Tải bản đầy đủ (.pdf) (5 trang)

trường thcs hoàng xuân hãn

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.98 KB, 5 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

2012

WorldMathematicsTeamChampionship


AdvancedLevel



Team Round

·

Problems



1.GivenatetrahedronPABCinwhich ∠APB=∠BPC=∠CPA=90°and


PA=PB=PC=1.IfPABC′sinscribedspherehasaradiusofr,then1<sub>r</sub>isbetweenwhichtwo
consecutiveintegers?


2.If(5x+2y)25<sub>+</sub><sub>x</sub>25<sub>+6</sub><sub>x+2</sub><sub>y=0,findthevaluefor6</sub><sub>x+2</sub><sub>y.</sub>


Fig.1


3.InFig.1,letABCDbeatetrahedronwithedgeAD=
2andalltheothered-geshavealengthof1.SupposeM andNare midpointsofABandCD,


respectively.FindtheminimumdistancemovingfromMtoN


overthesur-faceofABCD.


4.Letxbeanyrealnumberandlet[x]representsthegreatestintegerlessthan
orequaltox.Forexample,[2.3]=2and[-2.3]=-3.Findallpossiblereal
solutionsforequationé<sub>ë</sub>x<sub>2</sub>ù<sub>û</sub>+éx<sub>4</sub>


ë
ù
û+


x
6


é
ë


ù
û+


x
8
é
ë


ù
û+…+


x
2012
é
ë


ù
û=x.


5.Randomlypickfivenumbersfromtennumbers1,2,3,…,10.Arrangethese5numbersfrom
smalltolargeandlabelthema1,a2,a3,a4,anda5.Arrangetheremainingfivenumbersfrom


largetosmallandlabelthemb1,b2,b3,b4,andb5.Findthevaluefor


|a1-b1|+|a2-b2|+|a3-b3|+|a4-b4|+|a5-b5|.


6.Ifthesystemofequations

{

<sub>x</sub>mx2<sub>+(</sub>2+<sub>m-1)</sub>x+2m<sub>x=0</sub>-1=0hasonlyonerealsolutionforx,findm.


7.How manyfunctionscanbedefinedsothatthefunction′sdomainis
A={ab|ab-a-2b-2=0,a,b∈Z}
anditsrangeisB=x|sinx-æ π<sub>6</sub>


è
ư


ø=1,0<x<5π


{

}

?


8.Ifα,<sub>β</sub>,γ ∈ 0,π<sub>è</sub>ỉ <sub>2</sub>ư<sub>ø</sub> and sin2<sub>α</sub> <sub>+ sin</sub>2


β+ sin2γ = 1,find the maximum value for
sinα+sinβ+sinγ


cosα+cosβ+cosγ.


9.Ifintegermsatisfiestheequation 1+1ỉ<sub>è</sub> <sub>m</sub>ư<sub>ø</sub>m+1= 1+ 1ỉ<sub>è</sub> <sub>2012</sub>ư<sub>ø</sub>2012,findthevalueform.


10.Supposen<sub>isanaturalnumberlargerthan0.If</sub>f(n)representsthenumberofrootsin[0,π]
forequationsinx=cos(nx),findf(1)+f(2)+f(3)+…+f(100).


11.Let{an}beasequencethatsatisfiesan+3-an+2+an+1-an=0.IfSnrepresentsthesumof
thefirstntermsof{an}andS2012=2012,finda1+a3.


12.Supposethestraightline2x-y-12=0andtheparabolay2<sub>=4</sub><sub>x</sub><sub>intersectatpoints</sub><sub>Aand</sub><sub>B.</sub><sub>Let</sub><sub>C</sub>


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

13.Ifrealnumbersxandysatisfy



x+3y-23≤0,
2x+y-11≥0,
x-2y+2≤0,
ì




í findtherangeofvaluesofx+<sub>x</sub>y+4


+1 .


14.Arrangethepositiverootsforequationx·cosx+sinx<sub>=0inascendingorder</sub>a1,a2,…,an,
….<sub>Amongthefollowingconclusions,selectthecorrectstatements</sub>.


① 0<an+1-an<π
2;
② <sub>2<</sub>π an+1-an<π;
③2an+1>an+2+an;
④2an+1<an+2+an.


