Ch¬ng 15
QUANG HỌC VÀ PHÂN TÍCH
HỆ THỐNG
15.1. GIỚI THIỆU
Trong phạm vi phần 2, chúng ta đã trình bày bộ các cơng cụ cho phép ta phân tích
các thành phần thường dùng trong biểu diễn ảnh số. Bây giờ chúng ta ứng dụng
những công cụ này để phát triển những đặc tính của các hệ thống xử lý ảnh số.
Hai trường hợp thường nảy sinh, đòi hỏi một phương pháp khả thi đối với phân
tích hệ thống. Một là khi được yêu cầu chọn lựa hay cấu hình một hệ thống biểu diễn
ảnh số cho một loại thường dùng. Ở đây, một tập các thành phần phù hợp hay toàn
bộ một hệ thống phải được chọn từ tập các lựa chọn, thường theo quan niệm liên
quan đến giá cả.
Trường hợp còn lại nảy sinh mỗi khi người dùng hệ thống tiếp cận một vấn đề
mới. Bình thường, ngườ sử dụng chỉ thao tác một khâu tromh chuỗi xử lý ảnh:
chương trình máy tính thực hiện các phép tốn xử lý số. Thao tá của các thành phần
hệ thống khác, từ bộ số hoá đến thiết bị hiển thị, thường được điều chỉnh trước bằng
thiết kế phần cứng, mặc dù có thể có những tuỳ chọn cho trước. Việc bảo trì đúng
đắn cũng cần thiết để phục vụ cho việcthực hiện tốt nhất.
Có thể ta phải chỉ rõ ảnh hưởng mà một thành phần phần cứng của hệ thống sẽ tác
động lên ảnh, để bù cho những ảnh hưởng này trong phần mềm. Theo cách này,
Chương trình xử lý có thể được cấu thành để đạt đến mục tiêu đã đề ra, đồng thời
không làm giảm giá trị của đề tài.
Trước đây, một vấn đề về ảnh số đặc trưng có thể tiếp cận một cách hoàn chỉnh,
người ta phải thừa nhận rằng sự trang bị máy móc sử dụng là thoả đáng cho cơng
việc. Nói chung, độ phân giải, độ phóng đại, số điểm ảnh, kích thước điểm ảnh và
khoảng cách điểm ảnh phải tương xứng với công việc sắp tới. Nên có một sự cân
bằng giữa các dụng cụ quang học (camera, kính viễn vọng, kính hiển vi,…), cảm
nhận ảnh (camera), số hoá ảnh, phần cứng lưu trữ và hiển thị, và các thuật giải sử
dụng để xử lý và phân tích định lượng ảnh số. Trong chương này, chúng ta sẽ nhằm
vào tập các nguyên tắc có thể thực hiện đối với việc thiết lập một sự cân bằng như
trên.
Phân tích chi tiết mọi mặt của một hệ thống xử lý ảnh có thể trở nên rất phức tạp
và điều này vượt quá tầm kiểm soát của ta. Cách tiếp cận ở đây là làm cho một vài
giả thiết trên thực tế trở nên đơn giản và có khả năng ứng dụng rộng rãi. Nếu cần
thiết, có thể thêm vào một lượng dư để đảm bảo khơng có sai sót trong những giả
thiết. Phần lớn các trường hợp trong thực tế, kết quả chính xác được cung cấp đầy
đủ.
15.1.1. Thực hiện phân tích một hệ thống ảnh số
Câu hỏi mà chúng ta đặt ra ở đây là: phân tích một hệ thống như thế nào để có thể
xác định nó có thích hợp và giá cả có gây ấn tượng cho việc thực hiện xử lý ảnh và
các dự án định lượng ảnh mà nó sử dụng hay khơng? Ta sẽ cố gắng để thiết lập sự
cân bằng giữa các thành phần khác nhau trong chuỗi xử lý ảnh, sao cho toàn bộ sự
thực hiện là phù hợp với cơng việc và khơng có thành phần nào thể hiện quá mức cần
thiết so với những gì được yêu cầu để thực hiện công việc.
283
Chúng ta sẽ chỉ ra những chủ đề về độ phân giải khơng gian và lấy mẫu ảnh, với
mục đích thiết lập sự cân bằng giữa thực hiện từng thành phần hệ thống và tồn bộ
hệ thống. Mục đích này có liên quan đến việc thực hiện những thành phần khác nhau
trong một hệ thống thành một khối.
Độ phân giải. Những nhầm lẫn đáng kể thường xuất hiện xung quanh khái niệm
về độ phân giải. Để tránh nhầm lẫn, ta cần một định nghĩa rõ ràng về độ phân giải là
gì và một sự cảm nhận sâu sắc về mục đích của bất kỳ phân tích nào về cơng cụ xử lý
ảnh.
Đối với mục đích của chúng ta, câu hỏi chủ yếu về độ phân giải là: Hệ thống sẽ tái
tạo những chi tiết nhỏ trong đối tượng quan tâm một cách thích hợp? Câu hỏi này có
thể được trả lời dễ dàng nếu đầu tiên chúng ta có một câu trả lời định lượng, ngắn
gọn cho một câu hỏi khác: Hệ thống làm cách nào để tái tạo lại các đối tượng có kích
thước khác nhau? Sau đó, giả sử rằng chúng ta biết kích thước của những chi tiết
đang xét, chúng ta có thể thu được trả lời cho câu hỏi về độ phân giải.
Để tiếp cận với câu hỏi sau, ta áp dụng công cụ của lý thuyết hệ thống tuyến tính
(chương 9) vào những thành phần của hệ thống trước bộ phận lấy mẫu (chuyển đổi
từ dạng tương tự sang dạng số chẳng hạn). Những thành phần này có thể coi như là
các thành phần hệ thống tuyến tính bất biến dịch, để có thể ứng dụng lý thuyết hệ
thống tuyến tính.
Nói chung, chúng ta phân tích dạng ảnh quang học và bộ cảm nhận ảnh (camera)
để xác định kích thước và hình dáng thật sự của điểm quét. Từ đó mà ta có hàm tán
xạ điểm (Point Spread Function-PSF) của hệ thống ảnh và hàm tương đương của nó,
hàm truyền đạt điều biên (Modulation Transfer Function-MTF). Hàm MTF hình
thành đặc điểm định lượng của độ phân giải mà ta cần cho việc phân tích.
Lấy mẫu. Câu hỏi đặt ra đối với các tham số của q trình lấy mẫu có thể được
biểu diễn như sau: Cần có bao nhiêu điểm ảnh và khoảng cách giữa chúng như thế
nào, để đảm bảo cho ảnh số hoá diến đạt được chính xác nội dung của ảnh quang
học? Điều này kéo theo một tập các khái niệm hoàn toàn khác những khái niệm liên
quan đến độ phân giải. Lấy mẫu là q trình phi tuyến hồn tồn và việc không phân
biệt được giữa các khái niệm lấy mẫu và độ phân giải có thể tạo ra sự nhầm lẫm đáng
tiếc.
Để tiếp cận câu hỏi lấy mẫu, ta sẽ áp dụng lý thuyết lấy mẫu (chương 12) vào
bước chuyển đổi tương tự sang số. Đây là một phương pháp đơn giản để xác định
khoảng cách điểm ảnh có đủ nhỏ hay không và miêu tả điều sẽ xảy ra nếu nó khơng
đủ nhỏ.
Hiển thị ảnh. Câu hỏi thứ ba trong phân tích hệ thống ảnh số có thể diễn tả như
sau: Ảnh hiển thị biểu diễn các đối tượng mà ta quan tâm chính xác đến mức nào?
Trong những ứng dụng chỉ bao gồm phân tích định lượng, hiển thị ảnh có thể khơng
quan trọng lắm hay thậm chí không cần thiết. Trong những ứng dụng khác-đặc biệt là
trong xử lý ảnh và trong cách hiểu của con người-nó là một thành phần quan trọng.
Giống như trước đây, hiển thị ảnh là xem xét sự khác nhau nhau giữa khái niệm về
độ phân giải và lấy mẫu, và nó xứng đáng được phân tích riêng biệt.
Chúng ta thừa nhận quá trình hiển thị ảnh là một bước nội suy và áp dụng lại lý
thuyết lấy mẫu. Đây là cách để xác định q trình hiển thị có đúng đắn hay khơng.
Nghiên cứu thực tiễn. Mỗi một q trình trong ba q trình cơ bản đã nói trên
đều được phân tích, người ta có thể kết hợp cả ba kết quả để xác định toàn bộ thiết kế
hệ thống coa cân bằng và chính xác cho các ứng dụng đặc biệt hay không. Cuối
cùng, người ta phải đánh giá hiệu quả của từng giả thiết và sự gần đúng khi phân tích
và kết quả mà nhiễu hệ thống tạo ra.
Trong các chương trước, chúng ta đã trình bày các cơng cụ mô tả kết quả lấy mẫu,
nội suy và lọc tuyến tính. Trước khi chúng ta có thể phân tích một hệ thống đầy đủ,
ta cần có một phương pháp miêu tả những hiệu quả mà thấu kính thường dùng trong
284
hệ thống mang lại. Trong phần sau, chúng ta sẽ trình bày những kỹ thuật phân tích
việc thực hiện những hệ thống quang học và trong phần còn lại của chương này
chúng ta sẽ ứng dụng một kỹ thuật để phân tích những hệ thống ảnh số hồn chỉnh.
15.2. QUANG HỌC VÀ HỆ THỐNG ẢNH
Hệ thống ảnh quang học đóng một vai trị quan trọng trong ảnh số vì hầu như
chúng luôn luôn xuất hiện tại phần trước khi kết thúc một hệ thống xử lý ảnh. Nếu
ảnh được chụp trước khi qt thì phải có một hệ thống thấu kính khác thêm vào để
phân tích.
Các hệ thống quang học tạo ra hai kết quả trên ảnh: phép chiếu, như đã đề cập
trong chương 2, và sự suy biến do nhiễu xạ và quang sai của thấu kính. Phép chiếu
giải thích cho sự đảo ngược của ảnh trên hệ thống toạ độ của nó (quay 1800 chẳng
hạn) và cho sự phóng đại. Lĩnh vực quang học vật lý-lý thuyết nhiễu xạ nói chungcung cấp những cơng cụ mơ tả sự suy biến ảnh do (1) sóng ánh sáng tự nhiên và (2)
quang sai của các hệ thống quang học được thiết kế và chế tạo khơng hồn chỉnh. Vì
vậy, tiếp theo chúng ta sẽ trình bày ngắn gọn những điểm quan trọng của quang học
vật lý. Để giải quyết vấn đề phân tích hệ thống quang học chi tiết hơn, độc giả nên
tham khảo thêm tài liệu về quang học.
