Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (194.46 KB, 6 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>Theoretical Question 3: </b><i><b>Scanning Probe Microscope </b></i>
<b>1. Answers </b>
(a)
2
2
2
2
2
0
2
0
)
(ω ω <i>b</i> ω
<i>m</i>
<i>F</i>
<i>A</i>
+
−
= and
)
(
tan <sub>2</sub> <sub>2</sub>
0
0
ω
ω
ω
φ
−
=
<i>m</i>
<i>b</i>
. At ω =ω<sub>0</sub>,
0
0
ω
<i>b</i>
<i>F</i>
<i>A</i>=
and
2
π
φ = .
(b) A non-vanishing dc component exists only when ω =ω<i><sub>i</sub></i>.
In this case the amplitude of the dc signal will be <i>V<sub>i</sub></i> <i>V<sub>R</sub></i> cosφ<i><sub>i</sub></i>
2
1
0
0 .
(c)
0
2
0
2
1
2 <i>b</i>ω
<i>V</i>
<i>c</i>
<i>c</i> <i><sub>R</sub></i>
at the resonance frequency ω<sub>0</sub>.
(d) <sub>∆</sub><i><sub>m</sub></i><sub>=</sub><sub>1</sub><sub>.</sub><sub>7</sub><sub>×</sub><sub>10</sub>−18<sub> kg. </sub>
(e)
2
/
1
2
0
3
0
0 1
' <sub></sub>
−
=
ω
ω
ω
<i>m</i>
<i>c</i>
.
(f)
3
/
1
0
0
0
∆
=
ω
<i>m</i>
<i>qQ</i>
<i>k</i>
<i>d</i> <i><sub>e</sub></i>
=
0
<b>2. Solutions </b>
(a) [1.5 points]
Substituting <i>z</i>(<i>t</i>)= <i>A</i>sin(ω<i>t</i>−φ) in the equation <i>m</i> <i>z</i> <i>F</i> <i>t</i>
<i>dt</i>
<i>dz</i>
<i>b</i>
<i>dt</i>
<i>z</i>
<i>d</i>
<i>m</i> ω2 <sub>0</sub>sinω
0
2
2
=
+
+
yields,
<i>t</i>
<i>A</i>
<i>F</i>
<i>t</i>
<i>m</i>
<i>t</i>
<i>b</i>
<i>t</i>
<i>m</i>ω sin(ω φ) ωcos(ω φ) ω 2sin(ω φ) 0sinω
0
2 <sub>−</sub> <sub>+</sub> <sub>−</sub> <sub>+</sub> <sub>−</sub> <sub>=</sub>
− . (a1)
Collecting terms proportional to sinω<i>t</i> and cosω<i>t</i>, one obtains
sin
sin
cos
)
( 2 2
0
0
2
2
0 + − − + =
<sub>−</sub> <sub>+</sub> <sub>−</sub> <i><sub>t</sub></i> <i><sub>m</sub></i> <i><sub>b</sub></i> <i><sub>t</sub></i>
<i>A</i>
<i>F</i>
<i>b</i>
<i>m</i> ω ω φ ω φ ω ω ω φ ω φ ω (a2)
Zeroing the each curly square bracket produces
)
(
tan <sub>2</sub> <sub>2</sub>
0 ω
ω
ω
φ
−
=
<i>m</i>
<i>b</i>
, (a3)
2
2
2
2
2
0
2
0
)
(ω ω <i>b</i> ω
<i>m</i>
<i>F</i>
<i>A</i>
+
−
= . (a4)
At ω =ω<sub>0</sub>,
0
0
ω
<i>b</i>
<i>F</i>
<i>A</i>= and .
2
π
φ = (a5)
(b) [1 point]
The multiplied signal is
}]
)
cos{(
}
)
[cos{(
2
1
)
sin(
)
sin(
0
0
0
0
<i>i</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>R</i>
<i>i</i>
<i>R</i>
<i>i</i>
<i>i</i>
<i>i</i>
<i>t</i>
<i>t</i>
<i>V</i>
<i>V</i>
<i>t</i>
<i>V</i>
<i>t</i>
<i>V</i>
φ
ω
ω
φ
ω
ω
ω
φ
ω
−
+
−
−
−
=
−
(b1)
A non-vanishing dc component exists only when ω=ω<i><sub>i</sub></i>. In this case the amplitude of
the dc signal will be
<i>i</i>
<i>R</i>
<i>i</i> <i>V</i>
<i>V</i> cosφ
2
1
0
0 . (b2)
(c) [1.5 points]
cantilever, and the frequency of the photodiode detector should be same. The
magnitude of the input signal at the resonance is
0
0
2
1
0
0
2
0 <sub>ω</sub> <i><sub>b</sub></i><sub>ω</sub>
<i>V</i>
<i>c</i>
<i>c</i>
<i>b</i>
<i>F</i>
<i>c</i>
<i>V</i> <i>R</i>
<i>i</i> = = . (c1)
Then, since the phase of the input signal is 0
2
−π π at the resonance, φ<i><sub>i</sub></i> =0 and
the lock-in amplifier signal is
0
2
0
2
1
0
0
2
0
cos
2
1
ω
<i>b</i>
<i>V</i>
<i>c</i>
<i>c</i>
<i>V</i>
<i>V</i> <i>R</i>
<i>R</i>
<i>i</i> = . (c2)
(d) [2 points]
The original resonance frequency
<i>m</i>
<i>k</i>
=
0
ω is shifted to
<sub>−</sub> ∆
=
<sub>−</sub> ∆
≅
1 2 <sub>0</sub>
1
ω . (d1)
Thus
<i>m</i>
<i>m</i>
∆
−
=
∆ <sub>0</sub> <sub>0</sub>
2
1<sub>ω</sub>
ω . (d2)
Near the resonance, by substituting φ→π +∆φ
2 and ω0 →ω0 +∆ω0 in Eq. (a3), the
change of the phase due to the small change of ω<sub>0</sub> (not the change of ω) is
0
2
tan
1
2
tan
ω
φ
φ
π
. (d3)
Therefore,
<i>b</i>
<i>m</i> <sub>0</sub>
2
tan φ ω
φ ≈ ∆ =− ∆
∆ . (d4)
From Eqs. (d2) and (d4),
18
18
6
12
3
0
10
7
.