15.Findtheintervalswherethefunctiony= cos|π<sub>2+2</sub>x| ismonotonicallydecreasing.


16.Supposethegraphofquadraticfunctionf(x)=-x2<sub>+</sub><sub>bx+</sub><sub>c</sub><sub>(</sub><sub>Δ=</sub><sub>b</sub>2<sub>+4</sub><sub>ac>0)intersects</sub><sub></sub>


x-axisatAandB.IfpointP(x0,f(x0))wheref(x0)≠0isonthecurveandPAis


perpendiculartoPB,findf(x0).


Fig.2



17.LetA = (1,1).SupposeBandCaretwopointsontheparabolay=x2<sub>such</sub>


thatAB<sub>isperpendicularto</sub>BC.<sub>Amongallpossible</sub>BandC,findtheareaof
thesmallestcircumscribedcircleof△ABC.


18.Ifthesolutionsetfortheinequality x+1+2x≤bis [-1,3],findthe
solutionsetfortheinequality |x-1|-10 ≤b.


19.AsinFig.2,ABisthediameteroftheCircleO,OD⊥BCatFonBCand
intersectsthecircleatE.If∠AEC=∠ODB ,OA=5,andBC =8,findDE.


20.FindallclosedintervalsMsothatthefunctionf(x)=1<sub>3</sub>x2<sub>+</sub>2


3x-113 hasMasbothits
domainandrange.


Team RoundAnswers



1.4and5.


2.0.


3.1.


4.0,8,10.


5.25.


6.1<sub>2 or0</sub>.



7.36.


8.<sub>2</sub>2.


9.-2013.


10.5025.


11.2.


12.(1,2)or(4,-4).


13.é17<sub>9</sub>,13<sub>3</sub>
ë


ù
û.


14.② and ④.


15.kπ
2 +
π
4,

2 +
π
2
é


ë
ù


û,k∈Z.


16.1.


17.π.


18.[-17,-1]∪[3,19].


19.10<sub>3</sub>.


20.[-4,-1]or
-4,1+3 5<sub>2</sub>
é


ë


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

RelayRound

·

Problems



FirstRound


1A.Iff(cosα)=cos(2012α),findthevaluefor<sub>f</sub><sub>sin</sub> π


2012


è



ư
ø.


1B.LetT = TNYWR (TheNumberYou WillReceive).


Letf(x)beanoddfunctiondefinedonRandf(x+2)= -f(x)forallrealx.Iff(3)=


2m-3


m+1 andf(1)>-T,findtherangeofvaluesform.


SecondRound


2A.<sub>Giventhatlog</sub>mx,lognx,andlog2xformanarithmetic(equaldifference)sequenceandx≠1.


Findthevalueforlogmn·log2(2m).


2B.<sub>LetT= TNYWR (TheNumberYou WillReceive).</sub>


Giventhat{an}isanarithmetic(equaldifference)sequence.IfSnisthesum ofthefirstn
termsandST=ST+11,finda8.


ThirdRound


3A.If<sub>f</sub>(x)= 1


2a<sub>+</sub><sub>x</sub>+<sub>2</sub>a1<sub>-</sub><sub>x</sub>-1andf(1)+f(-1)=2<sub>3</sub>,finda.


3B.LetT = TNYWR (TheNumberYou WillReceive).



SupposethelengthofthesquareABCDisT.LetEbeapointthatmovesalongthecirclewith
AD<sub>asthediameter.Findtherangeofvaluesfor</sub>EB+EC.


RelayRoundAnswers



FirstRound


1A.<sub>-1</sub><sub>.</sub>
1B.-1<m<2


3.


SecondRound


2A.<sub>2</sub><sub>.</sub>
2B.<sub>0</sub><sub>.</sub>


ThirdRound


3A.<sub>1</sub><sub>.</sub>


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

IndividualRound

·

Problems



FirstRound


1.IfM=cos2<sub>x+</sub><sub>x</sub><sub>sin</sub><sub>x</sub><sub>where0<</sub><sub>x<</sub>π


2,findtheintegerportionofM .


2.Ifalltheneighboringintersectingpointsofstraightliney=1andcurvef(x)=sinωx+æ<sub>è</sub> π<sub>3</sub>ö<sub>ø</sub>


haveafixeddistanceof4,findf(1)+f(2)+…+f(2013).