15.2.1. Cơ sở của hệ thống quang học
Hình 15-1 cho thấy mơt hệ thống quang học bao gồm một thấu kính đơn giản.
Một nguồn điểm tại gốc của mặt phẳng trung tâm tạo ra một ảnh điểm tại gốc của
mặt phẳng ảnh. Ảnh được tạo ra bởi một nguồn điểm gọi là hàm tán xạ điểm (Point
Spread Function-PSF) trong thuật ngữ quang học. Nó sẽ nhận kích thước nhỏ nhất có
thể được nếu hệ thống là rõ ràng, tức là, nếu
1
1
1
d f di
f
(1)
Trong đó f là tiêu cự của thấu kính. Bằng cách đặt tên như thế này, mặt phẳng tiêu
là mặt phẳng trong không gian đối tượng tạo thành một ảnh rõ nét trên mặt phẳng
ảnh. Thật ngữ này khác thuật ngữ màn trập mặt phẳng tiêu (focal plane shutter) dùng
trong nhiếp ảnh để mô tả lá chắn sáng đặt tại mặt phẳng phim (ảnh).
HÌNH 15-1
Hình 15-1 Một hệ thống ảnh đơn giản
Bằng trực giác, rõ ràng điều này làm tăng cường độ nguồn điểm, dẫn đến tăng tỷ
lệ cường độ ảnh điểm. Nghĩa là thấu kính là một hệ thống tuyến tính hai chiều. Theo
đó thì hai nguồn điểm tạo ra một ảnh trong đó hai điểm kết hợp với nhau bằng phép
cộng.
285
Nếu nguồn điểm di chuyển trục z đến vị trí (x0, y0), thì ảnh điểm di chuyển đến
một vị trí mới được cho bởi
xi Mx0
y i My0
(2)
Trong đó
M
di
df
(3)
Là độ phóng đại của hệ thống.
Hình dạng ảnh điểm không cần thiết phải thay đổi, khi trong các hệ thống quang
học được thiết kế hoàn hảo, khoảng cách trục bên phải nhỏ một cách hợp lý. Vì thế,
hệ thống có thể được giả thiết là bất biến dịch (hay đồng phẳng, theo thuật ngữ
quang học), cũng như tuyến tính và PSF là đáp ứng xung của nó.
15.2.1.1. Tính tuyến tính
Một vật thể chắn sáng được chiếu sáng từ phía trước (epiilluminated) hay một đối
tượng hấp thụ ánh sáng được chiếu sáng từ phía sau (transilluminated) có thể được
coi như nguồn điểm ánh sáng phân bố hai chiều. Ảnh của một đối tượng như trên là
tổng của các điểm PSF phân bố khơng gian. Nghĩa là ảnh có thể được miêu tả như
tích chập đối tượng với PSF của hệ thống quang học.
Hơn nữa, có thể chỉ rõ hoàn toàn một hệ thống đồng phẳng bằng PSF hai chiều
của nó hay hàm truyền đạt quang học (optical transfer function-OTF) hai chiều của
nó. Hàm truyền đạt quang học (OTF) là biến đổi Fourier hai chiều của PSF. Biểu
thức (2) giải thích cho việc thực hiện phép chiếu bới hệ thống quang học, mặc dù tích
chập với PSF làm mất một số chi tiết vốn có trong q trình xử lý ảnh.
15.2.1.2. Bất biến dịch
Hệ thống thấu kính vật lý không phải là bất biến dịch thật sự. Đặc biệt, ảnh sắc nét
suy biến (PSF mở rộng chẳng hạn) như khi ta di chuyển trục, nhưng bất biến dịch là
một hiện tượng dần dần. Đối với một thấu kính chất lượng cao, hàm PSF, mặc dù
không phải là một xung, nhưng ít nhất nó cũng khác 0 trên một phạm vi hẹp. Vì bất
biến dịch là một hiện tượng dần dần, nên chúng ta có thể giả thiết rằng mỗi điểm
được bao quanh bới các điểm lân cận bất biến dịch. Trong lĩnh vực quang học, những
điểm lân cận này được gọi là những vùng đồng phẳng. Vì thế, nếu tính bất biến dịch
khơng là tổng thể, thì hệ thống quang học sẽ được giả thiết là bất biến dich cục bộ
trên phạm vi nhỏ của PSF và tích chập vẫn có hiệu lực trong mơ hình cục bộ.
Thơng thường, chúng ta có thể dùng, với ý nghĩa gần đúng, một hệ thống ảnh
quang học là một hệ thống tuyến tính, bất biến dịch hai chiều. Nếu cần thiết, chúng ta
có thể mơ phỏng hệ thống với hàm PSF có tham số biến thiên không gian. Mặc dù kỹ
thuật này có thể giải thích cho đa số phản đồng phẳng (anisoplanatism) điển hình mà
ta bắt gặp, nhưng nó khơng nhất thiết phải có trong q trình phân tích của các hệ
thống thấu kính chất lượng cao.
15.2.1.3. Các quan hệ cơ bản
Biểu thức (1) và (3) đem lại một tập các cơng thức thường dùng trong phân tích
các hệ thống quang học. Đặc biệt,
f
di
di d f
(4)
di d f
fd f
df f
f
M 1
M
(5)
286
Và
df
fd i
M 1
f
di f
M
(6)
15.2.2. Độ chiếu sáng cố kết (coherent) và khơng cố kết (incoherent)
Trong hình 15-1, nguồn điểm phát ra một sóng ánh sáng hình cầu. Biên độ trường
E giống như một hàm thời gian và khơng gian có thể được viết như sau
u x, y , z , t
a
r
t
c
cos 2 2 t
r
(7)
Trong đó
r x2 y2 z 2
(8)
là bước sóng trung bình của ánh sáng, c là tốc độ ánh sáng và (t) là pha dao
động theo thời gian. Thường thì là hàm ngẫu nhiên. Chú ý rằng (t) cũng là độ rộng
dải (bandwidth) của ánh sáng gần như đơn sắc. Để tiện lợi, ta định nghĩa lượng sóng,
thực chất là một biến tần số, như sau
k
2
(9)
Và loại bỏ thành phần số mũ phức đằng trước. Bây giờ biểu thức (7) trở thành
A
u x, y, z , t e e jkr e jk ct t
r
(10)
Trong phần này, chúng ta đã quan tâm đến sự phân bố không gian của cường độ
ánh sáng trong ảnh điểm. Trong thời gian này, chúng ta sẽ rút gọn e và các thành
phần biến thiên thời gian ngầm định.
Khi được chiếu sáng đơn sắc, đối tượng là phân bố không gian của các nguồn
điểm tại cùng tần số thời gian c/. Nếu tất cả các nguồn điểm đều có quan hệ pha ổn
định thì sự chiếu sáng được gọi là cố kết (coherent). Có thể chúng vẫn dao động ngẫu
nhiên, nhưng chúng vẫn giữ nguyên cách xử lý đồng thời, bảo tồn quan hệ pha ổn
định. Nói cách khác, nếu mỗi nguồn điểm thay đổi pha một cách độc lập, thì sự chiếu
sáng gọi là khơng cố kết (incoherent). Trong trường hợp đó, pha của mỗi nguồn điểm
thay đổi độc lập với các điểm lân cận.
Trong đa số các trường hợp, mắt người hay bộ cảm nhận trung bình thời gian nào
đó thực hiện mục đích cuối cùng của ảnh. Bằng cách lấy trung bình thời gian, các
dao động ngẫu nhiên của (t) được lấy giá trị trung bình.
Trong chiếu sáng cố kết, vì các nguồn điểm dao động cộng hưởng nên quan hệ
pha ổn định cho phép các mơ hình giao thoa (interference) tích cực (constructive) và
tiêu cực (destructive) cùng tồn tại giữa các ảnh điểm. Có thể nhận thấy rõ những mơ
hình giao thoa cân bằng này là một bộ cảm nhận trung bình thời gian. Vì thế, đối với
sự chiếu sáng cố kết, phép tốn tích chập phải được thực hiện trên biên độ phức của
các sóng điện từ.
Trong chiếu sáng khơng cố kết, những quan hệ pha tương đối ngẫu nhiên gây ra
hiện tượng giao thoa. Vì thế, các ảnh điểm làm tăng thêm tính thống kê. Hành động
này được mơ phỏng chính xác nếu tích chập được thực hiện trên cơ sở cường độ
(bình phương biên độ hay năng lượng). Do đó, biên độ phức trong chiếu sáng cố kết
của một hệ thống quang học là tuyến tính, trong khi cường độ ánh sáng khơng cố kết
của hệ thống là tuyến tính.
287
15.2.3. Các nhân tố đặc trưng cho ảnh
Hai nhân tố hạn chế đặc trưng ảnh của một hệ thống quang học là quang sai của
thấu kính và các hiệu ứng nhiễu xạ. Việc thiết kế thấu kính kỹ lưỡng có thể lầm giảm
tối thiểu, mặc dù không thể loại trừ quang sai một cách hoàn toàn. Hiệu ứng nhiễu xạ
là do bản chất sóng của ánh sáng và kích thước hữu hạn của thấu kính. Bởi vì thiết bị
xử lý ảnh thường sử dụng các thiết bị quang học chất lượng cao với các mức quang
sai tương đối thấp, cho nên nó thường nhiễu xạ tại những vị trí bên ngoài hạn chế về
đặc trưng ảnh. Trong phần tiếp theo, chúng ta bắt đầu bằng PSF của một hệ thống
quang học khơng có quang sai (giới hạn nhiễu xạ) và chỉ ra cách giải thích quang sai.
Chúng ta có khả năng xác định rõ một hệ thống quang học bằng PSF giới hạn nhiễu
xạ của nó, bằng dữ liệu PSF do nhà sản xuất cung cấp, hay bằng PSF xác định qua
thực nghiệm.
