synthesis process of QDs-CdSe (core-type) using aqueous colloidal method were
optimized. QDs-CdSe/ZnS (core-shell-type) were successfully synthesized by the
same method. QDs are readily dispersed in water with high QY (up to 62%). These
particles have the potential for further investigation in biomedical applications.

Ghi ro nguon tai lieu nay khi trich dan.


.

vi

MỤC LỤC
DANH MỤC CÁC TỪ VIẾT TẮT................................................................................ ix
DANH MỤC CÁC HÌNH .............................................................................................. xi
DANH MỤC CÁC BẢNG ........................................................................................... xiii
MỞ ĐẦU ......................................................................................................................... 1
CHƯƠNG 1. TỔNG QUAN TÀI LIỆU ...................................................................... 3
1.1. CHẤM LƯỢNG TỬ (QUANTUM DOTS, QDs) ......................................... 3

1.1.1. Lịch sử khám phá và khái niệm về QDs........................................................ 3
1.1.2. Đặc điểm của QDs........................................................................................ 3
1.1.2.1. Đặc điểm về cấu trúc ...................................................................................... 3
1.1.2.2. Đặc điểm quang học của QDs ........................................................................ 4
1.2. MỘT SỐ PHƯƠNG PHÁP TỔNG HỢP QDs .............................................. 7
1.2.1. Phương pháp Organometallic Colloidal Synthesis (OCS) ............................. 7
1.2.2. Phương pháp keo ướt (Aqueous Colloidal Synthesis, ACS) .......................... 8
1.3. ỨNG DỤNG CỦA QDs TRONG LĨNH VỰC Y – SINH ........................... 11
1.3.1. Ứng dụng của QDs trong đánh dấu sinh học, hình ảnh quang học .............. 11
1.3.2. Ứng dụng trong cảm biến phát hiện các phân tử sinh học liên quan đến một số
bệnh lý ................................................................................................................. 13
1.3.3. Ứng dụng của QDs trong theo dõi hệ thống phân phối thuốc hướng mục tiêu . 14
1.4. TÌNH HÌNH NGHIÊN CỨU VỀ QDs TRONG VÀ NGỒI NƯỚC .......... 17
1.4.1. Tình hình nghiên cứu trên thế giới .............................................................. 17
1.4.2. Tình hình nghiên cứu trong nước ................................................................ 18
CHƯƠNG 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU ...................... 21

Ghi ro nguon tai lieu nay khi trich dan.


.

vii

2.1. ĐỐI TƯỢNG NGHIÊN CỨU ..................................................................... 21
2.1.1. Hóa chất ..................................................................................................... 21
2.1.2. Máy móc – trang thiết bị............................................................................. 22
2.2. PHƯƠNG PHÁP NGHIÊN CỨU ............................................................... 23
2.2.1. Tổng hợp phần lõi (core) của QDs-CdSe .................................................... 23
2.2.1.1. Khảo sát quy trình tổng hợp phần lõi của QDs-CdSe bằng phương pháp keo

ướt (Aqueous Colloidal Synthesis) ............................................................................ 23
2.2.1.2. Khảo sát ảnh hưởng của các yếu tố công thức đến QY của lõi QDs-CdSe .... 25
2.2.1.3. Tối ưu hóa các yếu tố cơng thức tổng hợp lõi QDs-CdSe ............................ 26
2.2.2. Tổng hợp QDs-CdSe/ZnS có cấu trúc lõi-vỏ (core-shell) ............................ 27
2.2.2.1. Khảo sát tỉ lệ mol Zn2+/Cd2+ trong công thức tổng hợp QDs-CdSe/ZnS ..... 28
2.2.2.2. Khảo sát tỉ lệ mol S2-/Zn2+ trong công thức tổng hợp QDs-CdSe/ZnS ........ 29
2.2.3. Phân tích một số tính chất của QDs-CdSe và QDs-CdSe/ZnS ..................... 29
2.2.3.1. Phân tích hình thái và kích thước của QDs-CdSe và QDs-CdSe/ZnS ......... 29
2.2.3.2. Phân tích tính chất quang học QDs-CdSe và QDs-CdSe/ZnS ..................... 30
2.2.3.3. Phương pháp xác định cấu trúc tinh thể của QDs-CdSe và QDs-CdSe/ZnS.. 32
2.2.3.4. Xác định nhóm chức bề mặt của QDs-CdSe và QDs-CdSe/ZnS ................. 32
2.2.4. Thử độc tính tế bào của QDs-CdSe và QDs-CdSe/ZnS ............................... 33
CHƯƠNG 3. KẾT QUẢ NGHIÊN CỨU .................................................................. 35
3.1. KẾT QUẢ TỔNG HỢP PHẦN LÕI QDs-CdSe ......................................... 35
3.1.1. Kết quả khảo sát quy trình tổng hợp phần lõi QDs-CdSe bằng phương pháp
keo ướt ................................................................................................................. 35
3.1.2. Kết quả khảo sát ảnh hưởng của các yếu tố công thức đến QY của lõi QDs-CdSe 37
3.1.2.1. Sự ảnh hưởng của pH môi trường phản ứng đến QY của lõi QDs-CdSe .... 38

Ghi ro nguon tai lieu nay khi trich dan.