1
10
8
.
1
1800
10
10
10 ⋅ − <sub>=</sub> − <sub>=</sub> <sub>×</sub> −
=
∆
=
∆ φ π π
ω
<i>b</i>
<i>m</i> kg. (d5)
(e) [1.5 points]
In the presence of interaction, the equation of motion near the new equilibrium position
0
<i>t</i>
<i>F</i>
<i>z</i>
<i>c</i>
<i>z</i>
<i>m</i>
<i>dt</i>
<i>dz</i>
<i>b</i>
<i>dt</i>
<i>z</i>
<i>d</i>
<i>m</i> ω2 <sub>3</sub> <sub>0</sub>sinω
0
2
2
=
−
+
+ (e1)
where we used <i>f</i>(<i>h</i>)≈ <i>f</i>(<i>h</i><sub>0</sub>)+<i>c</i><sub>3</sub><i>z</i> with <i>z</i>=<i>h</i>−<i>h</i><sub>0</sub> being the displacement from the
new equilibrium position <i>h</i><sub>0</sub>. Note that the constant term <i>f</i>(<i>h</i><sub>0</sub>) is cancelled at the
new equilibrium position.
Thus the original resonance frequency
<i>m</i>
<i>k</i>
=
0
ω will be shifted to
2
0
3
0
3
2
0
3
0 1
'
ω
ω
ω
ω
<i>m</i>
<i>c</i>
<i>m</i>
<i>c</i>
<i>m</i>
<i>m</i>
<i>c</i>
<i>k</i>− <sub>=</sub> − <sub>=</sub> <sub>−</sub>
= . (e3)
Hence the resonance frequency shift is given by
−
−
=
∆ 1 <sub>2</sub> 1
0
3
0
0 ω <sub>ω</sub>
ω
<i>m</i>
<i>c</i>
. (e4)
(f) [2.5 points]
The maximum shift occurs when the cantilever is on top of the charge, where the
interacting force is given by
2
)
(
<i>h</i>
<i>qQ</i>
<i>k</i>
<i>h</i>
<i>f</i> = <i><sub>e</sub></i> . (f1)
From this,
3
0
3 2
0 <i>d</i>
<i>qQ</i>
<i>k</i>
<i>dh</i>
<i>df</i>
<i>c</i> <i><sub>e</sub></i>
<i>d</i>
<i>h</i>
−
=
. (f2)
Since ∆ω<sub>0</sub> <<ω<sub>0</sub>, we can approximate Eq. (e4) as
0
3
0 <sub>2</sub> <sub>ω</sub>
ω
<i>m</i>
<i>c</i>
−
≈
∆ . (f3)
From Eqs. (f2) and (f3), we have
3
0
0
3
0
0 2
2
1
<i>d</i>
<i>m</i>
<i>qQ</i>
<i>k</i>
<i>d</i>
<i>qQ</i>
<i>k</i>
<i>m</i>ω <i>e</i> <i>e</i> ω
ω <sub></sub>=
−
−
=
∆ . (f4)
8
3
/
1
0
0
0 4.1 10
−
×
=
∆
=
ω
ω
<i>m</i>
<i>qQ</i>
<i>k</i>
<i>d</i> <i><sub>e</sub></i> m = 41 nm. (f5)
<b>3. Mark Distribution </b>
No. Total
Pt.
Partial
Pt. Contents
0.7 Equations for <i>A</i> and φ (substitution and manipulation)
0.4 Correct answers for<i>A</i> and φ
(a) 1.5
0.4 <i>A</i> and φ at ω<sub>0</sub>
0.4 Equation for the multiplied signal
0.3 Condition for the non-vanishing dc output
(b) 1.0
0.3 Correct answer for the dc output
0.6 Relation between <i>V<sub>i</sub></i> and <i>V<sub>R</sub></i>
0.4 Condition for the maximum dc output
(c) 1.5
0.5 Correct answer for the magnitude of dc output
0.5 Relation between ∆<i>m</i> and ∆ω<sub>0</sub>
1.0 Relations between ∆ω<sub>0</sub> (or ∆<i>m</i>) and ∆φ
(d) 2.0
0.5 Correct answer (Partial credit of 0.2 for the wrong sign.)
1.0 Modification of the equation with <i>f</i>(<i>h</i>) and use of a proper
approximation for the equation
(e) 1.5
0.5 Correct answer
0.5 Use of a correct formula of Coulomb force
0.3 Evaluation of <i>c</i><sub>3</sub>
0.6 Use of the result in (e) for either ∆ω<sub>0</sub> or ω'2<sub>0</sub>−ω<sub>0</sub>2
0.6 Expression for <i>d</i><sub>0</sub>
(f) 2.5
0.5 Correct answer