Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.98 KB, 5 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
1.GivenatetrahedronPABCinwhich ∠APB=∠BPC=∠CPA=90°and
PA=PB=PC=1.IfPABC′sinscribedspherehasaradiusofr,then1<sub>r</sub>isbetweenwhichtwo
consecutiveintegers?
2.If(5x+2y)25<sub>+</sub><sub>x</sub>25<sub>+6</sub><sub>x+2</sub><sub>y=0,findthevaluefor6</sub><sub>x+2</sub><sub>y.</sub>
Fig.1
3.InFig.1,letABCDbeatetrahedronwithedgeAD=
2andalltheothered-geshavealengthof1.SupposeM andNare midpointsofABandCD,
respectively.FindtheminimumdistancemovingfromMtoN
overthesur-faceofABCD.
4.Letxbeanyrealnumberandlet[x]representsthegreatestintegerlessthan
orequaltox.Forexample,[2.3]=2and[-2.3]=-3.Findallpossiblereal
solutionsforequationé<sub>ë</sub>x<sub>2</sub>ù<sub>û</sub>+éx<sub>4</sub>
ë
ù
û+
x
6
ù
û+
x
8
é
ë
ù
û+…+
x
2012
é
ë
ù
û=x.
5.Randomlypickfivenumbersfromtennumbers1,2,3,…,10.Arrangethese5numbersfrom
smalltolargeandlabelthema1,a2,a3,a4,anda5.Arrangetheremainingfivenumbersfrom
largetosmallandlabelthemb1,b2,b3,b4,andb5.Findthevaluefor
|a1-b1|+|a2-b2|+|a3-b3|+|a4-b4|+|a5-b5|.
6.Ifthesystemofequations
7.How manyfunctionscanbedefinedsothatthefunction′sdomainis
A={ab|ab-a-2b-2=0,a,b∈Z}
anditsrangeisB=x|sinx-æ π<sub>6</sub>
è
ư
ø=1,0<x<5π
8.Ifα,<sub>β</sub>,γ ∈ 0,π<sub>è</sub>ỉ <sub>2</sub>ư<sub>ø</sub> and sin2<sub>α</sub> <sub>+ sin</sub>2
β+ sin2γ = 1,find the maximum value for
sinα+sinβ+sinγ
cosα+cosβ+cosγ.
9.Ifintegermsatisfiestheequation 1+1ỉ<sub>è</sub> <sub>m</sub>ư<sub>ø</sub>m+1= 1+ 1ỉ<sub>è</sub> <sub>2012</sub>ư<sub>ø</sub>2012,findthevalueform.
10.Supposen<sub>isanaturalnumberlargerthan0.If</sub>f(n)representsthenumberofrootsin[0,π]
forequationsinx=cos(nx),findf(1)+f(2)+f(3)+…+f(100).
11.Let{an}beasequencethatsatisfiesan+3-an+2+an+1-an=0.IfSnrepresentsthesumof
thefirstntermsof{an}andS2012=2012,finda1+a3.
12.Supposethestraightline2x-y-12=0andtheparabolay2<sub>=4</sub><sub>x</sub><sub>intersectatpoints</sub><sub>Aand</sub><sub>B.</sub><sub>Let</sub><sub>C</sub>
13.Ifrealnumbersxandysatisfy
x+3y-23≤0,
2x+y-11≥0,
x-2y+2≤0,
ì
ỵ
í findtherangeofvaluesofx+<sub>x</sub>y+4
+1 .
14.Arrangethepositiverootsforequationx·cosx+sinx<sub>=0inascendingorder</sub>a1,a2,…,an,
….<sub>Amongthefollowingconclusions,selectthecorrectstatements</sub>.
① 0<an+1-an<π
2;
② <sub>2<</sub>π an+1-an<π;
③2an+1>an+2+an;
④2an+1<an+2+an.
15.Findtheintervalswherethefunctiony= cos|π<sub>2+2</sub>x| ismonotonicallydecreasing.