.

viii

3.1.2.2. Sự ảnh hưởng của tỉ lệ mol MSA/Cd2+ đến QY của lõi QDs-CdSe ............... 41
3.1.2.3. Sự ảnh hưởng của tỉ lệ mol SeSO32-/Cd2+ đến QY của lõi QDs-CdSe ........... 44
3.1.3. Kết quả tối ưu hóa các yếu tố cơng thức tổng hợp lõi QDs-CdSe ................ 47
3.2. KẾT QUẢ TỔNG HỢP QDs-CdSe/ZnS CÓ CẤU TRÚC LÕI-VỎ ............ 51

3.2.1. Kết quả khảo sát tỉ lệ mol Zn2+/Cd2+ trong công thức tổng hợp QDs-CdSe/ZnS . 52
3.2.2. Kết quả khảo sát tỉ lệ mol S2-/Zn2+ trong công thức tổng hợp QDs-CdSe/ZnS.... 52
3.3. KẾT QUẢ PHÂN TÍCH MỘT SỐ TÍNH CHẤT CỦA QDs-CdSe VÀ QDsCdSe/ZnS .......................................................................................................... 54
3.3.1. Cảm quan và hình thái học của QDs-CdSe và QDs-CdSe/ZnS ................... 54
3.3.2. Kích thước của QDs-CdSe và QDs-CdSe/ZnS ............................................ 57
3.3.3. Phổ quang học của QDs-CdSe và QDs-CdSe/ZnS ...................................... 57
3.3.4. Phổ XRD của QDs-CdSe và QDs-CdSe/ZnS .............................................. 58
3.3.5. Phổ IR của của QDs-CdSe và QDs-CdSe/ZnS ............................................ 59
3.4. KẾT QUẢ THỬ ĐỘC TÍNH TẾ BÀO CỦA LÕI QDs-CdSe và QDsCdSe/ZnS .......................................................................................................... 61
CHƯƠNG 4. BÀN LUẬN ........................................................................................... 65
4.1. Về quy trình tổng hợp QDs-CdSe bằng phương pháp keo ướt ..................... 65
4.2. Về cơ chế hình thành QDs và ảnh hưởng của các yếu tố công thức tổng hợp QDs 66
4.3. Về độc tính của QDs-CdSe (lõi) và QDs-CdSe/ZnS (lõi-vỏ) ....................... 68
KẾT LUẬN VÀ ĐỀ NGHỊ ......................................................................................... 69
TÀI LIỆU THAM KHẢO
PHỤ LỤC

Ghi ro nguon tai lieu nay khi trich dan.


.

ix

DANH MỤC CÁC TỪ VIẾT TẮT
Chữ viết tắt

Nghĩa tiếng Anh

Nghĩa tiếng Việt


ACS

Aqueous Colloidal Synthesis

Keo ướt

Cd

Cadmium

Cadimi

dd

Dung dịch

DLS

Dynamic Light Scattering

DOX

Doxorubicin

FCS

Tán xạ ánh sáng động

Huyết thanh bào thai dê


FL

Flourescence

Huỳnh quang

FTIR

Fourier-transform infrared

Quang phổ hồng ngoại biến

spectroscopy

đổi Fourier

FWHM

Full width at half maximum

Độ bán rộng phổ

h

Hour

Giờ

MAA


Mercaptoacetic acid

MPA

Mercaptopropionic acid

MSA

Mercaptosuccinic acid

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromid)

NIR

Near-infrared

OCS

Organometallic Colloidal Synthesis

PEG

Polyethylene glycol

PTX

Paclitaxel


QDs

Quantum Dots

Chấm lượng tử

QDs-CdSe

CdSe Quantum Dots

Chấm lượng tử lõi CdSe

QDs-CdSe/ZnS

CdSe/ZnS Quantum Dots

Chấm lượng tử CdSe/ZnS cấu
trúc lõi-vỏ

QY

Quantum Yield

Hiệu suất lượng tử

rpm

Revolutions per minute


Số vòng quay trong một phút

Se

Selenium

Selen

Ghi ro nguon tai lieu nay khi trich dan.

Hồng ngoại gần


.

x

TEM

Transmission electron microscopy

Kính hiển vi điện tử truyền
qua

TGA

Thioglycolic Acid

TOP


Trioctylphosphine

TOPO

Tri-n-octylphosphine oxid

UV - vis

Ultraviolet - Visible

Tử ngoại – khả kiến

XRD

X-ray diffraction

Nhiễu xạ tia X

Zn

Zinc

Kẽm

Ghi ro nguon tai lieu nay khi trich dan.