15.3. HỆ THỐNG QUANG HỌC GIỚI HẠN NHIỄU XẠ
Vì chúng ta đã chứng tỏ rằng, với một ý nghĩa gần đúng hợp lý, mọt hệ thống
quang học là một hệ thống tuyến tính bất biến dịch, chúng ta chỉ cần tìm một biểu
thức biểu diễn cho PSF hay hàm truyền đạt của hệ thống. Trong hình 15-1, nguồn
điểm phát ra một sóng hình cầu, phần nằm trong thấu kính. Hệ số khúc xạ cao của
thấu kính làm sóng chậm lại. Bởi vì thấu kính mỏng gần giống trục hơn so với các
biên, nên các tia trục bị chậm hơn so với các tia bên ngoài. Trong trường hợp lý
tưởng. Sự biến đổi độ mỏng cần thiết phải có để chuyển đổi sóng hình cầu mở rộng
thành sóng hình cầu hội tụ về phía điểm ảnh. Theo định nghĩa, một độ lệch của sóng
ra bất kỳ từ dạng hình cầu là do quang sai. Vì thế, một hệ thống quang học giới hạn
nhiễu xạ tạo ra một sóng ra (hình cầu, hội tụ) tương ứng với sóng vào của một nguồn
điểm (hình cầu, hội tụ).
15.3.1. Hình dạng thấu kính
Đối với một thấu kính mỏng, hai mặt lồi có hệ số phóng đại nhỏ hơn so với tiêu
cự của nó, các bề mặt của thấu kính phải có dạng hình cầu để tạo ra sóng ra hình cầu.
Hơn nữa, tiêu cự f của thấu kính phải được cho bởi biểu thức
1
1
1
n 1
f
R1 R2
(11)
trong đó n là hệ số khúc xạ của thuỷ tinh và R1 và R2 là bán kính mặt cầu trước và
sau của thấu kính.
Đối với các hệ số phóng đại khơng nhỏ so với f, các mặt thấu kính lồi khơng thích
hợp để tạo ra sóng cầu. Các thấu kính trên khơng hội tụ các tia bên ngồi lêng một
điểm trên trục z giống như chúng thực hiện trên các tia gần trục. Hiện tượng này gọi
là quang sai cầu, vì nó là quang sai rút ra (khơng thích hợp) từ dạng hình cầu của các
mặt thấu kính. Các hệ thống quang học chất lượng cao thường dùng các phần tử có
nhiều mặt cầu và nhiều thấu kính để tạo ra quang sai cầu.
15.3.2. Ống kính và hàm con ngươi
Trong hình 15-1, ảnh điểm được tạo thành bằng cách cắt bớt sóng cầu hội tụ là
PSF chính xác của hệ thống. Hình 15-2 cho thấy một cách tương đương khác để tạo
ra một ảnh như vậy. Ở đây, một sóng cầu hội tụ được cắt bởi một màn chắn sáng có
chứa một ống kính. Ống kính thể hiện sự mở rộng cho thấu kính trong hình 15-1.
Những hệ thống quang học đầy đủ hơn có thể bao gồm nhiều ống kính và nhiều thấu
kính, hay các thiết bị điều chỉnh độ mở ống kính. Tuy nhiên, tất cả các ống kính có
thể được hướng đến con ngươi để thực hiện một tác động tại ống kính ra của hệ
288
thống. Trong hình 15-2, ống kính biểu diễn cho ống kính ra có hiệu lực của một hệ
thống thấu kính khơng có quang sai bất kỳ.
Phân bố khơng gian của hệ số truyền trên tấm chắn chứa ống kính là hàm con
ngươi (pupil function). Vì thế, đối với ống kính trịn có đường kính a đặt tại tâm của
hệ toạ độ (xa, ya), hàm con ngươi là
x2 y2
a
a
p x a , y a
a
(12)
HÌNH 15-2
Hình 15-2 Sóng cầu bị cắt
Với những ống kính bình thường, hàm con ngươi giả thiết là chỉ nhận giá trị 0 và
1. Tuy nhiên, nó có khả năng thực hiện những hệ số con ngươi thay đổi bằng cách
chụp ảnh hay các kỹ thuật làm lắng phim kim loại.
Đối với hệ thống khơng có quang sai, hàm con ngươi có giá trị thực; nặt khác nó
sẽ làm nhiễu loạn dạng hình cầu của sóng ra. Các hàm con ngươi mang giá trị phức
được dùng để mô phỏng các hệ thống quang học có quang sai.
Chừng nào mà quá trình phân tích cho phép sử dụng các hàm con ngươi tuỳ ý, thì
ống kính hình trịn là quan trọng nhất trong thực tiễn.
Trường E của sóng cầu hội tụ có biên độ đơn vị trong hình 15-2 có thể được viết
như sau
u xi , yi , z i
1 jkR
e
R
(13)
Dùng những quy ước đã mơ tả có quan hệ với biểu thức (10). R là khoảng cách từ
gốc toạ độ của mặt phẳng ảnh đến điểm (xi, yi, zi). Để xác định sự phân bố của ánh
sáng lên trên mặt phẳng ảnh, chúng ta sẽ áp dụng một nguyên tắc chuyển động sóng
quan trọng.
15.3.3. Nguyên lý Huygens-Fresnel
Một trong những tính chất hữu ích và đáng quan tâm nhất của sự truyền sóng
quang học được nói đến trong nguyên lý Huygens-Fresnel. Nguyên lý này nói rõ
rằng trường gây ra bởi một sóng truyền thẳng tương tự như trường gây ra bởi một số
lượng vô cùng lớn các nguồn điểm thứ cấp phân bố trên tồn bộ sóng truyền thẳng
đó. Trong trường hợp một sóng truyền qua một ống kính thì trường tại điểm bất kỳ
sau ống kính sẽ tương tự như trường gây ra bằng cách lấp đầy ống kính bới các
nguồn điểm thứ cấp có biên độ và pha thích hợp. Một cách chính xác, nguyên lý
Huygens-Fresnel phát biểu rằng trường tại điểm (xi, yi) thuộc mặt phẳng ảnh được
cho bởi
289
u i xi , yi
1
1
u a x a , y a e jkr cos dxa dy a
j A
r
(14)
(Xem hình 15-3) Thành phần ua (xa, ya) là diện tích ống kính và tích phân được
lấy trên độ mở của ống kính. Khoảng cách từ điểm đang xét tại (xi, yi) đến điểm (xa,
ya) trong ống kính là r, trong đó là góc giữa đường nối hai điểm trên và pháp tuyến
của mặt phẳng ống kính.
Với mục đích của chúng ta, phải đủ nhỏ sao cho cos() có thể coi như là bằng 1.
Chúng ta có thể mở rộng giới hạn tích phân của biểu thức (14) ra vơ hạn nếu ta nhân
sóng hội tụ với hàm con ngươi. Điều này thực hiện phép cắt bằng cách cho diện tích
tại mọi nơi trong mặt phẳng con ngươi bằng 0, ngoại trừ vùng bên trong ống kính.
Với những điều kiện trên, biểu thức (14) trở thành
u i xi , yi
px
a
, ya
1 jkR 1 jkr
e
e dxa dya
R
r
(15)
Khoảng cách từ điểm hội tụ tại gốc toạ độ mặt phẳng ảnh đến điểm (xa, ya) trong
ống kính là
R
x a2 y a2 d i2
(16)
Và khoảng cách từ (xa, ya) đến (xi, yi) là
r
xi xa 2 y i y a 2 d i2
(17)
Trong biểu thức (15), số hạng 1/R và 1/r đều xấp xỉ bằng 1/di. Tuy nhiên, trong
các hệ số mũ số hạng R và r có hệ số k lớn và ta phải sử dụng một phép toán gần
đúng tốt hơn.
15.3.4. Phép toán gần đúng Fresnel
Chúng ta có thể đưa hệ số di ra khỏi các biểu thức (16) và (17) và viết lại chúng
như sau
HÌNH 15-3
Hình 15-3 Mơ tả hình học
x
R d i 1 a
di
2
ya
di
2
(18)
Và
290
x xa
r d i 1 i
di
2
yi y a
di
2
(19)
Biểu thức chuỗi nhị thức của căn bậc hai là
1 q 1
q q2
...
2 8
(20)
| q | 1
Nếu chúng ta chỉ sử dụng hai số hạng đầu tiên của biểu thức, ta sẽ đưa được các
xấp xỉ Fresnel vào các khoảng cách trong biểu thức (18) và (19)
1x
R d i 1 a
2 d i
2
2
1 ya
2 di
x x
a
r d i 1 i
d i
2
1 y ya
i
2 di
(21)
2
(22)
15.3.5. Hàm tán xạ điểm cố kết (Coherent Point Spread Function)
Thay thế những xấp xỉ trước đây vào biểu thức (15) ta được
1
u i xi , yi
jd i2
px
a
, y a e
jkd i
1x
1 a
2 d i
1 x x
a
e jkd i 1 i
2 d i
2
2
y a
d i
2
2
(23)
y y a
dxa dy a
i
d
i
Sau khi khai triển các biểu thức và rút ra số hạng, ta có thể viết lại biểu thức (23)
như sau
e jk / 2 di xi yi
j 2 / d i xi xa yi ya
u i xi , yi
dxa dy a
px a , y a e
jd i2
2
2
(24)
Nếu ta thay biến
x a'
xa
d i
y a'
ya
d i
(25)
Thì biểu thức (24) trở thành
u i xi , yi
'
'
jk / 2 di xi2 yi2
e
pd i x a' , d i y a' e j 2 xi xa yi ya dxa' dy a'
j
(26)
Bây giờ chúng ta có một kết quả rất quan trọng mà hàm tán xạ điểm (PSF) cố kết,
ngoài là một hệ số phức, chỉ đơn thuần là biến đổi Fourier hai chiều của hàm con
ngươi.
Hệ số mũ phức trong biểu thức (26) chỉ ảnh hưởng đến pha trong mặt phẳng ảnh
và điều này thường bị các bộ cảm nhận ảnh bỏ qua. Vì thế, đối với mục đích của
chúng ta, số hạng trước dấu tích phân chỉ là một hằng số phức.