16.Supposethegraphofquadraticfunctionf(x)=-x2<sub>+</sub><sub>bx+</sub><sub>c</sub><sub>(</sub><sub>Δ=</sub><sub>b</sub>2<sub>+4</sub><sub>ac>0)intersects</sub><sub></sub>
x-axisatAandB.IfpointP(x0,f(x0))wheref(x0)≠0isonthecurveandPAis
perpendiculartoPB,findf(x0).
Fig.2
17.LetA = (1,1).SupposeBandCaretwopointsontheparabolay=x2<sub>such</sub>
thatAB<sub>isperpendicularto</sub>BC.<sub>Amongallpossible</sub>BandC,findtheareaof
thesmallestcircumscribedcircleof△ABC.
18.Ifthesolutionsetfortheinequality x+1+2x≤bis [-1,3],findthe
solutionsetfortheinequality |x-1|-10 ≤b.
19.AsinFig.2,ABisthediameteroftheCircleO,OD⊥BCatFonBCand
intersectsthecircleatE.If∠AEC=∠ODB ,OA=5,andBC =8,findDE.
20.FindallclosedintervalsMsothatthefunctionf(x)=1<sub>3</sub>x2<sub>+</sub>2
3x-113 hasMasbothits
domainandrange.
1.4and5.
2.0.
3.1.
4.0,8,10.
5.25.
6.1<sub>2 or0</sub>.
7.36.
8.<sub>2</sub>2.
9.-2013.
10.5025.
11.2.
12.(1,2)or(4,-4).
13.é17<sub>9</sub>,13<sub>3</sub>
ë
ù
û.
14.② and ④.
15.kπ
2 +
π
4,
kπ
2 +
π
2
é
û,k∈Z.
16.1.
17.π.
18.[-17,-1]∪[3,19].
19.10<sub>3</sub>.
20.[-4,-1]or
-4,1+3 5<sub>2</sub>
é
ë
FirstRound
1A.Iff(cosα)=cos(2012α),findthevaluefor<sub>f</sub><sub>sin</sub> π
2012
ỉ
è
ư
ø.
1B.LetT = TNYWR (TheNumberYou WillReceive).
Letf(x)beanoddfunctiondefinedonRandf(x+2)= -f(x)forallrealx.Iff(3)=
2m-3
m+1 andf(1)>-T,findtherangeofvaluesform.
SecondRound
2A.<sub>Giventhatlog</sub>mx,lognx,andlog2xformanarithmetic(equaldifference)sequenceandx≠1.
Findthevalueforlogmn·log2(2m).
2B.<sub>LetT= TNYWR (TheNumberYou WillReceive).</sub>
Giventhat{an}isanarithmetic(equaldifference)sequence.IfSnisthesum ofthefirstn
termsandST=ST+11,finda8.
ThirdRound
3A.If<sub>f</sub>(x)= 1
2a<sub>+</sub><sub>x</sub>+<sub>2</sub>a1<sub>-</sub><sub>x</sub>-1andf(1)+f(-1)=2<sub>3</sub>,finda.
3B.LetT = TNYWR (TheNumberYou WillReceive).
SupposethelengthofthesquareABCDisT.LetEbeapointthatmovesalongthecirclewith
AD<sub>asthediameter.Findtherangeofvaluesfor</sub>EB+EC.
FirstRound
1A.<sub>-1</sub><sub>.</sub>
1B.-1<m<2
3.
SecondRound
2A.<sub>2</sub><sub>.</sub>
2B.<sub>0</sub><sub>.</sub>
ThirdRound
3A.<sub>1</sub><sub>.</sub>
FirstRound
1.IfM=cos2<sub>x+</sub><sub>x</sub><sub>sin</sub><sub>x</sub><sub>where0<</sub><sub>x<</sub>π
2,findtheintegerportionofM .