.

xi


DANH MỤC CÁC HÌNH
Hình 1.1. Mơ hình cấu trúc cơ bản của QDs............................................................ 4
Hình 1.2. Mối liên quan giữa kích thước QDs và độ rộng năng lượng vùng cấm ..... 5
Hình 1.3. Mơ hình thể hiện sự thay đổi màu sắc huỳnh quang theo kích thước QDs .... 6
Hình 1.4. Hình ảnh thực tế của các QDs có kích thước tăng dần ............................. 6
Hình 1.5. Quy trình tổng hợp QDs bằng phương pháp OCS (a) và ACS (b) ............ 9
Hình 1.6. Hệ tiểu phân nano kết hợp QDs HA-ZnO PEG nhạy cảm pH với DOX
trong điều trị ung thư phổi [20] .............................................................................. 16
Hình 2.7. Quy trình tổng hợp lõi QDs-CdSe bằng phương pháp keo ướt và các yếu
tố cần khảo sát ....................................................................................................... 24
Hình 2.8. Quy trình tổng hợp QDs-CdSe/ZnS cấu trúc lõi-vỏ và các yếu tố khảo sát . 28
Hình 3.9. Quy trình tổng hợp lõi QDs-CdSe trong giai đoạn khảo sát yếu tố T ..... 35
Hình 3.10. Phổ huỳnh quang của lõi QDs-CdSe tương ứng với thời gian tổng hợp36
Hình 3.11. Phổ hấp thu UV-vis của lõi QDs-CdSe tổng hợp trong các mơi trường pH . 39
Hình 3.12. Phổ huỳnh quang của lõi QDs-CdSe tổng hợp trong các môi trường pH
khác nhau .............................................................................................................. 40
Hình 3.13. Sự ảnh hưởng của pH môi trường phản ứng đến QY của lõi QDs-CdSe... 40
Hình 3.14. Phổ hấp thu UV-vis của lõi QDs-CdSe với các tỉ lệ mol MSA/Cd2+..... 42
Hình 3.15. Phổ huỳnh quang của lõi QDs-CdSe với các tỉ lệ mol MSA/Cd2+ ........ 42
Hình 3.16. Sự ảnh hưởng của tỉ lệ mol MSA/Cd2+ đến QY của lõi QDs-CdSe ...... 43
Hình 3.17. Phổ hấp thu UV-vis của lõi QDs-CdSe với các tỉ lệ mol SeSO32-/Cd2+ . 45
Hình 3.18. Phổ huỳnh quang của lõi QDs-CdSe với các tỉ lệ mol SeSO32-/Cd2+ .... 45
Hình 3.19. Sự ảnh hưởng của tỉ lệ mol SeSO32-/Cd2+ đến QY của QDs-CdSe ....... 46
Hình 3.20. Mơ hình bề mặt đáp ứng thể hiện tương tác của cặp yếu tố A (pH môi
trường) – B (tỉ lệ mol MSA/Cd2+) tới QY của QDs CdSe trong điều kiện yếu tố C (tỉ
lệ mol SeSO32-/Cd2+) ở mức thấp (a) và cao (b) ..................................................... 48

Ghi ro nguon tai lieu nay khi trich dan.



.

xii

Hình 3.21. Mơ hình bề mặt đáp ứng thể hiện tương tác của cặp yếu tố A (pH môi
trường) – C (tỉ lệ mol SeSO32-/Cd2+) tới QY của QDs CdSe trong điều kiện yếu tố B
(tỉ lệ mol MSA/Cd2+) ở mức thấp (a) và cao (b) ..................................................... 49
Hình 3.22. Mơ hình bề mặt đáp ứng thể hiện tương tác của cặp yếu tố B (tỉ lệ mol
MSA/Cd2+) – C (tỉ lệ mol SeSO32-/Cd2+) tới QY của QDs CdSe trong điều kiện yếu
tố A (pH môi trường) ở mức thấp (a) và cao (b) .................................................... 49
Hình 3.23. Phổ huỳnh quang của QDs-CdSe/ZnS với các tỉ lệ mol S2-/Zn2+ .......... 53
Hình 3.24. Hình ảnh của lõi QDs-CdSe và QDs-CdSe/ZnS ở dạng lỏng (a) và rắn
trong điều kiện ánh sáng thường (b-1) và dưới đèn UV-365 nm (b-2) .................... 55
Hình 3.25. Hình ảnh lõi QDs-CdSe (a) và QDs-CdSe/ZnS (b) dưới kính hiển vi điện
tử truyền qua (TEM) .............................................................................................. 56
Hình 3.26. Hình dạng phổ hấp thu UV-vis và phổ huỳnh quang của lõi QDs-CdSe và
QDs-CdSe/ZnS ...................................................................................................... 58
Hình 3.27. Phổ nhiễu xạ tia X (XRD) của QDs-CdSe và QDs-CdSe/ZnS ............. 58
Hình 3.28. Phổ IR của MSA, QDs-CdSe và QDs-CdSe/ZnS ................................. 59
Hình 3.29. Đồ thị biểu diễn giá trị IC50 của các mẫu thử trên 2 dịng tế bào ......... 62
Hình 3.30. Kết quả %tế bào bị ức chế theo nồng độ mẫu trên dòng LLC-PK1 ...... 63
Hình 3.31. Kết quả %tế bào bị ức chế theo nồng độ mẫu trên dòng MDA-MB-231 ... 64

Ghi ro nguon tai lieu nay khi trich dan.