Trong hình 15-2, nguồn điểm nằm trên trục z. Trình bày trức đây có thể được thực
hiện với nguồn nằm ngồi trục và nó cũng tạo ra kết quả tương tự, mặc dù đã dịch và
thực hiện theo biểu thức (2). Nghĩa là, theo giả thiết của chúng ta, hệ thống quả thực
291
là bất biến dịch. Tuy nhiên, giống như việc di chuyển điểm ảnh ra khỏi trục, các giả
thiết bắt đầu bị sụp đổ. Vì vậy, PSF của một hệ thống ảnh thực sự thay đổi (đối với
trường hợp tồi tệ hơn) bên ngồi phạm vi đề cập. Tuy nhiên, nó là cách thông thường
để xác định rõ một hệ thống ảnh bằng PSF trên trục của nó.
Biểu thức (26) cho thấy sự phân bố biên độ trong mặt phẳng ảnh được tạo ra
tương ứng với một nguồn điểm tại gốc mặt phẳng tiêu. Các số hạng phức đằng trước
dấu tích phân có liên kết độ sáng của ảnh với độ sáng của nguồn điểm và nó miêu tả
những thay đổi pha trong mặt phẳng ảnh. Bởi vì các bộ cảm nhận ảnh thường bỏ qua
thông tin pha, vấn đề này chúng ta ít quan tâm đến ở đây. Hơn nữa, toàn bộ độ sáng
của ảnh được xác định rất dễ dàng bằng một vài phân tích riêng biệt, để xác định
phần bức xạ nguồn bị thấu kính chặn lại. Vì thế, chỉ các tham số chúng ta đang xét
mới tác động đến chất lượng ảnh-đó là hình dạng PSF.
Chúng ta có thể đơn giản hố ký hiệu một cách đáng kể nếu chúng ta không kiểm
tra biên độ tuyệt đối và bỏ qua các số hạng trước dấu tích phân. Sau đó chúng ta có
thể viết mơie quan hệ tích chập giữa đối tượng (ký hiệu o) và ảnh (ký hiệu i) như sau
ui xi , yi
h x
i
xo , y i y o u o Mxo , My o dxo dy o
(27)
Trong đó đáp ứng xung được cho bởi
h x, y p d i x a , d i y a
(28)
Trong biểu thức (27), số hạng uo(xo, yo) là sự phân bố biên độ của đối tượng và
ui(xi, yi) là đối tượng sau phép chiếu mà không làm suy biến mặt phẳng ảnh. Vì thế,
chúng ta có thể coi việc mơ phỏng như một q trình hai bước: chiếu hình học, tiếp
theo là tích chập trong mặt phẳng ảnh với PSF. Hệ số phóng đại M là âm trừ phi các
trục toạ độ trong mặt phẳng ảnh và mặt phẳng tiêu được quay 1800.
Bình thường thì nó thích hợp nhất để thực hiện q trình phân tích của chúng ta
trong mặt phẳng tiêu. Trong trường hợp đó, chúng ta có thể giả thiết rằng tích chập
với PSF xảy ra trong mặt phẳng tiêu và đơn thuần chỉ là thay thế df cho di trong biểu
thức (28). Sau đó chúng ta nhân chập PSF kết quả với đối tượng uo(xo, yo) không
được chiếu.
15.3.6. Hàm truyền đạt quang học cố kết
Hàm truyền đạt của một hệ thống quang học đơn thuần chỉ là biến đổi Fourier của
đáp ứng xung trong biểu thức (28). Tuy nhiên, đây chính là biến đổi Fourier của hàm
con ngươi. Biến đổi một hàm hai lần chính là đem nó về dạng ban đầu, vì vậy hàm
biến đổi cố kết được cho bởi
H u , v p d i u , d i v
(29)
Trường hợp phổ biến của các ống kính đối xứng, việc quay 1800 khơng có ảnh
hưởng gì. Vì thế, hàm con ngươi, có thể so sánh thích đáng, là hàm truyền đạt quang
học (OTF) cố kết.
15.3.7. Hàm tán xạ điểm (PSF) không cố kết
Một phân bố của các nguồn điểm được miêu tả bởi biểu thức (10) là đầy đủ để mơ
phỏng ba tính chất chiếu sáng: đơn sắc, cố kết dải hẹp và không cố kết dải hẹp. Đối
với chiếu sáng đơn sắc, (t) là hằng số. Nếu ánh sáng là cố kết về khơng gian thì (t)
là ngẫu nhiên, nhưng có một mối quan hệ nhất định với tất cả các điểm khác trong
ảnh. Trường hợp ánh sáng là không cố kết, (t) là ngẫu nhiên tại từng điểm và độc
lập với các điểm xung quanh nó. Trong trường hợp này, cường độ quan sát được tại
mỗi điểm (xi, yi) là
292
I i xi , yi u i xi , y i ui* xi , yi
(30)
Trong đó tốn tử dự tính biểu diễn cho thời gian trung bình trên một chu kỳ so
với chu kỳ dao động của nguồn sáng. Bởi vì ui(xi, yi) là nguồn điểm tại gốc của mặt
phẳng tiêu được cho bởi biểu thức (27), nên ta có thể thay thế vào biểu thức (30) đê
rút ra
I i xi , yi {
h x
i
x1 , y i y1 u o Mx1 , My1 dx1 dy1
(31)
h xi x 2 , yi y 2 u o* Mx 2 , My 2 dx2 dy 2 }
Vì h(x, y) khơng phụ thuộc vào thời gian nên ta có thể sắp xếp lại biểu thức (31)
I i x i , y i
h x
i
x1 , yi y1 h * xi x2 , yi y 2
(32)
u o Mx1 , Mx 2 u o* Mx 2 , My 2 dx1dy1 dx2 dy 2
Số hạng dự tính đơn giản chỉ là hàm thời gian tương quan chéo của uo tại (x1, y1)
và (x2, y2). Vì tương quan chéo của các nguồn điểm ảnh khác nhau là 0, trong trường
hợp chiếu dáng không cố kết, nên đây là xung đơn vị không gian. Hơn nữa, nếu x1 =
x2 và y1 = y2 thì giá trị của số hạng dự tính chỉ là cường độ của ảnh tại điểm đó.
Nghĩa là
u o Mx1 , Mx2 u o* Mx2 , My 2 I o Mx1 , My1 x1 x2 , y1 y 2 (33)
Thay vào biểu thức (32) và tính tích phân để loại bỏ các biến x2 và y2, ta được
2
I i xi , yi h xi xo , yi y o I o Mxo , My o dxo dyo
(34)
Trong đó các biến xo và yo thay cho x1 và y1.
Biểu thức (34) là tích phân chập hai chiều. Nó cho thấy rằng, với ánh sáng không
cố kết, hệ thống là tuyến tính về cường độ và PSF là mơ đun bình phương của h(x, y),
PSF cố kết. Đây là biến đổi Fourier ngược của hàm con ngươi, cho bởi biểu thức
(29). Vì thế, PSF khơng cố kết là phổ năng lượng của hàm con ngươi.
15.3.7.1. Ống kính hình trịn
Một thấu kính với ống kính có đường kính a nằm trong miền ánh sáng dải hẹp,
khơng cố kết có bước sóng trung tâm là , thì PSF là
r
J 1
r0
h( r ) 2
r
r0
2
(35)
Trong đó J1(x) là hàm Bessel loại một bậc nhất. Hệ số hằng tỷ lệ một chiều là
r0
d i
a
(36)
Và r là khoảng cách bán kính đo được từ trục quang học của mặt phẳng ảnh; tức
là
r xi2 y i2
(37)
293
15.3.8. Hàm truyền đạt quang học không cố kết
Biến đổi Fourier của hàm PSF không cố kết được đơn giản hố gọi là OTF khơng
cố kết. Bởi vì PSF khơng cố kết là phổ năng lượng của của hàm con ngươi, nên lý
thuyết tự tương quan bao hàm rằng OTF không cố kết là hàm tự tương quan của hàm
con ngươi đã đơn giản hóa:
OTF u , v
Rp
pd x, d y pd x u, d y v dudv
0,0
p d x, d y dxdy
R p u , v
i
i
i
i
(38)
2
i
i
15.3.8.1. Ống kính hình trịn
Một thấu kính với ống kính có đường kính a nằm trong miền ánh sáng dải hẹp,
khơng cố kết có bước sóng trung tâm là , thì OTF là
H q
1 q
2 1 q
cos sin cos
2
fc
f c
(39)
Trong đó q là biến tần số khơng gian, là bán kính đo được trong khơng gian tần số
hai chiều. Nó được cho bởi
q u2 v2
(40)
Trong đó u và v là các tần số không gian theo các chiều x và y tương ứng. Tham
số fc gọi là tần số cắt quang học (optical cutoff frequency), xác định từ
fc
1
a
r0 d i
(41)
Hình 15-4 minh hoạ cho mối quan hệ, đối với ống kính hình trịn và hình chữ
nhật, giữa hàm con ngươi, hàm tán xạ điểm cố kết, hàm tán xạ điểm không cố kết và
các hàm truyền đạt. Lưu ý rằng đối với chiếu sáng cố kết, OTF hoàn toàn nằm ngoài
tần số cắt, trong khi đối với chiếu sáng khơng cố kết, nó lần lượt mất đi.
HÌNH 15-4
Hình 15-4 Những tính chất quang học của ống kính hình trịn và hình chữ nhật
15.3.9. Thiết kế hàm truyền đạt quang học
Nếu con ngươi ra của một hệ thống quang học là một ống kính, hàm con ngươi
p(x, y) chỉ nhận các giá trị 0 và 1. Chúng ta có thể thực hiện một vài tác động lên trên
OTF bằng cách lựa chọn ống kính kỹ lưỡng. Thực tế, vì các kỹ thuật chụp ảnh hay
294
làm lắng phim kim loại đều có thể dùng để thực hiện các hàm con ngươi với các giá
trị trung gian, mà chúng ta có thể tác động đáng kể trên OTF.
Ví dụ, Frieden đã tính các hàm con ngươi hình trịn mà OTF đạt cực đại tại những
tần số riêng biệt. Một vài trong số những hàm này và những OTF tương ứng của nó
được cho trong hình 15-5. Chú ý rằng ống kính hình trịn rất khả quan cho việc cực
đại hoá OTF tại những tần số trung bình và cải tiến đơi chút bằng cách tác động lên
hàm con ngươi là có thể được. Để cực đại hoá OTF tại những tần số thấp, ta phải làm
cho hệ số truyền của con ngươi suy giảm bằng cách tăng bán kính. Đây gọi là tính
xác thực. Một thiết bị điều chỉnh độ mở trung tâm có đường kính thích hợp rất khả
quan cho việc cực đại hố OTF tại các tần số trên mức trung bình.