3.Givenageometric(equalproportion)sequence{an}withbothitsfirstterma1>0andcommon


ratioq>0.Letbn= an+ a2012-n wherenisanaturalnumberand0<n<2012.Ifbkisthe
smallesttermofthesequence{bn},findk.


4.Giventhatthestraightliney=m(m<0)andthecurvey=cosx<sub>intersectontherightsideof</sub>
they-axis.Arrangethehorizontalcoordinatesoftheseinterceptionsinascendingorder
x1,x2,x3,….Ifx1,x2,andx3formageometric(equalproportion)sequence,findm.


SecondRound


5.Letf(x)=x3<sub>-6</sub><sub>x</sub>2<sub>+13</sub><sub>x</sub><sub>-6and</sub><sub>f</sub>(<sub>a</sub>)=7,<sub>f</sub>(b)=1,find<sub>a</sub><sub>+</sub><sub>b.</sub>


6.IfS=min

{

<sub>|</sub><sub>x-1|</sub>3 , 1<sub>|</sub><sub>x-9|</sub>

}

forrealnumbersx≠1or9,findSmax.


7.Findtherangeofvaluesofslopeksothatthestraightliney=
kx+1wouldintersecttheel-lipse3x2<sub>+</sub><sub>y</sub>2<sub>=1attheFirstQuadrant(</sub><sub>x</sub><sub>>0and</sub><sub>y>0)</sub><sub>.</sub>


8.Givenasequence{an}withanexplicitformulaan=(-1)n(2n-1)wheren
ispositiveinte-gers.LetSnbethesumofthissequence′sfirstnterms.WritetheexplicitformulaforS2k.


ThirdRound


9.Findtheacuteanglexsatisfyingtheequation(sin2x+cosx)(sinx-cosx)=2cos2<sub>x.</sub>


10.Givenarighttrianglewithhypotenuseoflength4x-2.Ifoneoftheothersideshasalength
of415-3x,findthevaluerangeofthelengthofitsthirdside.



11.Givennon-negativenumbersa,b,c,x,y,andzwitha+b+c+x+y+z=1,and
abc+xyz=<sub>36</sub>1,findthelargestpossiblevalueforabz+bcx+cay.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

FourthRound


13.LetObethevertexoftheparabolay2<sub>=2</sub><sub>px</sub><sub>(</sub><sub>p≠0)andlet</sub><sub>Aand</sub><sub>B</sub><sub>betwonon-vertexpoints</sub>


onthisparabola.IftheslopesofOAandOBarek1andk2,respectively,andk1andk2


areal-sotherootsofequationx2<sub>+4</sub><sub>x</sub><sub>-2=0,findtheslopeofstraightline</sub><sub>AB.</sub>


14.Given △ABC.Leta,b,andcbetheoppositesidestointerioranglesA,B,andC,
respectively.If<sub>a</sub>1=<sub>b</sub>1+<sub>c</sub>1,findthemaximumpossiblevalueforsin(A).


FifthRound


15.Supposey=f(x)isanevenfunctionand[f(x1)-f(x2)](x1-x2)<0forany


x1,x2∈(-∞,0].Findtherangeofvaluesforxthatsatisfyf(x+1)<f(2x-1).


16.ConsideracubeABCD-A1B1C1D1ofedgelength1.LetO1bethespheretangentstoeachof


thiscube′s12edgesandletsphereO2bethespheretangentstoeachofthiscube′s6faces.


SupposeM1andM2representtheareaoftheregionsthatareintersectedbytheplaneD1AC


withspheresO1andO2respectively.FindM1-M2.


IndividualRoundAnswers




FirstRound


1.1.


2.1<sub>2 or-</sub>1<sub>2</sub>.


3.1006.


4.-1<sub>2</sub>.


SecondRound


5.4.


6.1<sub>2</sub>.


7.(- 3,0).


8.S2k=2k.


ThirdRound


9.π<sub>3</sub>.


10.(0,4


3).


11.<sub>108</sub>1.



12.- 15.


FourthRound


13.1<sub>2</sub>.


14.<sub>8</sub>15.


FifthRound


15.(-∞,0)∪(2,+∞).


</div>

<!--links-->

×