.

xiii


DANH MỤC CÁC BẢNG
Bảng 1.1. Một số nghiên cứu tổng hợp QDs bằng phương pháp keo ướt ............... 10
Bảng 2.2. Danh sách hóa chất sử dụng trong đề tài................................................ 21
Bảng 2.3. Danh sách máy móc – thiết bị sử dụng trong đề tài ................................ 22
Bảng 2.4. Các đơn yếu tố và khoảng khảo sát trong công thức tổng hợp lõi QDs-CdSe 25
Bảng 3.5. Kết quả khảo sát thời gian tổng hợp lõi QDSs-CdSe (n = 3) .................. 36
Bảng 3.6. Kết quả khảo sát sự ảnh hưởng của pH môi trường phản ứng (yếu tố A)
đến QY của lõi QDs-CdSe (n = 3) ......................................................................... 39
Bảng 3.7. Kết quả khảo sát sự ảnh hưởng của tỉ lệ mol MSA/Cd2+ đến QY của lõi
QDs-CdSe (n = 3) .................................................................................................. 41
Bảng 3.8. Kết quả khảo sát sự ảnh hưởng của tỉ lệ mol SeSO32-/Cd2+ đến QY của lõi
QDs-CdSe ............................................................................................................. 44
Bảng 3.9. Thông số các biến độc lập của giai đoạn tối ưu hóa cơng thức tổng hợp lõi
QDs-CdSe ............................................................................................................. 47
Bảng 3.10. Kết quả ma trận thực nghiệm tối ưu hóa cơng thức tổng hợp lõi QDs-CdSe47
Bảng 3.11. Kết quả phân tích dữ liệu thực nghiệm tối ưu hóa cơng thức tổng hợp lõi
QDs-CdSe ............................................................................................................. 50
Bảng 3.12. Một số công thức tối ưu được đề xuất và kết quả kiểm chứng bằng thực
nghiệm (n = 6) ....................................................................................................... 51
Bảng 3.13. Kết quả khảo sát tỉ lệ mol Zn2+/Cd2+ trong công thức tổng hợp QDsCdSe/ZnS (n = 3)................................................................................................... 52
Bảng 3.14. Kết quả khảo sát tỉ lệ mol S2-/Zn2+ trong công thức tổng hợp QDsCdSe/ZnS (n = 3)................................................................................................... 53
Bảng 3.15. Kết quả xác định kích thước lõi QDs-CdSe và QDs-CdSe/ZnS ........... 57
Bảng 3.16. Các dao động chính trên phổ IR và nhóm chức đặc trưng .................... 60
Bảng 3.17. Kết quả IC50 của các mẫu thử trên 2 dòng tế bào ................................. 61

Ghi ro nguon tai lieu nay khi trich dan.


.


1

MỞ ĐẦU
Chấm lượng tử (Quantum dots - QDs) là các tiểu phân nano bán dẫn (semiconductor)
được giới hạn trong không gian ba chiều, thường có đường kính từ 2–10 nm [7] và có
kích thước vật lý nhỏ hơn bán kính Bohr của exciton* [15]. Chúng chính là cầu nối
giữa vật liệu khối và cấu trúc nguyên tử hoặc phân tử - được đặc trưng bởi năng lượng
vùng cấm (band gap) và phụ thuộc theo kích thước QDs. QDs có đặc tính quang- điện
tử độc đáo chẳng hạn như hấp thu trong vùng bước sóng rộng, phát xạ quang mạnh phụ
thuộc vào kích thước, hiệu suất lượng tử (Quantum yield-QY) cao và độ ổn định quang
học cao. Ngồi ra, nhờ có tính chất bề mặt phong phú, QDs cịn có khả năng được
chuyên biệt hóa với các phối tử chức năng hướng mục tiêu. Chính vì điều này mà QDs
đã thu hút sự quan tâm của các nhà nghiên cứu thuộc lĩnh vực y sinh trong những năm
gần đây. Một số ứng dụng trong y sinh như: QDs được sử dụng như một chất đánh dấu
huỳnh quang và là giải pháp thay thế tiềm năng cho thuốc nhuộm hữu cơ truyền thống;
làm cảm biến sinh học để phát hiện các phân tử sinh học; đánh dấu huỳnh quang để
theo dõi và chụp ảnh các tế bào, khối u ở mức in vitro hay in vivo; hoặc thông qua việc
biến đổi bề mặt với các phân tử sinh học đặc hiệu thì QDs cịn được ứng dụng trong
chẩn đốn ung thư và theo dõi các hệ thống trị liệu khác [13].
Trong quá trình phát triển, QDs có độ phát quang cao được chế tạo bằng cách tạo lõi
(core) sau đó phủ lõi bằng vật liệu khác để tạo ra các QDs có cấu trúc lõi-vỏ (coreshell) ổn định hơn trong các môi trường khác nhau. Ở thời kì đầu, các phương pháp
thường tạo ra QDs có tính kị nước và chỉ phân tán tốt trong dung môi hữu cơ. Tuy
nhiên, QDs kị nước không thể sử dụng trực tiếp cho các ứng dụng y sinh. Do đó, QDs
nhất thiết phải được biến đổi bởi các phối tử bề mặt có chức năng khác nhau nhằm
cải thiện khả năng phân tán trong nước và tăng cường tính tương thích sinh học. Việc
khám phá QDs luôn chứa đựng nhiều thách thức và hầu hết các nghiên cứu hiện tại
đều đặt câu hỏi liên quan đến các đặc tính hóa lý của sản phẩm QDs đồng thời tìm
cách cải thiện về mặt độc tính QDs thông qua việc tạo lớp phủ vô cơ hay sinh học
trên bề mặt QDs.


Ghi ro nguon tai lieu nay khi trich dan.


.