15.3.10. Hàm truyền đạt quang học và hàm truyền đạt điều biến
OTF giá trị phức xác định rõ cách mà thấu kính có thể tái tạo, trong mặt phẳng
ảnh, các đặc tính điều hồ xảy ra trong mặt phẳng tiêu. Mơ đun (độ lớn) của OTF là
hàm truyền đạt điều biến (Modulation Transfer Function-MTF) đã đề cập đến ở
chương 2.
Các thấu kính chất lượng cao được thiết kế để mở đầu cho độ dịch pha và thường
được giả thiết là không pha. Nghĩa là OTF suy giảm đến MTF (giá trị thực). Với
nhiều mục đích, người ta có thể sử dụng thuật ngữ OTF hay MTF thay đổi cho nhau
những hay ít. Như đã nói rõ trước đây, giá trị của MTF tại một tần số riêng biệt là hệ
số mà sự tương phản của các đặc trưng điều hoà trong ảnh tại tần số đó được nhân
trong q trình mơ phỏng.
Tính đối xứng. Vì OTF là biến đổi Fourier hai chiều của PSF, nên nếu PSF là
hàm chẵn (đối xứng qua trục x và y) thì OTF sẽ có giá trị thực và cũng là một hàm
chẵn. bởi vì ống kính là hình trịn nên ảnh mà nó tạo thành tự một nguồn điển cũng
đối xứng hình trịn. Vì thế, một hệ thống khơng pha, một PSF trịn và OTF giá trị
thực có liên quan chặt chẽ với nhau.
Theo biểu thức trong hình 15-5, hiển nhiên là tần số cắt có thể được cải tiến (làm
tăng) bằng cách thử thay một độ mở ống kính lớn hơn hay bước sóng ngắn hơn.
Do PSF và OTF được liên kết bới biểu diễn Fourier hai chiều nên người ta cũng
có thể thu nhận được chúng bằng các cách khác.
15.4. QUANG SAI CỦA HỆ THỐNG ẢNH
Trong những thảo luận trước đây, ta đã đề cập đến một hệ thống quang học không
quang sai tạo ra một sóng cầu. Quang sai trong hệ thống quang học tạo ra sóng cầu
xuất phát từ dạng hình cầu lý tưởng của nó. Điều này có thể được mơ phỏng như
trước đây, dùng hình 15-2, nếu ta tổng qt hố hàm con ngươi bằng cách định nghĩa
nó như sau
p x, y T x, y e jkW x , y
(42)
Trong đó T(x, y) là hệ số truyền của con ngươi và W(x, y) là quang sai. W(x, y) là
sự chênh lệch về độ dài đường đi, theo bước sóng, giữa đường truyền (sóng cầu) thực
tế và lý tưởng từ điểm (x, y) trong ống kính đếm tâm mặt phẳng ảnh.
15.4.1. Quang sai của thấu kính
Hàm quang sai W(x, y) được chọn đúng đắn sẽ cho phép ta mơ phỏng các tác động
của quang sai cầu, ngồi tiêu điểm (defocus), loạn thị (astigmation), côma, trường
cong (field curvature) và méo ảnh (image distortion). Trường cong đề cập đến hiện
tượng bề mặt của tiêu điểm chính là một mặt cong chứ không phải là mặt phẳng ảnh
(phẳng). Loạn thị là tình trạng mà trong đó các tia tới đi qua con ngươi thuộc trục xa
không hội tụ vào cùng một điểm như các tia tới thuộc trục ya. Sự méo là do các
đường thẳng trên mặt phẳng tiêu được biểu diễn như các đường cong trên mặt phẳng
295
ảnh. Côma đề cập đến trạng thái các tia từ một điểm đơn trên mặt phẳng tiêu, đi qua
mặt đối diện của ống kính, hội tụ đến một điểm khác trên mặt phẳng ảnh.
Mặc dù một nghiên cứu đầy đủ về quang sai quang học vượt ra ngồi mục đích
của chúng ta, nhưng trong lĩnh vực đó có hai kết quả mà ta phải quan tâm. Thứ nhất,
không tồn tại hàm hệ số truyền T(x, y) mà có thể khiến cho OTF âm. Thứ hai, khơng
có hàm quang sai W(x, y) nào có thể làm tăng OTF tại tần số bất kỳ, nhưng quang sai
có thể thực sự khiến cho OTF âm.
Hình 15-6 minh hoạ tác động của quang sai cầu lên OTF. Trong trường hợp này,
có một sự chênh lệch về độ dài đường đi giữa tia chính và tia phụ. Mặt phẳng ảnh
được đặt ở giữa tiêu cự chính và tiêu cự phụ.
HÌNH 15-6
Hình 15-6 Tác động của quang sai cầu lên OTF
15.4.2. Ngồi tiêu điểm (defocus)
Hình 15-7 minh hoạ tác động của các lượng ngoài tiêu điểm khác nhau. Ở đây
ngoài tiêu điểm được đo bằng đơn vị bước sóng của sai số ngồi tiêu điểm (chênh
lệch về độ dài đường đi giữa tia chính và tia phụ), chứ khơng phải bằng chính
khoảng cách ngồi tiêu điểm. OTF ngoài tiêu điểm đối xứng với sai số ngoài tiêu
điểm; tức là, lượng ngoài tiêu điểm âm và dương bằng nhau sẽ cho cùng một OTF.
Tuy nhiên, do sai số ngồi tiêu điểm là đơn điệu, nhưng khơng tuyến tính, với
khoảng cách ngồi tiêu điểm, nên OTF trước và sau mặt phẳng ảnh khơng có cùng
một khoảng cách.
HÌNH 15-7
Hình 15-7 Tác động ngồi tiêu điểm lên OTF
Lưu ý rằng, đối với một lượng ngoài tiêu điểm lớn, OTF sẽ coa giá trị âm tại một
vài tần số. Đó là kết quả của việc đảo ngược đen sang trắng các cấu trúc tần số trong
296
ảnh. Điều này đợc minh hoạ trong hình 15-8. Tần số tăng đến gần tâm của hình nan
hoa (spoke target) (a) và pha đảo là hiển nhiên trong ảnh ngoài tiêu điểm (b). Hiện
tượng ngoài tiêu điểm và chiều sâu của trường sẽ được đề cập chi tiết hơn trong phần
22.2.5.
HÌNH 15-8
Hình 15-8 Pha đảo do ngồi tiêu điểm: (a) ảnh tiêu điểm của một hình nan hoa;
(b) ảnh ngồi tiêu điểm
15.5. ĐỘ PHÂN GIẢI CỦA HỆ THỐNG ẢNH
Hình 15-9 minh hoạ, chi tiết hơn hình 15-4, hàm tán xạ điểm của hệ thống quang
học giới hạn nhiễu xạ với các con ngươi hình trịn và hình chữ nhật.
HÌNH 15-9
Hình 15-9 Tổng kết những tính chất của ống kính
Khoảng cách Rayleigh. Đối với một thấu kính mang ống kính trịn thì giád trị 0
đầu tiên của mặt phẳng ảnh PSF xuất hiện tại bán kính
1.22
d i
a
(43)
được gọi là bán kính của đĩa Airy. Theo tiêu chuẩn Rayleigh về độ phân giải thì
hai nguồn điểm có thể được giải quyết nếu trong ảnh, chúng tách biệt nhau một
khoảng . (Xem hình 15-10)
297
HÌNH 15-10
Hình 15-10 Tiêu chuẩn độ phân giải Rayleigh
Theo thuật ngữ quang học, khoảng cách Rayleigh định nghĩa phần tử phân giải
hình trịn trong ảnh, vì hai nguồn điểm có thể được giải quyết nếu chúng không cùng
nằm trong phạm vi một phần tử phân giải.
Khoảng cách Abbe. Với ý nghĩa gần đúng nhất, đường kính nửa biên độ đỉnh
giữa của mặt phẳng ảnh PSF được cho bởi khoảng cách Abbe.
r0
d i
a
(44)
Những camera thu nhận những đối tượng gần như phẳng, giống như chụp ảnh trên
không, ảnh vệ tinh và ảnh qua kính hiển vi, rất thuận tiện để thực hiện tính tốn kích
thước trong mặt phẳng tiêu hơn là tính tốn trong mặt phẳng ảnh, bởi vì đó là nơi tập
trung những đối tượng mà ta quan tâm. Điều này bao gồm cả một phép quay 1800 và
một phép tỷ lệ với hệ số M (biểu thức (3)). Khoảng cách điểm ảnh và độ phân giải có
thể xác định bằng số chu kỳ trên mét, chu kỳ trên micro mét, …, trong mặt phẳng
tiêu.
15.5.1. Camera
Khi thao tác với thấu kính camera, thường thì df >> di f, và độ phóng đại M <<
1 (biểu thức (3)). Việc xác định đường kính ống kính sẽ thuận tiện hơn nhờ sử dụng
số f.
f # f / a
(45)
Số f, hay giới hạn f, của một thấu kính thường được viết dưới dạng f/5.6 chẳng
hạn, nghĩa là a = f/5.6. Những thiết lập giới hạn f trên các thấu kính camera thường
được phân biệt theo luỹ thừa căn bậc hai của hai ( 2 ). Phương pháp này, một giới
hạn làm thay đổi gấp đơi hay một nửa diện tích ống kính và vì vậy, nó làm thay đổi
cường độ ánh sáng chiếu lêm phim (sự phơi sáng chẳng hạn).
Tần số cắt quang học không cố kết trong hệ thống toạ độ mặt phẳng ảnh của một
camera là
f c a / d i 1 / f #
(46)
Khoảng cách Abbe trong mặt phẳng ảnh là
r0 d i / a f #
(47)
Và khoảng cách Rayleigh (đường kính phần tử phân giải) trong mặt phẳng ảnh là
fc
1
a
r0 d i
(48)
Những xấp xỉ này cũng thường thoả mãn, ngoại trừ trường hợp ảnh chụp quá lớn
(cận cảnh), trong đó di trở nên lớn hơn f một cách đáng kể.
