Tải bản đầy đủ (.pdf) (43 trang)

Hemodynamic monitoring in mechanical ventilation

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.34 MB, 43 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1></div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

Brief case discussion



● 64 y/o male presents with pulmonary edema and respiratory


failure. Intubated and on mechanical ventilation.


● Diuresed over 2 days and ready for extubation after a


spontaneous breathing trial.


● 2 hours after extubation the patient is back in respiratory


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

Aim



● Refresh basic heart lung interactions and physiology
● Recognize changes in physiology when on mechanical


ventilation


● Discuss parameters and tools for monitoring and their
relevance


● Practical points on measurements
● Role of simple clinical variables


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

Definitions



● What is MAP, Cardiac output and SVR?


● What are the various pressures in the lung/respiratory
system?



● What is <b>cardiac transmural pressure</b>?


● What changes happen normally and on mechanical


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5></div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6></div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7></div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

When there is flow limitation, flow is



determined by the

<b>difference between </b>


<b>the arterial and critical closing </b>



<b>pressures </b>

and

<b>NOT</b>

the final downstream



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

SVR cannot be trusted



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10></div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11></div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

The Pulmonary System



• The pulmonary system (lungs and airways) is everything that
exists between airway opening (Pao) and pleura (Ppl).


<b>Transpulmonary </b>
<b>pressure</b>


P<sub>TP</sub> = P<sub>AO</sub> – P<sub>pl</sub>


<b>P</b>

<b><sub>A</sub></b>


<b>O</b>


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

Pleural pressure




Also called Intrathoracic pressure.



Pressure outside the lung surface but inside the


chest wall



Not constant when measured at different locations


inside the thorax



<b>ITP (juxtacardiac) is one of the chief </b>



</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14></div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15></div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Contractility: Force that the heart muscle can </b>


generate at a given length



<b>Preload</b>


Length tension relationship of
cardiac myofibers


<b>Surrogate:</b> end diastolic


<b>volume </b>in chamber


<b>Secondary surrogate:</b>


<b>pressure </b>in chamber (CVP,
Pra, PAOP)


<b>Afterload</b>


Load (wall stress) the heart


muscle needs to eject against


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17></div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18></div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

Changes in mechanical ventilation



<b>Right side</b>


Venous return
RV output


Pulmonary vascular resistance
RV preload (EDV)


RV contractility


<b>Left side</b>


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20></div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

Right Ventricle



..<b>depends</b> on whether ITP or Palv is affected most by
mechanical ventilation:


When the <b>lungs </b>are <b>stiff and overdistended</b>, <b>RV output falls </b>


due to increase in afterload due to pulmonary hypoxic
vasoconstriction (RV dilates).


When the <b>chest wall is stiff </b>and over distended, <b>RV output falls</b>


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

Left Ventricle




LV preload is affected by:


RV preload due to the <b>“series”</b> effect


Increased RV volume may reduce LV compliance


LV is constrained in cardiac fossa by lung volume change


<b>“squeeze”</b>


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23></div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24></div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25></div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

NET Effect



Despite lower afterload,

<b>↑ITP reduces preload</b>



and this effect predominates in the normal heart.



The

<b>failing heart</b>

, however,

<b>benefits from both </b>



<b>reduced preload and afterload.</b>



↑ITP may increase pulmonary vascular resistance



</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

Back to the case



● On mechanical ventilation the <b>reduced preload</b> and


<b>afterload</b> helped cardiac function and improved forward
flow.


● <b>Extubation reversed these benefits </b>suddenly pushing the



patient back into heart failure


● A <b>T-piece trial</b> may have helped reveal this.


● <b>Nitroglycerin </b>could have been used as an adjunct
● <b>Extubation to NIV</b> may be safer rather than to direct


</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28></div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29></div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30></div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31></div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

Tools



● MAP (non invasive may be just as good as invasive


measurement).


● Arterial lines and invasive BP monitoring, CVP
● Invasive Cardiac output


</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

Clinical parameters



● Skin perfusion (capillary refill)
● Mental status


</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

Bottomline



Measure values at <b>end expiration.</b>
<b>Zero accurately.</b>


Preload and afterload <b>change </b>with mechanical ventilation and
alter measured pressures.



</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

References



1. Langer et al. "Awake" extracorporeal membrane oxygenation (ECMO): Pathophysiology, technical considerations, and
clinical pioneering. Critical Care.


2. />


3.
/>


4. Magder S. Invasive intravascular hemodynamic monitoring: technical issues. Crit Care Clin. 2007 Jul;23(3):401-14. PubMed
5. Magder S. Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med. 2004 Jan


15;169(2):151-5. Review.


6. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovelemia in ventilated dogs
subjected to graded hemorrhage. Anesthesiology


7. Magder S. Hemodynamic monitoring in the mechanically ventilated patient. Curr Opin Crit Care. 2011 Feb


</div>
<span class='text_page_counter'>(36)</span><div class='page_container' data-page=36></div>
<span class='text_page_counter'>(37)</span><div class='page_container' data-page=37></div>
<span class='text_page_counter'>(38)</span><div class='page_container' data-page=38>

Conversion of: mmHg to



cmH2O

<b>mmHg</b> <b>cmH20</b>


1 1*
2 3
3 4
4 5
5 7
6 8
7 10
8 11


9 12
10 14
11 15
12 16
13 18
14 19
15 20


1 mmHg x 1.36 = cm H2O
*cm H2O reported in


</div>
<span class='text_page_counter'>(39)</span><div class='page_container' data-page=39></div>
<span class='text_page_counter'>(40)</span><div class='page_container' data-page=40></div>
<span class='text_page_counter'>(41)</span><div class='page_container' data-page=41></div>
<span class='text_page_counter'>(42)</span><div class='page_container' data-page=42></div>
<span class='text_page_counter'>(43)</span><div class='page_container' data-page=43></div>

<!--links-->
<a href=' /><a href=' /> Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research pot
  • 119
  • 339
  • 0
  • ×