Tải bản đầy đủ (.pdf) (5 trang)

trường thcs hoàng xuân hãn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (188.08 KB, 5 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

2015

WMTCAdvancedLevel


Team RoundProblems



1.Considerasequence{an}inwhicha1=3andan+1=1+a<sub>1-a</sub>n


n(nispositivenaturalnumbers).


Finda2016.


2.Wecalla3􀆼digitnumberabcan"arithmeticsequencenumber"ifa +c=2b.How many
"arithmeticsequencenumbers"arethere?


3.Letxbeanon􀆼zeronaturalnumberandletx2<sub>-</sub><sub>4,2</sub><sub>x,and</sub><sub>x +1betheedgelengthsofa</sub>


triangle.Findallthepossibleperimetersofthistriangle.


4.LetMbeanon􀆼emptysetofintegers.k∈Miscalledan"isolated"elementinMifbothk
-1∉Mandk+1∉M .<sub>Suppose</sub>M ={1,2,3,4,5}.How manysubsetsofM<sub>containonly</sub>
one"isolated"element?


5.Findthemaximumvalueforfunctionf(x)=2 3sin2x +4sinx +8 3cosx.


6.Supposeasetcontainsnintegerswithhalfevennumbersandtheotherhalfoddnumbers.If
Pistheprobabilitywhenthesumofanytworandomlyselectednumbersfromthissetis
even,findthelargestpositiveintegernsothatP≤ 99<sub>200</sub>.


7.Findtheminimumvalueforfunctiony=3x2<sub>-7</sub><sub>x +2</sub><sub>-2 2</sub><sub>x</sub>2<sub>-3</sub><sub>x -1.</sub>


8.Supposeαisarealrootofx3<sub>+x-</sub><sub>4</sub><sub>=</sub><sub>0and</sub><sub>β</sub><sub>isarealrootof</sub><sub>x+</sub>3<sub>x -</sub><sub>4</sub><sub>=</sub><sub>0</sub><sub>.</sub><sub>Findthevalue</sub>


of(α+β).



9.Let{an}and{bn}betwoarithmetic(equaldifference)sequencesandletSnandTnbethe


correspondingsumsoftheirfirstnterms,respectively.If2Sn


3Tn=


4n+19


2n+2,findthenumberof


Fig.1


primenumbersthatareintheformof8<sub>3</sub>a<sub>b</sub>n


n.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

11.Letaandbberealnumbersandb≠1.Ifthethreetermsa2<sub>b</sub><sub>,</sub><sub>ab</sub>sin2x<sub>,and</sub><sub>aform bothan</sub>


arithmetic(equaldifference)sequenceandageometric (equalproportion)sequence,find
thevalueofcos

(

4x -π<sub>3</sub>

)

.


12If.a>3b>0,findthemaximumvaluefor3a+8<sub>8</sub><sub>b</sub>a22<sub>-4</sub>b-16<sub>ab</sub>ab2.


13.Supposethestraightlinex=m (1≤m≤3)intersectsfunctionsf(x)=log2(x+1)+1and


g(x)=4-2x-1<sub>atpoints</sub><sub>M</sub><sub>andN</sub><sub>,respectively.Findtherangeofvaluesof</sub><sub>|MN |.</sub>


14.Givenfunctiong(x)=||x -1|-1|(x≥0).Iffunctionf(x)=-sinπ<sub>2</sub>x(x≤0)has
exactlynpointsthatarethesymmetricimagesofpointsfromg(x)reflectoverthey􀆼axis,


findthevalueofn.


15.Ifasequence{an}satisfiesan+1+(-1)nan=n(nispositivenaturalnumber)andthesum


ofitsfirstntermsisSn=2550,findn.


16.Givenatriangle△ABC.<sub>Suppose</sub>AB =2,BC =4,andBD,theanglebisectorof∠ABC
hasthelengthof4 2<sub>3 .Findtheradiusoftheinscribedcircleof△</sub>ABC.


17.Giventhata,b,andcarepositivenaturalnumberswhereaisprime,3b-1iscomposite,
bothband2ab<sub>areperfectsquares,and8</sub>a +2b+3c≤ 45.Findthesum ofallpossible
valuesofabc.


18.Supposein △ABC,tanB =4tanCandb2<sub>-c</sub>2<sub>=</sub><sub>12</sub><sub>.</sub><sub>Findtheareaofthistriangle'sinscribed</sub>


circlewhenitscircumscribedcircleisthesmallest.


Fig.2


19.Asshowninfigure2,BisthemidpointofthetangentPAtocircleO,
Aisthepointoftangency,CisapointonPA,linesegmentsPDE,
BFE,andCGEareallsecantlinesofcircleO,and∠FAG =∠FPB.
IfPA =EC =6andED =5,findthelengthofEB.


20.LetV􀆼ABC beatriangularpyramidwithE,F,G,andH bethe
midpointsofedgesAB,AC,VB,andVC,respectively.Ifαisthe
anglebetweenplanesAGHandVEF,findsinα.


Team RoundAnswers




1.1<sub>2</sub>.


2.45.


3.25,15.


4.13.


7.-2.


8.4.


9.3.


10.32.
1


12.-4 3.


13.[0,3].


14.3.


15.100.


17.108.


18.3- 5.


19.4 3.



</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

RelayRoundProblems



1A.<sub>Find 2016</sub>! +2013!


2015! +2014!
é


ë


êê ù<sub>û</sub>úú where[n]representsthelargestintegernotgreaterthann.