298
15.5.2. Kính thiên văn
Một hệ thống ảnh thiên văn chĩa vào bề mặt một hình tinh có thể được coi như là
một hệ thống camera sử dụng cơng thức có trước, mặc dù bề mặt có thể phải mơ
phỏng là mặt cầu thay vì là mặt phẳng. (Xem chương 8) Tuy nhiên, trong thiên văn
học, sự cách biệt giữa các vật thể thường được xác định theo đơn vị góc (độ, phút và
giây) chứ khơng phải đo lường tuyến tính.
Đối với mục đích thực tiễn, các ngơi sao là các nguồn điểm. Tức là, kích thước
ảnh của một ngơi sao nhỏ hơn nhiều lần so với PSF của một kính thiên văn quang
học tốt nhất. Vì thế, mỗi ngơi sao tạo ra trên mặt phẳng ảnh khơng phải ảnh của
chính nó, mà là một bản sao PSF của hệ thống quang học. Đó là kích thước của PSF
xác định mức độ gần nhau của hai ngơi sao (tính theo góc) và mặc dù nó được giải
quyết trong ảnh như những thực thể riêng biệt.
Việc xác định các kính thiên văn bằng đường kính ống kính của chúng và số f
(biểu thức (45)) thật thuận tiện. Chẳng hạn như đối với hệ thống camera, df >> di f,
và sự xấp xỉ này hầu như ln ln có giá trị. Với những điều kiện này, tần số cắt
quang học không cố kết trong hệ toạ độ góc đặt trên kính thiên văn (tính bằng chu kỳ
trên radian) là
fc a /
(49)
Trong khi đó khoảng cách góc Abbe (tính bằng radian) là
r0 / a
(50)
Và khoảng cách góc Rayleigh (tính bằng radian) là
1.22 / a
(51)
15.5.3. Kính hiển vi
Trong kính hiển vi quang học, di được đặt bằng độ dài ống quang học của kính
hiển vi. Độ dài ống cơ học-khoảng cách từ mép khung thấu kính đến mặt phẳng ảnhthường là 160 mm. Tuy nhiên, độ dài ống quang học thường là từ 190 đến 210 mm,
tuỳ thuộc nhà sản xuất. Trong trường hợp bất kỳ, di >> df f và M >> 1, ngoại trừ
khi sử dụng một thấu kính có độ phóng đại thấp (nhỏ hơn 10 lần). Bình thường, đó là
mục tiêu để xác định chất lượng ảnh, quy định rằng các thành phần quang học cịn lại
trong thiết bị được sắp xếp hồn tồn và đúng đắn.
Thơng thường để chỉ rõ mục tiêu khơng phải bằng tiêu cự và đường kính ống
kính, mà bằng hệ số (chẳng hạn như là: độ phóng đại, biểu thức (3)) và hệ số ống
kính, được định nghĩa như sau
NA n sin a / 2d f a / 2 f
(52)
Trong đó n là hệ số khúc xạ của mơi trường (khơng khí, nước hay dầu) đặt giữa
mẫu vật và thấu kính, và = artan(a/2df) là góc giữa trục quang học và một tia phụ
từ gốc của mặt phẳng tiêu đến cạnh ống kính. Những xấp xỉ trong biểu thức (52) giả
thiết ống kính nhỏ và độ phóng đại cao. Các nhà sản xuất kính hiển vi thường khắc
hệ số phóng đại và hệ số ống kính lên các thấu kính của họ, cịn tiêu cự và đường
kính ống kính thực tế ít được sử dụng.
Thường thường, thấu kính tạo thành một ảnh trực tiếp lên bộ cảm nhận ảnh và
khoảng cách điểm ảnh giảm tỷ lệ từ bộ cảm nhận đến mẫu vật theo một hệ số xấp xỉ
với hệ số đích. Trong các trường hợp khác, độ phóng đại cộng thêm được đưa vào
bằng những thấu kính trung gian đặt giữa mục tiêu và camera. Thị kính của kính hiển
vi, coi như quy ước tính tốn độ phóng đại, khơng có ảnh hưởng đến khoảng cách
299
điểm ảnh. Một cách lý tưởng, người ta nên đo chứ khơng nên tính khoảng cách điểm
ảnh trong một ảnh số hiển vi.
Vì df f, nên các tham số độ phân giải sẽ đơn giản hơn nếu chúng ta thao tác
chúng với mặt phẳng tiêu (mẫu vật) hơn là làm việc trên mặt phẳng ảnh. Đối với một
mục tiêu hiển vi, tần số cắt không cố kết trong hệ toạ độ mặt phẳng tiêu là
f c Ma / d i a / d f 2 NA /
(53)
Khoảng cách Abbe là
r0
df
1 di
M a
a
2 NA
(54)
Và khoảng cách Rayleigh (đường kính phần tử phân giải) là
1.22r0 0.61 / NA
(55)
Những xấp xỉ đã nói ở trên bắt đầu đổ vỡ tại hệ số thấp và NA cao, chúng thường
không cùng xuất hiện. Người ta có thể tính tốn và so sánh f với a, hay các góc
arctan(a/2df) với arcsin(NA/n), để định lượng mức độ gần đúng.
15.6. PHÂN TÍCH CÁC HỆ THỐNG ĐẦY ĐỦ
Bây giờ chúng ta đã có các cơng cụ để miêu tả các tác động của quang học, lấy
mẫu, lọc và nội suy. Trong phần còn lại của chương này, chúng ta sẽ áp dụng những
kỹ thuật đã chọn này để phân tích các hệ thống ảnh số đầy đủ.
Liên quan đến vấn đề này, chúng ta sẽ tìm kiến những phương pháp để xác định
một hệ thống đặc biệt có đủ và giá cả có gây ấn tượng cho thực hiện xử lý ảnh và các
đề tài phân tích định lượng ảnh có đáng mong đợi hay khơng. Chúng ta cũng sẽ tìm
kiếm một sự điều chỉnh giữa những thành phần hệ thống con sao cho toàn bộ những
thực hiện của hệ thống là thích đáng và khơng có thành phần nào thể hiện sự tàn phá
quá nghiêm trọng.
15.6.1. Độ phân giải
Trước khi có thể trình bày một tiếp cận cố kết để xác định độ phân giải của một hệ
thống ảnh, chúng ta phải phát biểu mộ vài định nghĩa. Những định nghĩa này không
mang ý nghãi tiêu chuẩn, nhưng chúng tạo thành cơ sở thực tế để ta có thể dựa vào
đó mà thực hiện.
15.6.1.1. Định nghĩa
Nói đến độ phân giải, chúng ta nghĩ ngay đến khả năng tạo ra độ tương phản giữa
các đối tượng với nhiều kích thước khác nhau của một hệ thống ảnh. Đặc biệt đáng
quan tâm là những đối tượng nhỏ hơn, vì chúng thường gây rắc rối hơn cả. Thuật ngữ
tương phản đề cập đến sự khác nhau về cường độ trong một đối tượng hay giữa một
đối tượng với nền xung quanh. Nếu một đối tượng khơng cịn tương phản do q
trình xử lý, trong ảnh nó có vẻ mờ nhạt hơn so với ngồi thực tế. Nếu độ tương phản
của nó giảm đến 0 thì nó sẽ biến mất.
Phương pháp hữu ích nhất để xác định số lượng khái niệm về kích thước đối
tượng là bằng tần suất khơng gian, theo chu kỳ hay cặp dòng trên đơn vị chiều dài.
Với mục đích của chúng ta, biểu thức thuận tiện nhất về độ phân giải của một hệ
thống ảnh là MTF của nó. Vì đây là hàm thực, nên nó chỉ giải thích vấn đề mất tương
phản của đối tượng trong suốt q trình xử lý và khơng có tác dụng đối với bất kỳ sự
dịch vị trí (pha) nào. Hàm truyền đạt phức giải thích cho cả hai và có thể sử dụng nếu
thấy cần thiết.
300
Tuy nhiên, thơng thường thì các thành phần của một hệ thống ảnh số được giả
thiết là hệ thống tuyến tính, bất biến dịch, khơng pha. Hàm truyền đạt cảu một thành
phần không pha là thực (không phải phức) và chỉ là MTF. Vì thế, MTF cho biết tất
cả những điều cần thiết về hệ thống tuyến tính, bất biến dịch, không pha và dùng để
xác định độ phân giải rất thuận tiện.
15.6.1.2. MTF của hệ thống ảnh
Các hệ thống ảnh số thường bao gồm một tầng các thành phần để ảnh tuần tự đi
qua. Những MTF của các hệ thống con này kết hợp bằng phép nhân để tạo thành
MTF chung cho hệ thống. Vì thế, nếu biết những MTF của các thành phần riêng lẻ
thì MTF của tồn bộ hệ thống ảnh có thể được xác định bằng cách nhân các MTF
riêng lẻ với nhau.
Các MTF riêng lẻ thường nhân giá trị nhỏ hơn 1 trên toàn bộ phạm vi tần số. Do
đó, tích của chúng sẽ nhỏ hơn MTF nhỏ nhất tại mọi nơi và độ phân giải chung của
hệ thống sẽ tệ hơn liên kết lỏng lẻo nhất trong chuỗi xử lý ảnh.
Thường thì các thành phần để xác định độ phân giải được đặt giữa đối tượng xem
xét và bộ chuyển đổi tương tự sang số (ADC). Do nguyên nhân này mà ta sử dụng
MTF của hệ thống ảnh như sự xác định rõ độ phân giải cơ bản của một hệ thống ảnh
số. Theo định nghĩa, đây là MTF tổng hợp của tất cả các thành phần tuyến tính đứng
trước bộ chuyển đổi tương tự-số.
MTF của một hệ thống ảnh số thường được xác định chủ yếu bởi hai thành phần:
bộ thu nhận ảnh cơ bản (thấu kính hay gương) và bộ cảm nhận ảnh (camera). Bộ thu
nhận ảnh cơ bản là thấu kính camera chính, thấu kính thiên văn hay hiển vi, hoặc
gương kính thiên văn. Nói chung, có thể có nhiều thấu kính, bộ lọc, gương và bộ tách
tia theo hướng quang học từ đối tượng đến bộ cảm nhận. Tuy nhiên, bộ thu nhận ảnh
cơ bản cùng với camera nói chung là thành phần hạn chế độ phân giải và xác định
toàn bộ chất lượng ảnh.