2

Để tạo tiền đề cho các nghiên cứu tiếp theo dựa trên tình hình thực tế về điều kiện cơ
sở vật chất và tài nguyên tại đơn vị, QDs-CdSe trở thành mơ hình mục tiêu để nghiên
cứu vì đây là QDs kinh điển, có đặc tính quang học ổn định. Hình dạng và kích thước
của tinh thể nano nói chung có thể được kiểm sốt bằng cách điều chỉnh tỉ lệ nguyên
liệu ban đầu, thời gian và nhiệt độ phản ứng. Vì vậy, quy trình tổng hợp QDs trong
nghiên cứu này sẽ được điều chỉnh sao cho thuận lợi về điều kiện nhiệt độ và khơng
cần sử dụng khí trơ mà vẫn đảm bảo thu được QDs có bề mặt thân nước với hiệu suất
lượng tử tối ưu.
Trên cơ sở đó, đề tài “Nghiên cứu tổng hợp các chấm lượng tử bằng phương pháp
keo ướt” được thực hiện với mục tiêu tổng qt là hồn chỉnh quy trình tổng hợp
QDs-CdSe/ZnS có cấu trúc lõi-vỏ đảm bảo hiệu suất lượng tử hơn 50% và dễ dàng
phân tán trong nước.
Để thực hiện được mục tiêu tổng quát thì đề tài đặt ra các mục tiêu cụ thể như sau:
Mục tiêu 1: Xây dựng quy trình tổng hợp lõi QDs-CdSe bằng phương pháp keo ướt.
Mục tiêu 2: Tối ưu hóa cơng thức tổng hợp lõi QDs-CdSe đạt QY cao (hơn 50%). Phân
tích một số tính chất hóa lý, quang học của lõi QDs-CdSe bằng các kỹ thuật và thiết bị
phù hợp.
Mục tiêu 3: Tổng hợp QDs-CdSe/ZnS cấu trúc lõi-vỏ duy trì được QY của lõi QDsCdSe. Phân tích một số tính chất hóa lý, quang học của QDs-CdSe/ZnS bằng các kỹ
thuật và thiết bị phù hợp.
Mục tiêu 4: Thử độc tính tế bào của lõi QDs-CdSe và QDs-CdSe/ZnS cấu trúc lõi-vỏ.

*Exciton: Khái niệm exciton đầu tiên được đưa ra năm 1931 bởi Frenkel, sau đó là Pieirls,

Wannier, Elliot, Knox… Khi chiếu chùm tia sáng vào bán dẫn thì một số điện tử ở vùng hóa trị
(Valence band-VB) hấp thụ ánh sáng nhảy lên vùng dẫn (Conduction band-CB), để lại VB các lỗ
trống mang điện tích dương. Do tương tác Coulomb giữa lỗ trống ở VB và điện tử ở CB mà hình
thành trạng thái liên kết cặp điện tử - lỗ trống được gọi là hạt ảo exciton. Exciton có thể chuyển động
trong tinh thể và mang một năng lượng kích thích nhưng nó lại trung hịa về điện. Người ta có thể
coi exciton như nguyên tử Hydro nhưng sự khác nhau về khối lượng hiệu dụng của điện tử và lỗ
trống trong bán dẫn không lớn bằng sự khác nhau giữa khối lượng của điện tử và proton trong nguyên
tử Hydro.

Ghi ro nguon tai lieu nay khi trich dan.


.

3

CHƯƠNG 1. TỔNG QUAN TÀI LIỆU
1.1. CHẤM LƯỢNG TỬ (QUANTUM DOTS, QDs)
1.1.1. Lịch sử khám phá và khái niệm về QDs
Vào những năm đầu thập niên 1980, QDs lần đầu tiên được phát hiện trong mạng
tinh thể thủy tinh bởi nhà vật lý người Nga Ekimov và Onushchenko [27]. Ngay từ
khi được phát hiện, QDs đã thu hút nhiều sự chú ý của các nhà khoa học và được sử
dụng như mơ hình để tìm hiểu về lý thuyết của hiệu ứng giam giữ lượng tử (quantum
confinement effect) trên vật liệu nano. Năm 1984, Louis E. Brus phát hiện ra mối liên
quan mật thiết giữa năng lượng vùng cấm (band gap) và kích thước của các tiểu phân
nano bán dẫn [18]. Tuy nhiên, phải mất gần một thập kỷ sau đó, khi Murray cùng các
cộng sự tổng hợp thành cơng QDs có cấu trúc CdX (X = S, Se, Te) [51] thì lĩnh vực
nghiên cứu chế tạo QDs mới bắt đầu phát triển mạnh mẽ. Từ đó đến nay, nghiên cứu
về phương pháp tổng hợp và ứng dụng QDs trong các lĩnh vực đời sống, đặc biệt là
trong ứng dụng y sinh đã và đang được phát triển không ngừng.

Thuật ngữ QDs được Mark A. Reed đưa ra vào năm 1988 [9]. Theo đó, QDs là khái
niệm bao hàm chỉ các tinh thể nano bán dẫn có khả năng phát quang. Cái tên "chấm
lượng tử" bắt nguồn từ thực tế là các đặc tính quang học của tinh thể nano ("chấm")
được quy định bởi cơ học lượng tử. Trong cấu trúc của QDs, khi bán kính của QDs
nhỏ hơn bán kính Bohr của bán dẫn khối, các exciton (cặp điện tử - lỗ trống) bị giam
giữ trong cả ba chiều không gian của QDs – gọi là hiện tượng giam giữ lượng tử [7].
Hiện tượng này khiến cho các QDs có khả năng phát quang khi nhận ánh sáng kích
thích và bước sóng phát quang có thể thay đổi theo kích thước của QDs.

