Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (173.16 KB, 4 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>TRƯỜNG THCS HOÀNG HOA THÁM </b>
<b>ĐỀ CƯƠNG ÔN TẬP GIỮA HỌC KỲ II - TOÁN 7 </b>
--- ---
<b>A/ LÝ THUYẾT: </b>
<b>I. Phần đại số: </b>
- Thống kê:
Dấu hiệu điều tra, lập bảng tần số, mốt của dấu hiệu
Cơng thức tính Trung bình cộng của dấu hiệu.
Vẽ biểu đồ đoạn thẳng, biểu đồ hình cột.
- Tìm x
- Biểu thức đại số
<b>II. Phần hình học: </b>
- Các trường hợp bằng nhau của hai tam giác, hai tam giác vuông
- Định lý Pytago.
<b>B. BÀI TẬP THAM KHẢO </b>
<b>I. ĐẠI SỐ </b>
<b>*Dạng 1: Thống kê.</b>
<b>Bài 1.</b> Số “mặt nạ chống giọt bắn” được làm từ 30 học sinh lớp 7A của một trường
THCS trong đợt phòng chống dịch COVID-19 được ghi lại như sau:
1 2 5 5 2 6 3 6 5 2
2 3 3 6 5 9 4 8 5 3
5 4 1 8 7 10 5 7 6 7
a) Dấu hiệu ở đây là gì?
b) Lập bảng “ tần số” và tính số TBC (làm tròn đến phần nguyên).
c) Nêu một số nhận xét từ bảng “tần số” và tìm mốt của dấu hiệu.
d) Vẽ biểu đồ đoạn thẳng ứng với bảng “tần số” trên.
<b>Bài 2. </b>Bảng điểm kiểm tra giữa Học kì II mơn Tốn của học sinh lớp 7D được cho bởi
bảng “tần số” sau:
Điểm (x) 4 5 6 7 8 9 10
Tần số (n) 2 4 3 5 8 13 15
a) Dấu hiệu là gì?
b) Lớp 7D có bao nhiêu học sinh? Hãy nêu một số nhận xét về dấu hiệu từ bảng “tần số”.
c) Tính điểm trung bình mơn Tốn của lớp và tìm mốt của dấu hiệu.
a) Em hãy cho biết dấu hiệu điều tra ở đây là gì?
b) Lượng mưa trong các tháng 3, 5, 8 là bao nhiêu?
c) Sau khi đọc biểu đồ trên bạn Hà cho rằng: “ tháng VII có lượng mưa nhiều nhất trong
năm”. Theo em, nhận định trên đúng hay sai? Hãy giúp bạn đưa ra câu trả lời chính xác
trong trường hợp sai.
d) Tính lượng mưa trung bình mỗi tháng của năm đó (Số trung bình cộng lượng mưa của
12 tháng trong năm).
<b>Bài 4: </b>Số học sinh nữ của mỗi lớp trong một trường được ghi lại như sau:
20 20 21 20 19
20 20 23 21 20
23 22 19 22 22
21 x y z 23
a) Cho biết x, y , z là ba số tự nhiên chẵn liên tiếp tăng dần . Viết biểu thức biểu thị mối
quan hệ giữa y và x, z và x một cách chính xác nhất.
b) Biết x + y + z = 66. Em hãy tìm ba số x, y và z. Trình bày lời giải của em.
c) Tính trung bình mỗi lớp có bao nhiêu học sinh nữ ứng với x, y, z vừa tìm được ở câu
trên.
<b>*Dạng 2: Tìm x </b>
<b>Bài 1. </b>Tìm x biết:
a) 4 5 3
5 2<i>x</i> 10
<sub></sub> <sub></sub>
b) 5: 2 1
2 <i>x</i> 3
<sub> </sub>
c)
<i>x</i> <sub></sub><i>x</i> <sub></sub>
<b> </b>
<b>Bài 2. </b>Tìm x biết:
a) 2 3 1
4 3
<i>x</i> <i>x</i>
<sub></sub>
b)
6
24
<i>x</i>
<i>x</i>
c)
2
2 1 4
3<i>x</i> 5 9
<sub></sub> <sub></sub>
d) <i>x</i> 4<i>x</i>0
<b>*Dạng 3.Biểu thức đại số</b>
<b>Bài 1. </b>
a)
<b>Bài 1.</b> Tính độ dài x trong mỗi hình vẽ sau:
<b>x</b>
<b>12</b>
<b>5</b>
<b>C</b>
<b>B</b>
<b>A</b>
<b>x</b>
<b>P</b>
<b>N</b>
<b>M</b>
<b>x</b>
<b>8</b>
<b>6</b>
<b>x</b>
<b>12</b>
<b>15</b>
<b>Bài 2.</b> Cho ∆ABC có góc <i>A</i>900<sub>, phân giác BE (E </sub><sub> BC). Lấy điểm H thuộc cạnh BC </sub>
sao cho BH = BA.