Một cách lý tưởng (giải pháp tốt nhất), PSF sẽ là những vấu vô cùng hẹp và khơng
có cạnh. Từ biểu thức (35), chúng ta thấy rằng hệ số tỷ lệ r0 là một yếu tố về độ rộng
của PSF. Nó sẽ trở nên nơor hơn với độ mở ống kính lớn hơn và nó nhận giá trị nhỏ
hơn tại các bước sóng ánh sáng chiếu ngắn hơn (biểu thức (36)). Các vấu cạnh không
thể loại bỏ được hết.
15.6.1.3. Độ mở ống kính, bước sóng và độ phân giải
Trong hình 15-4 và 15-9, PSF có giá trị 0 đầu tiên tại bán kính 1.22r0. Theo tiêu
chuẩn Rayleigh về độ phân giải, có thể phân biệt hai nguồn điểm nếu chúng được
tách ra theo khoảng cách trong mặt phẳng tiêu. (Xem lại phần 15.5) Vì thế, một
phương pháp phổ biến để xác định độ phân giải của một hệ thống ảnh là tiêu chuẩn
Rayleigh. Lưu ý rằng độ phân giải trở nên tốt hơn (r0 trở nên nhỏ hơn) ở bước sóng
bgắn hơn và với độ mở ống kính lớn hơn.
Một cách khác để xác định độ phân giải của một thấu kính là bằng hệ số phóng
đại của đỉnh giữa của PSF. Với ý nghĩa gần đúng nhất, hệ số phóng đại tương đương
của PSF cũng được cho bởi khoảng cách Abbe. Vì thế, giống như độ phân giải, hệ sơ
phóng đại PSF trở nên nhỏ hơn tại bước sóng ngắn hơn và với độ mở ống kính lớn
hơn.
Để hiễu rõ hơn về vấn đề độ mở ống kính lớn hơn sẽ cải thiện độ phân giải như
thế nào, hãy xem xét hoạt động của một kính hiển vi. Giống như ánh sáng chiếu song
song theo trục quang học vào mẫu vật từ phía bên dưới, những cấu trúc nhỏ tại đó
làm cho ánh sáng đổi hướng, do hiện tượng nhiễu xạ. Các cấu trúc nhỏ hơn thì góc
nhiễu xạ lớn hơn. Đối với các cấu trúc bên dưới kích thước giới hạn, ánh sáng bị
nhiễu xạ theo cách chúng sẽ ra khỏi mẫu vật với góc là cho nó đi ra ngồi thấu kính
và vì thế sẽ khơng góp phần vào sự tạo thành ảnh. Việc tăng đường kính của lỗ ống
301
kính sẽ cho phép ánh sáng nhiễu xạ bởi các cấu trúc nhỏ hơn, góp phần tạo thành
ảnh.
15.6.2. Khoảng cách điểm ảnh
Chúng ta đã trải qua một vài kỹ thuật phân tích độ phân giải, lấy mẫu và hiển thị
khác nhau. Bây giờ chúng ta sẽ kết hợp chúng lại để định rõ một hệ thống ảnh số
hoàn chỉnh.
Đối với kính hiển vi, cũng như đối với các camera thu nhận các đối tượng hai
chiều, việc kết hợp đó rất thuận tiện để xem xét tất cả các kích thước mặt phẳng tiêu
(đối tượng). Điều này dễ dàng được thực hiện nếu biết trước các hệ số phóng đại
thích hợp. Những hệ số này được tính tốn hay đo lường với sự giúp đỡ của một tiêu
chuẩn kiểm tra. Việc đo góc đối với kính thiên văn là thuận lợi nhất.
Hình 15-11 cho thấy ba tham số được làm phù hợp trêm mặt phẳng tiêu. Ở đây, F
= 1/T là tần số không gian đang xem xét cao nhất biểu thị cho mẫu vật. T là chu kỳ
của chi tiết quan tâm nhỏ nhất trong mẫu vật. Trong hình, nhiễu trội hơn phổ tại các
tần số bên trên F. Fs = 1/x là tần số lấy mẫu, trong đó x là khoảng cách lấy mẫu và
fc là tần số cắt của MTF hệ thống ảnh.
Theo kinh nghiệm, đường kính W của điểm quét (MTF hệ thống ảnh), ám chỉ mặt
phẳng tiêu, không nên lớn hơn một nửa T. Nghĩa là một điểm quét sẽ thích hợp trong
phạm vi một nửa chu kỳ của sóng sin tần số cao nhất. Một điểm quét lớn hơn có ý
thiên về làm giảm độ tương phản của chi tiết ảnh, vì nó hành động như một bộ lọc
thơng thấp.
HÌNH 15-11
Hình 15-11 Các tham số độ phân giải và lấy mẫu trong miền tần số
15.6.2.1. Tiêu chuẩn lấy mẫu Nyquist
Các tần số biểu thị trong đối tượng cao như thế nào chẳng quan trọng, không một
thông tin nào bên trên tần số cắt của MTF được biểu hiện trong bộ số hố. Tần số
này có thể không cao hơn tần số cắt của OTF thấu kính hay gương ảnh cơ bản. vì thế,
nếu ta đặt tần số cơ bản (một nửa tần số lấy mẫu) bằng tần số cắt OTF, sẽ tránh được
hiện tượng trùm phổ và phép nội suy thích hợp có thể khơi phục lại ảnh từ các điểm
mẫu mà không hề sai sót. Việc thiết lập tần số cơ bản bằng tần số cao nhất có trong
ảnh gọi là lấy mẫu theo tiêu chuẩn Nyquist. Nó đặt khoảng cách điểm ảnh bằng f/2
đối với camera, bằng /2a đối với kính thiên văn và bằng /4NA đối với kính hiển vi.
15.6.2.2. Tiêu chuẩn lấy mẫu Rayleigh
Tiêu chuẩn độ phân giải Rayleigh mang lại khái niệm về khoảng cách điểm ảnh
khá dễ hiểu. Nếu khoảng cách lấy mẫu bằng một nửa khoảng cách Rayleigh, thì các
điểm ảnh sẽ nằm liên tiếp nhau trên và giữa các nguồn điểm tách biệt nhau trong ảnh.
Trong trường hợp này, các nguồn điểm có thể được giải quyết theo ảnh số. Khoảng
302
cách điểm ảnh sẽ là 0.61 đối với camera, là 0.61/a đối với kính thiên văn (theo
radian) và bằng 0.305/NA đối với kính hiển vi. Giá trị này lớn hơn tiêu chuẩn
Nyquist 22%. Nó đặt tần số cơ bản bằng 82% tần số cắt OTF. Hiện tượng trùm phổ
có thể xảy ra trong trường hợp này, mà không làm cho cường độ OTF xuống thấp
hơn 18% (đặc biệt khi nếu có quang sai), nó hồn tồn trái ngược trong nhiều trường
hợp thực tế.
15.6.2.3. Lấy mẫu chồng (Oversampling) và lấy mẫu lại (Resampling)
Lấy mẫu chồng có thể được dùng như một biện pháp hiển thị điểm gần điểm cực
thuận (chương 3) và các sai số khách quan khi rời rạc hoá ảnh. Để hiển thị một chi
tiết với chất lượng tốt (bằng điểm hiển thị Gauss khơng cố kết), có thể cần phải lấy
mẫu chồng ảnh bằng một hệ số thích hợp hay lấy mẫu lại ảnh bằng phép nội suy số
trước khi hiển thị. (Xem chương 3) Thêm vào đó, để có được số liệu đo lường chính
xác các đối tượng trong ảnh số hố, cũng có thể cần lấy mẫu chồng hay lấy mẫu lại
ảnh trước khi phân tích, hay xây dựng quá trình lấy mẫu lại hay điều chỉnh đường
cong thành các thuật giải quy ước.
Xem việc đo chu vi một đối tượng trong ảnh hiển vi đã số hố như một ví dụ. Nếu
người ta lập trình một thuật giải tìm chu vi đơn giản mà chỉ đơn thuần là cộng các
khoảng cách từ tâm đến tâm của các điểm ảnh liền kề nhau trên đường bao, thực tế
người ta sẽ thu được chu vi của một đa giác có hình dáng gần giống như đối tượng.
Nếu khoảng cách điểm ảnh được chọn chỉ để thoả mãn tiêu chuẩn Rayleigh hay tiêu
chuẩn Nyquist, thì sự gần giống này có thể dẫn đến những sai lầm khơng thể chấp
nhận được. Vấn đề có thể được khắc phục nếu thuật giải thay vì làm khớp các cung
của các đường cong (bậc hai hay bậc ba chẳng hạn) nhờ các điểm bao quanh và đo
khoảng cách chu vi theo những điểm này. Chủ đề này sẽ được đề cập đến trong
chương 19.
15.6.3. MTF hệ thống
Hình 15-12 cho thấy một mơ hình hệ thống tuyến tính của một hệ thống xử lý ảnh
số điển hình. Nếu ta giả thiết rằng mỗi mắt xích trong chuỗi là một hệ thống tuyến
tính bất biến dịch, thì tồn bộ q trình có thể được mô phỏng bằng một PSF đơn hay
hàm truyền đạt. Các MTF kết hợp với nhau bằng phép nhân và các PSF kết hợp bằng
tích chập. Độ chính xác của quá trình phân tích phụ thuộc vào những giả thiết về tính
tuyến tính và bất biến dịch của từng thành phần.
PSF hay hàm truyền đạt của mỗi thành phần có thể được mơ phỏng theo phép
phân tích, xác định qua thực nghiệm, hay nhận được từ bản chi tiết kỹ thuật của nhà
sản xuất. Ví dụ, sự nhiễu xạ của các thấu kính có thể được giả thiết là có giới hạn,
điểm hiển thị có thể giả thiết là điểm Gauss và MTF của phim được cung cấp bởi nhà
sản xuất. Thao tác tính tốn có thể là tuyến tính hoặc khơng, nhưng chỉ hệ thống con
trong hình 15-12 được người sử dụng điều khiển trực tiếp.