1.1.2. Đặc điểm của QDs
1.1.2.1. Đặc điểm về cấu trúc
QDs là các tinh thể nano có kích thước khoảng 2-10 nm [7], thường có nguồn gốc từ
các chất bán dẫn kim loại thuộc nhóm II-VI (CdSe, CdS, CdTe, HgS, ZnS, ZnSe),
III-V (GaAs, GaN, InP, InAs, InGaAs, InP, InGaP) hoặc IV-VI (PbS, PbTe, SnTe)

Ghi ro nguon tai lieu nay khi trich dan.


.

4

[36]. QDs có thể có cấu trúc lõi (core – ví dụ như CdSe, CdTe, ZnS) hoặc lõi-vỏ
(core-shell), lớp vỏ của QDs có thể gồm một hay nhiều lớp (CdSe/CdS, CdSe/ZnS,
CdSe/CdS/ZnS). Ngồi ra, cấu trúc của QDs cịn có lớp phủ bề mặt (surface-coating
parts) đóng vai trị quan trọng trong sự hình thành và duy trì tính ổn định của QDs.
Phần lõi của QDs được cấu tạo bởi một số đơn lớp của vật liệu bán dẫn; bước sóng
của ánh sáng kích thích và phát xạ huỳnh quang của QDs phụ thuộc vào thành phần
của lõi. Phần vỏ bao quanh giúp ổn định tính chất phát quang của lõi QDs. Các thành
phần cấu tạo nên lớp vỏ có độ rộng năng lượng vùng cấm lớn hơn so với thành phần

tạo lõi. Lớp bao phủ bề mặt của QDs có nguồn gốc rất phong phú, có thể là các phân
tử chất ổn định (kị nước hoặc thân nước), các polymer lưỡng tính, lớp vỏ silica, hay
thậm chí là phân tử sinh học đặc hiệu. Lớp phủ bề mặt giúp xác định tính ổn định,
đặc tính sinh học và khả năng phân tán của QDs trong các mơi trường. Mơ hình cấu
trúc của QDs gồm 3 thành phần cơ bản, được thể hiện trong Hình 1.1.

Hình 1.1. Mơ hình cấu trúc cơ bản của QDs
1.1.2.2. Đặc điểm quang học của QDs
Cơ chế phát quang của QDs
QDs phát quang được là nhờ hiệu ứng giam giữ lượng tử. Khi kích thước vật liệu bán
dẫn giảm xuống dưới bán kính Bohr của exciton, các exciton bị giam giữ một cách
nghiêm ngặt bên trong không gian hẹp của tinh thể nano. Do đó, khi QDs nhận ánh
sáng kích thích thì sẽ có khả năng phát huỳnh quang mạnh. Huỳnh quang của QDs
được hình thành khi QDs hấp thu một photon có năng lượng cao hơn năng lượng
vùng cấm của vật liệu bán dẫn lõi, dẫn đến việc một điện tử bị kích thích và được đưa

Ghi ro nguon tai lieu nay khi trich dan.


.

5

lên vùng dẫn, khi đó sẽ để lại một lỗ trống ở vùng hóa trị và như vậy một cặp điện tử
- lỗ trống (exciton) được tạo ra. Khi điện tử thư giãn trở về mức năng lượng thấp hơn
sẽ phát xạ photon và thu được huỳnh quang từ QDs. Do năng lượng vùng cấm quyết
định bước sóng phát xạ photon, bởi vậy có thể kiểm sốt bước sóng phát xạ thơng
qua kích thước của QDs. Năng lượng vùng cấm tỉ lệ nghịch với kích thước của QDs
(Hình 1.2). Khi kích thước QDs càng nhỏ thì độ rộng vùng cấm càng lớn do chênh
lệch năng lượng giữa vùng hoá trị và vùng dẫn càng lớn. Theo đó, năng lượng cần

thiết để kích thích QDs và năng lượng được phát xạ khi QDs trở lại trạng thái nghỉ
cũng lớn hơn. Theo cơ chế đã phân tích, QDs càng lớn thì huỳnh quang phát ra có xu
hướng redshift và ngược lại.

Hình 1.2. Mối liên quan giữa kích thước QDs và độ rộng năng lượng vùng cấm [13]
Đặc tính quang học của QDs
QDs có đặc tính quang học nổi trội là chúng có thể được kích thích bởi một dải bước
sóng rộng nhưng lại phát huỳnh quang với bước sóng hẹp trải dài trong vùng khả kiến
cho tới hồng ngoại gần. Hơn nữa, màu sắc huỳnh quang phát xạ từ QDs có thể thay đổi
theo kích thước của QDs. Khi kích thước QDs tăng lên thì huỳnh quang có xu hướng
redshift và ngược lại (Hình 1.3 và 1.4). Huỳnh quang của QDs có các ưu điểm như như
độ chói cao, đỉnh phát xạ hẹp và khả năng ổn định quang trong thời gian dài [13], [66].
So với các chất màu hữu cơ, QDs có hiệu suất lượng tử tương tự nhưng độ chói huỳnh
quang của QDs lớn hơn khoảng 10 đến 20 lần và độ bền quang cao gấp từ 100 đến
200 lần [13]. Nhờ có phổ hấp thụ rộng nên huỳnh quang từ QDs có thể được kích

Ghi ro nguon tai lieu nay khi trich dan.