a) Chứng minh: EH BC
b) Chứng minh BE là trung trực của AH.
c) Đường thẳng EH cắt AB tại K. Chứng minh: EK = EC.
d) Chứng minh: AH // KC.
<b>Bài 3.</b> Cho ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại M. Kẻ MD BC
(DBC).
a) Chứng minh: BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh: ABC = DBE.
c) Kẻ DH MC (H MC) và AK ME (K ME). Gọi N là giao điểm của hai tia DH và
AK. Chứng minh: MN là tia phân giác của <i>HMK</i> .
d) Chứng minh ba điểm B, M, N thẳng hàng.
<b>Bài 4.</b> Cho tam giác ABC cân tại A . Trên tia đối của các tia BC và CB lấy điểm D và E
sao cho BD = CE.
a) Chứng minh : ∆ADE cân.
b) Gọi M là trung điểm của BC. Chứng minh: AM là tia phân giác của góc DAE.
c) Từ B và C kẻ BH và CK theo thứ tự vng góc với AD và AE. Chứng minh BH = CK.
d) Chứng minh 3 đường thẳng AM, BH và CK cùng đi qua một điểm.
<b>Bài 5. </b>Cho ∆DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH
vng góc EF tại H.
a) Chứng minh : HE = HF. Giả sử DE = DF = 5cm; EF = 8cm. Tính độ dài DH.
b) Chứng minh: EM = FN và <i>DEM</i> <i>DFN</i>
c) Gọi giao điểm của EM và FN là K. Chứng minh: KE = KF.
d) Chứng minh ba điểm D,H, K thẳng hàng.
a) Tính BC.
b) Kéo dài AB lấy điểm D sao cho B là trung điểm của AD. Nối CD, qua B vẽ đường
thẳng vuông góc với AD cắt CD tại E. Chứng minh: ∆ABE = ∆DBE và suy ra ∆AED
cân.
c) Kẻ AK vuông góc với BC tại K. Qua D kẻ đường thẳng vng góc với CB tại F.
Chứng minh B là trung điểm của KF.
d) Chứng minh ∆AEC cân và suy ra E là trung điểm của DC.
<b>III. Nâng cao, mở rộng: </b>
<b>Bài 1.</b> Tính giá trị của biểu thức sau
A= <i>x y</i>4 4 <i>x y</i>5 5<i>x y</i>6 6 <i>x y</i>7 7 <i>x y</i>8 8 <i>x y</i>9 9 <i>x y</i>10 10 tại: x= -1; y=1
<b>Bài 2.</b> Cho x, y, z khác 0 và x – y – z = 0 .Tính Giá trị biểu thức :
H = (1 – <i>z</i>
<i>x</i> ) (1 –
<i>x</i>
<i>y</i> ) (1 +
<i>y</i>
<i>z</i> )
<b>Bài 3. </b>Tìm giá trị nhỏ nhất của các biểu thức sau:
a)<i>A</i>7(<i>x</i>5)2 3 b)<i>B</i> <i>x</i> <i>x</i>5
<b>Bài 4. </b>Tìm GTLN của các biểu thức sau:
a) 5 <sub>2</sub>
(3 2 ) 7
<i>A</i>
<i>x</i>
<b> </b> b) <i>B</i> 5 <i>x</i>11
<b>Bài 5. </b>Tìm số nguyên x để:
a) Biểu thức A = 13
17<i>x</i> đạt giá trị lớn nhất?
b) Biểu thức A = 20
12
<i>x</i>
<i>x</i>