HÌNH 15-12
303
Hình 15-12 Các phần tử của một hệ thống xử lý ảnh
Thường thì, mơ hình rút gọn của hệ thống trong hình 15-12 được cho trong hình
15-13. Ở đây, tất cả các hệ thống con không thuôch sự điều khiển của người sử dụng
đều được kết hợp thành một PSF của toàn bộ hệ thống, tương ứng với MTFcủa toàn
bộ hệ thống.
HÌNH 15-13
Hình 15-13 Một hệ thống tương đương với hệ thống trong hình 15-12
Các MTF thành phần thường nhận các giá trị suy giảm (dưới 1) với việc tăng tần
số. Khi kết hợp chúng, bằng phép nhân, thành MTF tồn bộ hệ thống thì kết quả
thường bị hẹp hơn so với MTF của một thành phần đơn bất kỳ. Khi kết hợp các PSF
thành phần, bằng tích chập, kết quả sẽ thường rộng hơn so với PSF của một thành
phần đơn bất kỳ. Vì thế, một sự lựa chọn các thành phần, tất cả các PSF chấp nhận
được và các hàm truyền đạt, cũng có thể kết hợp để tạo ra một hệ thống.
15.6.4. Nghiên cứu nhiễu
Trong hình 15-13, ảnh vào mà máy tính xử lý khơng phải là ảnh gốc, mà là ảnh đã
bị suy giảm bởi các tính chất của hệ thống và bị tác động bởi nhiễu. Trong thực tế,
nhiễu có mặt tại mọi bước của quá trình xử lý. Nhiễu của bộ cảm nhận ảnh thường
gây ảnh hưởng nhất, việc loại trừ nhiễu có thể thực hiện ngay trên ảnh vào. Chúng ta
có thể giả thiết rằng nhiễu được đưa vào tại vị bất kỳ trong hình 15-12, qui định rằng
sự thay đổi phổ năng lượng của nó giống như được lọc qua nhiều hệ thống tuyến tính
khác nhau.
Trong hình 15-11, ta thấy rằng biên độ lớn của mẫu vật suy giảm khi tăng tần số,
mặc dù khơng có nhiễu. Đây là đặc trưng của những mẫu vật thực tế và các nguồn
nhiễu phổ biến, đa số các nguồn nhiễu được giả thiết là nhiễu trắng. Vì thế, có ba
phương pháp bỏ qua chi tiết nhỏ trong một mẫu vật: làm mảnh bằng MTF của hệ
thống ảnh (độ phân giải quá thấp), làm hỏng bằng trùm phổ (lấy mẫu quá kém) và
che phủ bởi nhiễu. Trong trường hợp sau cùng, cần phải ước lượng các nguồn nhiễu
phá huỷ trước khi tiến hành thiết kế.
Một nguồn nhiễu có khả năng phá huỷ là bộ ghi tín hiệu video tương tự. Giải pháp
tốt nhất là tránh thu nhận hồn tồn và số hố tín hiệu tương tự càng giống bộ cảm
nhận ảnh càng tốt. Một sự lựa chọn nữa là sử dụng thiết bị ghi video chất lượng. Chỉ
khi cực kỳ cần thiết hay các yêu cầu về chất lượng ảnh chưa cần thiết, thì ta nên sử
dụng một bộ ghi băng video. Một thiết bị như vậy sẽ biến đổi tín hiệu video theo
cách làm suy giảm chất lượng ảnh số.
Các kỹ thuật giảm nhiễu đã được xem xét trong chương 11 và 16. Còn bây giờ,
cũng đủ để nói rằng nó khơng thoả mãn mục đích mơ phỏng chính xác, lấy mẫu và
hiển thị các tần số mà tại đó tín hiệu bị nhiễu che khuất. Tuy nhiên, ta phải chắc chắn
304
rằng nhiễu tần số cao không thể hiện diện trong những trường hợp ca biệt mà tại đó
nó có thể bị trùm phổ xuống thành các tần số mà thông tin tín hiệu có thể có mặt.
15.6.5. Thiết kế hệ thống
Trong một hệ thống đúng mực, (1) nhiễu sẽ chỉ tác động tại những tần số bên trên
tần số cao nhất trong ảnh và (2) MTF hệ thống ảnh sẽ bỏ qua thông tin tại những tần
số mà chủ thể có nội dung đang được xét đến và làm suy giảm thông tin tại những
tần số mà chi tiết của đối tượng bị nhiễu tác động. Theo đó, (3) tần số lấy mẫu sẽ
được chọn đủ cao để tránh hiện tượng trùm phổ.
Nguyên tắc này cũng có thể được phát biểu trong miền không gian: Trong một hệ
thống đúng mực, (1) tỷ số kích thược nhiễu sẽ nhỏ hơn so với chi tiết nhỏ nhất của
đối tượng đang xem xét và (2) PSF hệ thống ảnh sẽ nhỏ hơn chi tiết của đối tượng
mà ta quan tâm, nhưng lớn hơn tỷ số kích thước nhiễu. Do đó mà (3) khoảng cách
lấy mẫu sẽ đợc chọn đủ nhỏ để tránh hiện tượng trùm phổ.
15.7. VÍ DỤ
Trong phần cịn lại của chương này, chúng ta sẽ xem xét hai ví dụ về hệ thống xử
lý ảnh và xác định các PSF và MTF tổng thể của chúng. Đối với ví dụ này, ta bỏ qua
các kết quả lấy mẫu và cắt bớt.
15.7.1. Hệ thống từ phim đến phim (Film-to-Film System)
Hình 15-14 là sơ đồ khối một hệ thống xử lý ảnh sử dụng phim chụp ảnh cho cả
đầu vào lẫn đầu ra. Ta sẽ rút gọn hệ thống trong hình này cịn lại như hình 15-13
bằng cách kết hợp tất cả các hàm truyền đạt, ngoại trừ q trình tính tốn, thành một
hàm truyền đạt tương đương. Ta giả thiết rằng các hệ thống thấu kính vào và ra được
giới hạn nhiễu xạ, ống kính lấy mẫu là hình vng, bộ khuếch đại có một cực mang
đơn đặc tính thơng thấp, điểm hiển thị là Gauss và MTF của phim được cung cấp bởi
nhà sản xuất. Hàm truyền đạt tổng thể K(u, v) đơn thuần chỉ là tích của các hàm
truyền đạt riêng lẻ, và PSF tổng thể k(x, y) là biến đổi Fourier ngược của nó.
HÌNH 15-14
Hình 15-14 Một hệ thống từ phim đến phim
Hình 15-15 cho thấy những PSF thành phần và các hàm truyền đạt cùng với PSF
tổng thể và hàm truyền đạt. Các biểu thức đối với các PSF thành phần và các hàm
truyền đạt được liệt kê trong bảng 15-1. Lưu ý rằng PSF hệ thống rộng hơn và MTF
hẹp hơn các PSF và MTF tương ứng của một thành phần bất kỳ.
Các PSF, và vì thế các hàm truyền đạt, của hai thấu kính và điểm hiển thị là đối
xứng vòng tròn. Chúng ta giả thiết rằng MTF của phim xấp xỉ bằng tích các hàmcắt
hyperbol. Ống kính lấy mẫu và bộ khuếch đại được đặc trưng bởi các đáp ứng xung
305
theo các chiều x và y riêng biệt. Vì ảnh được quét theo chiều x, nên g(x, y) là mọt bộ
lọc thông thấp theo chiều x và một xung theo chiều y.
BẢNG 15-1 CÁC HÀM TÁN XẠ ĐIỂM VÀ CÁC HÀM TRUYỀN ĐẠT
BẢNG 15-1
HÌNH 15-15
Hình 15-15 Các thành phần của hệ thống tương ứng
Trước khi so sánh hàm truyền đạt và PSF của các thành phần khác nhau, chúng
ơhải được chiếu lên cùng một hệ qui chiếu thích hợp. Hình 15-16 minh hoạ các mặt
phẳng ảnh trung gian có thể được chiếu lên một mặt phẳng ảnh như thế nào. Các hệ
số phóng đại, dựa trên tồn bộ kích thước của ảnh, chấp nhận phép chiếu của các
PSF lên mặt phẳng ảnh. Bởi vì bộ khuếch đại xử lý tín hiệu điện tử nên hệ số phóng
đại của nó phản xạ một thay đổi từ thời gian sang không gian. Nếu cơ chế quét thao
tác một dòng trên một giây thì mỗi giây của bộ khuếch đại tương ứng với 50 mét trên
mặt phẳng ảnh.
Sử dụng các hệ số phóng đại trong hình 15-16 để chiếu các PSF và hàm truyền đạt
đã giả thiết lên mặt phẳng ảnh sẽ tạo ra các hàm được tóm tắt trong hình 15-15.
Giống như hình đã cho thấy, hàm truyền đạt của một hệ thống đầy đủ hẹp hơn và
PSF rộng hơn những bản đối chiếu của chúng đối với một thành phần bất kỳ trong hệ
thống.
Trong hình 15-15, OTF của tồn bộ hệ thống là tích của các hàm truyền đạt thành
phần. Ví dụ, điều hiển nhiên là trong khi các thấu kính camera đóng vai trị đặc biệt
quan trọng trong việc hạn chế đáp ứng tần số tổng thể, còn thấu kinhd hiển thị thì
khơng. Ngồi ra, bộ khuếch đại, có ảnh hưởng không nhiều theo chiều x, không cần
xuất hiện trong phân tích theo chiều y.
306
HÌNH 15-16
Hình 15-16 Các hệ số phóng đại
15.7.2. Hệ thống số hố của kính hiển vi
Xem xét hệ thống cho trong hình 15-17 như là ví dụ thứ hai. Hệ thống này bao
gồm một camera truyền hình đặt trên một kính hiển vi và có thể được mơ phỏng như
trong hình 15-18. Mẫu vật được thu nhận bởi vật kính hiển vi 100 lần với độ mở ống
kính là 1.25.
HÌNH 15-17
Hình 15-17 Hệ thống số hố truyền hình qua kính hiển vi
HÌNH 15-18
Hình 15-18 Các thành phần tuyến tính cảu bộ số hố hiển vi
Hình 15-19 cho thấy PSF và hàm truyền đạt của hệ thống theo phân tích hai chiều.
Nếu nhiễu được đưa vào tại bộ cảm nhận thì phổ năng lượng của nó sẽ bị hàm truyền
đạt của bộ khuếch đại làm thay đổi.
307