.

6

thích ở bất kỳ bước sóng nào ngắn hơn bước sóng huỳnh quang và nằm trong vùng
hấp thụ. Điều này tạo điều kiện thuận lợi để có thể sử dụng cùng một lúc nhiều QDs
với kích thước khác nhau, cho màu huỳnh quang khác nhau trong quan sát hình ảnh
mà chỉ cần sử dụng một nguồn kích thích duy nhất [42].

Hình 1.3. Mơ hình thể hiện sự thay đổi màu sắc huỳnh quang theo kích thước QDs


Hình 1.4. Hình ảnh thực tế của các QDs có kích thước tăng dần
(phát quang dưới đèn UV-356 nm)

Ghi ro nguon tai lieu nay khi trich dan.


.

7

1.2. MỘT SỐ PHƯƠNG PHÁP TỔNG HỢP QDs
QDs có thể được chế tạo từ nhiều phương pháp như phương pháp quang khắc
(lithography), hóa keo (colloidal synthesis) hay tự kết tụ (epitaxy/ self-assembled)...
Trong đó, hóa keo là phương pháp được sử dụng phổ biến nhất để tổng hợp QDs, đặc
biệt là các QDs ứng dụng trong lĩnh vực y sinh [6].
Quá trình tổng hợp QDs bằng phương pháp hóa keo dựa trên hệ thống phản ứng gồm
ba thành phần: tiền chất, chất hoạt động bề mặt (còn gọi là chất ổn định hay chất
tạo phối tử) và dung môi. Việc lựa chọn dung mơi (mơi trường phản ứng) đóng vai
trị quan trọng trong quy trình tổng hợp QDs dạng keo vì bản chất dung mơi sẽ ảnh
hưởng đến tính chất bề mặt và khả năng phân tán, từ đó quyết định phạm vi ứng dụng
của QDs [40]. Dựa trên bản chất môi trường tổng hợp là dung môi hữu cơ hay mơi
trường nước, quy trình tổng hợp QDs dạng keo được chia thành 2 nhóm phương pháp
tương ứng là Organometallic Colloidal Synthesis hay Aqueous Colloidal Synthesis
(tạm dịch là phương pháp keo ướt). Quy trình tổng hợp QDs trong mơi trường nước
có nhiều ưu điểm hơn so với môi trường hữu cơ về chi phí, điều kiện phản ứng, tính
thân thiện với mơi trường và tính tương thích sinh học của QDs.

1.2.1. Phương pháp Organometallic Colloidal Synthesis (OCS)
Organometallic Colloidal Synthesis (OCS) là phương pháp tổng hợp QDs được
Murray cùng các cộng sự nghiên cứu và công bố vào năm 1993 [51]. Đây là phương

pháp tổng hợp QDs bằng cách nhiệt phân các tiền chất cơ kim ở nhiệt độ cao (khoảng
300 °C), trong môi trường dung môi hữu cơ kém phân cực và bắt buộc phải thực hiện
trong điều kiện khí trơ. Các dung môi hữu cơ thường được sử dụng là 1-octadecen,
tri-n-octylphosphin oxyd (TOPO), trioctylphosphin (TOP), hexadecyl amin, hoặc
acid oleic... Các dung mơi hữu cơ này có thể đóng vai trị vừa là môi trường phản ứng,
vừa là chất ổn định (tạo phối tử) cho QDs trong quá trình tổng hợp. Các chất ổn định
gắn các nhóm chức phosphin, oxyd phosphin hoặc amin lên bề mặt của QDs còn các
chuỗi alkyl hướng ra mơi trường giúp kiểm sốt tốc độ tăng trưởng và ổn định QDs tạo
thành. Kết quả là một đơn lớp chuỗi alkyl dài được hình thành trên bề mặt QDs, dẫn

Ghi ro nguon tai lieu nay khi trich dan.


Bản quyền tài liệu này thuộc về Thư viện Đại học Y Dược TP.HCM.

8

đến QDs có tính kị nước và chỉ hịa tan trong các dung mơi kém phân cực như toluen,
chloroform, n-hexan [16], [28].
Phương pháp OCS có ưu điểm là hiệu suất tổng hợp QDs cao với QY cao và đỉnh
phát xạ huỳnh quang hẹp. Tuy nhiên phương pháp này tồn tại các nhược điểm như
điều kiện phản ứng khắc nghiệt, sử dụng các tiền chất và dung môi hữu cơ có tính
độc hại, QDs tạo thành có bề mặt kị nước – khó khăn khi ứng dụng trong lĩnh vực y
sinh. Để giải quyết mặt hạn chế này, QDs sau khi tổng hợp trong môi trường hữu cơ
tiếp tục được thực hiện quá trình trao đổi phối tử bề mặt nhằm cải thiện khả năng
phân tán trong nước. Tuy nhiên phản ứng trao đổi phối tử có thể làm giảm đáng kể
tính ổn định, cường độ huỳnh quang và QY của QDs [21].