2.Ifalltheneighboringintersectingpointsofstraightliney=1andcurvef(x)=sinωx+æ<sub>è</sub> π<sub>3</sub>ö<sub>ø</sub>
3.Givenageometric(equalproportion)sequence{an}withbothitsfirstterma1>0andcommon
ratioq>0.Letbn= an+ a2012-n wherenisanaturalnumberand0<n<2012.Ifbkisthe
smallesttermofthesequence{bn},findk.
4.Giventhatthestraightliney=m(m<0)andthecurvey=cosx<sub>intersectontherightsideof</sub>
they-axis.Arrangethehorizontalcoordinatesoftheseinterceptionsinascendingorder
x1,x2,x3,….Ifx1,x2,andx3formageometric(equalproportion)sequence,findm.
SecondRound
5.Letf(x)=x3<sub>-6</sub><sub>x</sub>2<sub>+13</sub><sub>x</sub><sub>-6and</sub><sub>f</sub>(<sub>a</sub>)=7,<sub>f</sub>(b)=1,find<sub>a</sub><sub>+</sub><sub>b.</sub>
6.IfS=min
7.Findtherangeofvaluesofslopeksothatthestraightliney=
kx+1wouldintersecttheel-lipse3x2<sub>+</sub><sub>y</sub>2<sub>=1attheFirstQuadrant(</sub><sub>x</sub><sub>>0and</sub><sub>y>0)</sub><sub>.</sub>
8.Givenasequence{an}withanexplicitformulaan=(-1)n(2n-1)wheren
ispositiveinte-gers.LetSnbethesumofthissequence′sfirstnterms.WritetheexplicitformulaforS2k.
ThirdRound
9.Findtheacuteanglexsatisfyingtheequation(sin2x+cosx)(sinx-cosx)=2cos2<sub>x.</sub>
10.Givenarighttrianglewithhypotenuseoflength4x-2.Ifoneoftheothersideshasalength
of415-3x,findthevaluerangeofthelengthofitsthirdside.
11.Givennon-negativenumbersa,b,c,x,y,andzwitha+b+c+x+y+z=1,and
abc+xyz=<sub>36</sub>1,findthelargestpossiblevalueforabz+bcx+cay.
FourthRound
13.LetObethevertexoftheparabolay2<sub>=2</sub><sub>px</sub><sub>(</sub><sub>p≠0)andlet</sub><sub>Aand</sub><sub>B</sub><sub>betwonon-vertexpoints</sub>
onthisparabola.IftheslopesofOAandOBarek1andk2,respectively,andk1andk2
areal-sotherootsofequationx2<sub>+4</sub><sub>x</sub><sub>-2=0,findtheslopeofstraightline</sub><sub>AB.</sub>
14.Given △ABC.Leta,b,andcbetheoppositesidestointerioranglesA,B,andC,
respectively.If<sub>a</sub>1=<sub>b</sub>1+<sub>c</sub>1,findthemaximumpossiblevalueforsin(A).
FifthRound
15.Supposey=f(x)isanevenfunctionand[f(x1)-f(x2)](x1-x2)<0forany
x1,x2∈(-∞,0].Findtherangeofvaluesforxthatsatisfyf(x+1)<f(2x-1).
16.ConsideracubeABCD-A1B1C1D1ofedgelength1.LetO1bethespheretangentstoeachof
thiscube′s12edgesandletsphereO2bethespheretangentstoeachofthiscube′s6faces.
SupposeM1andM2representtheareaoftheregionsthatareintersectedbytheplaneD1AC
withspheresO1andO2respectively.FindM1-M2.
FirstRound
1.1.
2.1<sub>2 or-</sub>1<sub>2</sub>.
3.1006.
4.-1<sub>2</sub>.
SecondRound
5.4.
6.1<sub>2</sub>.
7.(- 3,0).
8.S2k=2k.
ThirdRound
9.π<sub>3</sub>.
10.(0,4
3).
11.<sub>108</sub>1.
12.- 15.
FourthRound
13.1<sub>2</sub>.
14.<sub>8</sub>15.
FifthRound
15.(-∞,0)∪(2,+∞).