1B.LetT=TR (ThenumberyouwillReceive).Leta,b,T,c,anddbefivedifferentpositive


integersthatarelistedinascendingorderfromsmallesttolargest.IftheiraverageisT,find
thelargestpossiblevalueford.


2A.Givenasequence{an}thatsatisfiesa1=7,a2=29,an+2=7an+1-10anwheren=0,1,2,


….Findtheunits(last)digitfortheterma2015.


2B.LetT =TR.Supposethevolumeoftheexternalsphereofarectangularsolidis8π 2T .


Findthemaximumpossiblesurfaceareaofthisrectangularsolid.


3A.<sub>Findthesumofrealrootsofequation2</sub><sub>x</sub>3<sub>-10</sub><sub>x</sub>2<sub>+7</sub><sub>x +10=</sub><sub>0</sub><sub>.</sub>


3B.LetT =TR.GivenarectanglewithintegervaluelengthsasitsdimensionsandareaofS =


T2<sub>-</sub><sub>1</sub><sub>.</sub><sub>Findthelengthoftheshortestpossiblediagonalofthisrectangle</sub><sub>.</sub>


RelayRoundAnswers



1A.<sub>2015</sub><sub>.</sub>
1B.6041.


2A.<sub>3</sub><sub>.</sub>
2B.48.


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

IndividualRoundProblems



Fig.1


1.Useacertainnumberofidenticalcubesofedgelength1tocomposeageometric
solid.Amongallthesolidswithfrontandleftsideviewslooklikethefigure1,


whatisthevolumeofthesolidthathasthesmallestvolume?


2.Computelog2(2log73×22log79)2log37.


3.Findtheminimumvalueofthefunctiony=4cos2<sub>x -4cos</sub><sub>x -6</sub><sub>.</sub>


4.SupposeMisanaturalnumberand0<M <a<M +1where2a<sub>+a</sub>3<sub>=</sub><sub>47</sub><sub>.</sub><sub>FindM .</sub>


5.Iftanα= 2,findsin2α-cos2α.


6.SupposeTisa9􀆼digitnaturalnumber,nisapositivenaturalnumber,and3T +1=10n<sub>.</sub>


FindthesumofdigitsofT.


7.If 3sin20°=cos40°+sinxand0°≤x<360°,findx.



8.Suppose,in △ABC,cosA =1<sub>3 and</sub>BC = 6.Findthelengthofthelongestchordofthis
triangle'scircumscribedcircle.


9.Givenanarithmetic (EqualDifference)sequence {an}withfirstterma1andcommon


differenced.If-1≤a2≤2and3≤a5≤5,findtherangeofvaluesofa10.


10.Supposethelengthsofboththeedgesandmainbodydiagonalsofarectangularsolidare
naturalnumbersandthisrectangularsolidhasavolumeof220.Findthelengthofitsmain
bodydiagonal.


11.How manyrealrootsdoestheequationx3<sub>-x</sub>2<sub>-1</sub><sub>=</sub><sub>0have?</sub>


12.Suppose4raysweredrawnfromapointin3􀆼spacesothatalltheanglesbetweenanytwo
raysarethesame.Findcos(α)whereαisthatcommonanglemeasurement.


Fig.2


13.Thefigure2consistsofnine1×1squares.Themiddlesquareisdividedbya
lineasindicatedinthefigure.IfapointMisrandomlyplacedinsidethat
middlesquare,whatistheprobabilityofthispointMislandedintheshaded
region?


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

15.Ifthesolutionsetforinequality 5-x2 <sub>></sub><sub>ax +</sub>5


3 is(-2,1),findthevalueofreal
numbera.


16.Giventhatf(x)=2<sub>2</sub>x+x2<sub>+2</sub>+2-x1-x.Iff(t)=4,findthevalueoff(-t).



17.Giventhaty=f(x)isarealevenfunctionandf(x -2)=f(x +2).Also,f(x)=x +2
whenx∈ [-2,0].Findtheanalyticformulaforf(x)whenx∈ [2,6].


18.Giventhatf(lnx)=x2<sub>-</sub><sub>1</sub><sub>.</sub><sub>Let</sub><sub>f</sub>-1<sub>(</sub><sub>x)betheinversefunctionof</sub><sub>f</sub><sub>(</sub><sub>x)</sub><sub>.</sub><sub>Findthevalueof</sub>


f-1(3)<sub>.</sub>


19.GivenasphereOthathasdiameterPC=2.LetAandBbetwopointsonthisspheresuch
thatAB = 2 and ∠APC =∠BPC =45°.Findthevolumeofthetriangularpyramid


P􀆼ABC.


20.Giventhatan= 5×6+ 7×8+…+ (2n+3)(2n+4)andbn=an


n
é
ë


êê ù<sub>û</sub>úú wheren=1,2,
3,… ([x]representsthelargestintegerthatisnotlargerthanx).LetSn=b1+b2+b3+


…+bn.FindthesumofallnsuchthatSn≤5455.

IndividualRoundAnswers



1.5.


2.20.


3.-7.



4.3.


5.2 2<sub>3</sub>+1.


6.27.


7.190°or350°.


8.3<sub>2 3</sub>.


9.14<sub>3 ≤</sub>a10≤15.


10.15.


11.1.


12.-1<sub>3</sub>.


13.11<sub>12</sub>.


14.9.


15.1<sub>3</sub>.


16.2.


17.2-|x -4|.


18ln2. .



19.1<sub>3</sub>.


</div>

<!--links-->

×