<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1></div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>
Brief case discussion
● 64 y/o male presents with pulmonary edema and respiratory
failure. Intubated and on mechanical ventilation.
● Diuresed over 2 days and ready for extubation after a
spontaneous breathing trial.
● 2 hours after extubation the patient is back in respiratory
</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>
Aim
● Refresh basic heart lung interactions and physiology
● Recognize changes in physiology when on mechanical
ventilation
● Discuss parameters and tools for monitoring and their
relevance
● Practical points on measurements
● Role of simple clinical variables
</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>
Definitions
● What is MAP, Cardiac output and SVR?
● What are the various pressures in the lung/respiratory
system?
● What is <b>cardiac transmural pressure</b>?
● What changes happen normally and on mechanical
</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5></div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6></div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7></div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>
When there is flow limitation, flow is
determined by the
<b>difference between </b>
<b>the arterial and critical closing </b>
<b>pressures </b>
and
<b>NOT</b>
the final downstream
</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>
SVR cannot be trusted
</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10></div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11></div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>
The Pulmonary System
• The pulmonary system (lungs and airways) is everything that
exists between airway opening (Pao) and pleura (Ppl).
<b>Transpulmonary </b>
<b>pressure</b>
P<sub>TP</sub> = P<sub>AO</sub> – P<sub>pl</sub>
<b>P</b>
<b><sub>A</sub></b>
<b>O</b>
</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>
Pleural pressure
•
Also called Intrathoracic pressure.
•
Pressure outside the lung surface but inside the
chest wall
•
Not constant when measured at different locations
inside the thorax
•
<b>ITP (juxtacardiac) is one of the chief </b>
</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14></div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15></div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>
<b>Contractility: Force that the heart muscle can </b>
generate at a given length
<b>Preload</b>
Length tension relationship of
cardiac myofibers
<b>Surrogate:</b> end diastolic
<b>volume </b>in chamber
<b>Secondary surrogate:</b>
<b>pressure </b>in chamber (CVP,
Pra, PAOP)
<b>Afterload</b>
Load (wall stress) the heart
muscle needs to eject against
</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17></div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18></div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>
Changes in mechanical ventilation
<b>Right side</b>
Venous return
RV output
Pulmonary vascular resistance
RV preload (EDV)
RV contractility
<b>Left side</b>
</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20></div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>
Right Ventricle
..<b>depends</b> on whether ITP or Palv is affected most by
mechanical ventilation:
When the <b>lungs </b>are <b>stiff and overdistended</b>, <b>RV output falls </b>
due to increase in afterload due to pulmonary hypoxic
vasoconstriction (RV dilates).
When the <b>chest wall is stiff </b>and over distended, <b>RV output falls</b>
</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>
Left Ventricle
LV preload is affected by:
RV preload due to the <b>“series”</b> effect
Increased RV volume may reduce LV compliance
LV is constrained in cardiac fossa by lung volume change
<b>“squeeze”</b>
</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23></div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24></div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25></div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>
NET Effect
●
Despite lower afterload,
<b>↑ITP reduces preload</b>
and this effect predominates in the normal heart.
●
The
<b>failing heart</b>
, however,
<b>benefits from both </b>
<b>reduced preload and afterload.</b>
●
↑ITP may increase pulmonary vascular resistance
</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>
Back to the case
● On mechanical ventilation the <b>reduced preload</b> and
<b>afterload</b> helped cardiac function and improved forward
flow.
● <b>Extubation reversed these benefits </b>suddenly pushing the
patient back into heart failure
● A <b>T-piece trial</b> may have helped reveal this.
● <b>Nitroglycerin </b>could have been used as an adjunct
● <b>Extubation to NIV</b> may be safer rather than to direct
</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28></div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29></div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30></div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31></div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>
Tools
● MAP (non invasive may be just as good as invasive
measurement).
● Arterial lines and invasive BP monitoring, CVP
● Invasive Cardiac output
</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>
Clinical parameters
● Skin perfusion (capillary refill)
● Mental status
</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>
Bottomline
Measure values at <b>end expiration.</b>
<b>Zero accurately.</b>
Preload and afterload <b>change </b>with mechanical ventilation and
alter measured pressures.
</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>
References
1. Langer et al. "Awake" extracorporeal membrane oxygenation (ECMO): Pathophysiology, technical considerations, and
clinical pioneering. Critical Care.
2. />
3.
/>
4. Magder S. Invasive intravascular hemodynamic monitoring: technical issues. Crit Care Clin. 2007 Jul;23(3):401-14. PubMed
5. Magder S. Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med. 2004 Jan
15;169(2):151-5. Review.
6. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovelemia in ventilated dogs
subjected to graded hemorrhage. Anesthesiology
7. Magder S. Hemodynamic monitoring in the mechanically ventilated patient. Curr Opin Crit Care. 2011 Feb
</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36></div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37></div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>
Conversion of: mmHg to
cmH2O
<b>mmHg</b> <b>cmH20</b>
1 1*
2 3
3 4
4 5
5 7
6 8
7 10
8 11
9 12
10 14
11 15
12 16
13 18
14 19
15 20
1 mmHg x 1.36 = cm H2O
*cm H2O reported in
</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39></div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40></div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41></div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42></div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43></div>
<!--links-->
<a href=' /><a href=' />
Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research pot