1.2.2. Phương pháp keo ướt (Aqueous Colloidal Synthesis, ACS)
So với phương pháp OCS thì phương pháp keo ướt có nhiều ưu điểm như quy trình

tổng hợp đơn giản, ít độc hại, tiết kiệm chi phí và thân thiện với môi trường. Đặc biệt,
phương pháp này tạo nên QDs có khả năng phân tán tốt trong nước, phù hợp cho các
ứng dụng y sinh [28].
Phương pháp keo ướt sử dụng tiền chất kim loại là các chất dễ tan trong nước như muối
clorid, nitrat, acetat của các kim loại (Zn/CdCl2, Zn/Cd(NO3)2…). Chất ổn định (chất
tạo phối tử) thường là các phân tử thân nước có nhóm thiol (-SH) và mạch carbon ngắn
như L-cystein, acid mercaptoacetic (MAA), acid thioglycolic (TGA), acid
mercaptopropionic (MPA) hay acid mercaptosuccinic (MSA)… Một số tiền chất
chalcogen thường được sử dụng trong phương pháp keo ướt gồm NaHE (E = Se, Te)
được tạo ra từ phản ứng khử selen (Se) hoặc telu (Te) bằng natri borohydride (NaBH4);
Na2SeSO3 từ phản ứng của dung dịch Na2SO3 với Se; Na2S, H2S, H2Se hay SeO2…
Về điều kiện phản ứng, QDs được tổng hợp trực tiếp trong nước ở điều kiện nhiệt độ
trung bình đến thấp (dưới 100 oC) với sự hiện diện của oxy hoặc khí trơ tùy thuộc
vào tiền chất chalcogen [16], [28]. Trong quá trình tổng hợp, các chất ổn định sẽ gắn
nhóm chức -SH của chúng lên bề mặt QDs để kiểm sốt tốc độ hình thành QDs, các

Ghi ro nguon tai lieu nay khi trich dan.


Bản quyền tài liệu này thuộc về Thư viện Đại học Y Dược TP.HCM.

9

nhóm thân nước hướng ra ngồi mơi trường giúp QDs phân tán dễ dàng trong nước
hoặc các nhóm này có thể là vị trí để tiếp tục gắn các phân tử sinh học [14].

Hình 1.5. Quy trình tổng hợp QDs bằng phương pháp OCS (a) và ACS (b)
Ban đầu, chất lượng của QDs được tạo ra từ phương pháp keo ướt tương đối thấp (QY
thấp và phân bố kích thước tương đối rộng) so với phương pháp OCS. Tuy nhiên,
những cải tiến liên tục về phương pháp cho phép cải thiện tính chất của QDs. Các yếu

tố trong cơng thức và quy trình tổng hợp như loại chất ổn định và tiền chất, tỉ lệ mol
kim loại/chalcogen/chất ổn định, nhiệt độ và thời phản ứng có thể ảnh hưởng tới các
thuộc tính của QDs [16], [24].
Một số nghiên cứu tổng hợp QDs sử dụng phương pháp keo ướt được tóm tắt trong
Bảng 1.1.

Ghi ro nguon tai lieu nay khi trich dan.


Bản quyền tài liệu này thuộc về Thư viện Đại học Y Dược TP.HCM.

10

Bảng 1.1. Một số nghiên cứu tổng hợp QDs bằng phương pháp keo ướt
STT Đặc điểm QDs

Tiền chất

TLTK

pH:12
Thời gian ~ 35 phút
MPA/Zn/S: 8:4:1

2008
[44]

1

ZnS

KT ~ 5 nm
PL: 415 nm
FWHM ~ 100 nm

2

ZnO
Zn(CH3COO)2
KT: 4; 5,5; 8 nm
KOH
PL: 510; 521; 534
Tetraethylorthosillicat
nm

Nhiệt độ: phòng
pH: 10, 12, 14
Thời gian ~ 1h

3

ZnSe
KT: 3,6 nm
PL: 408 nm

Nhiệt độ: phòng
pH: 6 – 10

4

CdSe

KT: 3-10 nm
PL: 520 nm
QY: 14%

5

CdSe
KT: 5 nm
PL: 580 nm

Zn(NO3)2
NaS
MPA

Điều kiện phản ứng

ZnCl2
NaBH4
Bột Selen

CdCl2
NaHSe
TGA

CdCl2
NaHSe
MPA

2012
[58]


Nhiệt độ: 0 oC
Thời gian: 30 phút
pH: 10,5
TGA/Se: 2.2:1
Cd/Se: 3.5:1
Khí trơ: N2

2012
[10]

Nhiệt độ: phịng
Thời gian: 60 phút
pH: 10-11
Cd/MPA/Se: 1,5:2:1
Khí trơ: N2

2014
[55]

6

CdSe
KT: 3,3 nm

CdCl2
NaHSe
MPA

Nhiệt độ: phòng

Thời gian: 60 phút
pH: 10 -11
Cd/MPA/Se: 1:10:2

7

ZnS
Mn:ZnS
PL: 580 nm

Zn(CH3COO)2
NaS
MPA

Nhiệt độ: 50 oC
pH: 11
Thời gian: 2h

Ghi ro nguon tai lieu nay khi trich dan.

2009
[53]

2016
[49]

2017
[60]



×