Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (80.66 KB, 2 trang )
<span class='text_page_counter'>(1)</span>Traàn Só Tuøng Ngày soạn: 10/9/2007 Tieát daïy: 08. Hình hoïc 10 Chöông I: VECTÔ Bàøi 3: BAØI TẬP TÍCH CỦA VECTƠ VỚI MỘT SỐ. I. MUÏC TIEÂU: Kiến thức: Củng cố định nghĩa và các tính chất của phép nhân vectơ với một số. Sử dụng điều kiện cần và đủ để hai vectơ cùng phương. Kó naêng: Biết vận dụng tích vectơ với một số để chứng minh đẳng thức vectơ.. Biết vận dụng điều kiện hai vectơ cùng phương để chứng minh 3 điểm thẳng hàng. Biết vận dụng các phép toán vectơ để phân tích một vectơ theo hai vectơ không cùng phöông. Thái độ: Reøn luyeän tính caån thaän, chính xaùc. Luyện tư duy linh hoạt qua việc phân tích vectơ. II. CHUAÅN BÒ: Giaùo vieân: Giaùo aùn. Heä thoáng baøi taäp. Học sinh: SGK, vở ghi. Ôn tập các kiến thức về vectơ. III. HOẠT ĐỘNG DẠY HỌC: 1. Ổn định tổ chức: Kiểm tra sĩ số lớp. 2. Kieåm tra baøi cuõ: (Loàng vaøo quaø trình luyeän taäp) H. Ñ. 3. Giảng bài mới: TL Hoạt động của Giáo viên Hoạt động của Học sinh Noäi dung Hoạt động 1: Vận dụng chứng minh đẳng thức vectơ A 1. Goïi AM laø trung tuyeán cuûa 10' ABC vaø D laø trung ñieåm cuûa D đoạn AM. CMR: B M C 2DA DB a) DC 0 H1. Nhắc lại hệ thức trung Đ1. DB DC 2DM b) 2OA OB OC 4OD , ñieåm? với O tuỳ ý. H2. Nêu cách chứng minh b)? Hướng dẫn: Từ M vẽ các đường thẳng song song với caùc caïnh cuûa ABC.. Đ2. Từ a) sử dụng qui tắc 3 ñieåm. A B2. C1 C2. O. F. M A1 D A2. E B1. H3. Nhaän xeùt caùc tam giaùc B C MA1A2, MB1B2, MC1C2 ? Đ3. Các tam giác đều. H4. Nêu hệ thức trọng tâm Ñ4. MA MB MC 3MO tam giaùc?. 1 Lop10.com. 2. Cho ABC đều có trọng taâm O vaø M laø 1 ñieåm tuyø yù trong tam giaùc. Goïi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. CMR: 3 MD ME MF MO 2.
<span class='text_page_counter'>(2)</span> Hình hoïc 10. Traàn Só Tuøng. Hoạt động 2: Vận dụng xác định điểm thoả một đẳng thức vectơ H1. Nêu cách xác định một Đ1. Chứng tỏ: OM a (với O 3. Cho hai điểm phân biệt A, 10' ñieåm? B. Tìm ñieåm K sao và a đã biết) cho: 3KA 2KB 0 H2. Tính MA MB ?. Ñ2. MA MB = 2 MI A I. 4. Cho ABC. Tìm ñieå m M sao cho: MA MB 2MC 0. M C. B. Hoạt động 3: Vận dụng chứng minh 3 điểm thẳng hàng, hai điểm trùng nhau H1. Nêu cách chứng minh 3 Đ1. Chứng minh CA,CB 5. Cho bố n ñieåm O, A, B, C 10' ñieåm A, B, C thaúng haøng? sao cho: OA 2OB 3OC 0 cuøng phöông. CMR 3 ñieåm A, B, C thaúng CA 2CB 0 haøng. 6. Cho hai tam giaùc ABC vaø H2. Nêu cách chứng minh 2 Đ2. GG 0 ABC lần lượt có trọng tâm ñieåm truøng nhau? laø Gvaø G. CMR: AA BB CC 3GG Từ đó suy ra điều kiện cần và đủ để hai tam giác có cùng troïng taâm. Hoạt động 4: Vận dụng phân tích vectơ H1. Vaän duïng tính chaát naøo? Đ1. Hệ thức trung điểm. 7. Cho AK vaø BM laø hai trung 2 2 4 tuyeán cuûa ABC. Phaân tích 10' AB u v , BC u v 3 3 3 caùc vectô AB,BC,CA theo 4 2 u AK, v BM CA u v 3 3 8. Trên đường thẳng chứa Ñ2. Qui taéc 3 ñieåm caïnh BC cuûa ABC, moät laáy 1 3 ñieåm M sao cho: MB AM u v 3MC . 2 2 Phaân tích AM theo u AB, v AC . Hoạt động 5: Củng cố 3'. Nhaán maïnh caùch giaûi caùc dạng toán. 4. BAØI TAÄP VEÀ NHAØ: Laøm tieáp caùc baøi taäp coøn laïi. Đọc trước bài "Hệ trục toạ độ" IV. RUÙT KINH NGHIEÄM, BOÅ SUNG: ................................................................................................................................................... ................................................................................................................................................... ................................................................................................................................................... 2 Lop10.com.
<span class='text_page_counter'>(3)</span>