Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (488.41 KB, 36 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
<b>BÀI 1. QUY TẮC ĐẾM </b>
<b>1</b>. <b>Quy tắc cộng</b>
Giả sử một cơng việc V có thể thực hiện theo <b>hai phương án V1 hoặc V2</b>.
Số cách thực hiện V1 là m1, số cách thực hiện V2 là m2.
Mỗi cách thực hiện V1 khơng trùng với bất kì cách thực hiện V2 nào.
Khi đó số cách thực hiện cơng việc V là <b>n = m1 + m2 . </b>
<b>Ví dụ 1</b>. Nhà An có 2 xe đạp, 3 xe máy. Khi đến trường An đi xe đạp hoặc xe máy.
Hỏi An có bao nhiêu cách đi đến trường?
<b>Ví dụ 2</b>. Một bộ bài có 52 lá với 4 chất khác nhau. Hỏi có bao nhiêu cách lấy ra một
lá cơ hoặc lá át? Trong ví dụ này có thể sử dụng quy tắc cộng (bằng cách lấy số cách
chọn một lá át cộng với số cách chọn một lá cơ) được khơng? Tại sao?
<b>2. Quy tắc nhân </b>
Giả sử một công việc V bao gồm <b>hai giai đoạn V1 và V2. </b>
Số cách thực hiện V1 là m1, số cách thực hiện V2 là m2.
<i><b>Mỗi cách thực hiện V</b><b>1</b><b> đều có m</b><b>2</b><b> cách thực hiện V</b><b>2</b><b>. </b></i>
Khi đó số cách thực hiện cơng việc V là <b>n = m1 . m2 . </b>
<b>Ví dụ 3.</b> Từ nhà Bình (Thủ Dầu Một, Bình Dương) lên Đà Lạt phải đi qua bến xe
Miền Đơng. Từ nhà ra bến xe miền Đơng, Bình đi xe bt; từ bến xe miền Đơng lên
Đà Lạt, Bình đi xe ơtơ khách. Biết rằng có 3 xe bt đi từ nhà Bình đến bến xe Miền
Đơng và từ đó có 5 xe khách lên Đà Lạt. Hỏi Bình có bao nhiêu cách lên Đà Lạt?
Mỗi tập con gồm k phần tử khác nhau lấy ra từ tập hợp có n phần tử được gọi là một
tổ hợp chập k của n phần tử đã cho.
<b>Ví dụ 4</b>. Có 5 đội bóng thi đấu vịng loại. Mỗi trận đấu giữa các đội (gồm 2 phần tử
lấy từ 5 phần tử) là một tổ hợp chập 2 của 5 phần tử (5 đội) đã cho.
<b>Cơng thức tính số tổ hợp </b>
Kí hiệu số các tổ hợp chập k của n phần tử là <i>C<sub>n</sub>k</i>, ta có cơng thức:
!
!( )!
<i>k</i> <i>n</i>
<i>n</i> <i>k n k</i>
<i>C</i> <sub></sub>
<b>Ví dụ 5</b>. (Tiếp ví dụ 4) Số các trận đấu vịng loại do 5 đội đó thực hiện là số các tổ hợp
chập 2 của 5 phần tử: 2
5
5!
10
2!3!
<b>Ví dụ 6</b>. Trong một cái hộp có 10 viên phấn trắng và 6 viên phấn màu. Lấy ra 5 viên
phấn. Hỏi có bao nhiêu cách lấy được:
a) các viên phấn bất kì? b) 2 viên phấn màu?
c) ít nhất 4 viên phấn màu? d) ít nhất 1 viên phấn màu?
<b>BÀI TẬP </b>
1. Một lơ hàng có 100 sản phẩm, trong đó có 5 phế phẩm. Chọn ra 12 sản phẩm để
kiểm tra. Hỏi có bao nhiêu cách chọn:
a) các sản phẩm bất kì ?
b) sao cho trong số các sản phẩm đó có khơng q 2 phế phẩm ?
c) sao cho chọn được ít nhất 1 phế phẩm ?
2. Người ta lấy ra 3 viên bi từ một cái hộp đựng 6 viên vi đỏ, 4 viên bi xanh, 5 viên bi
vàng. Hỏi có bao nhiêu cách lấy ra:
a) các viên bi tùy ý ? b) 2 viên bi đỏ, 1 viên bi xanh ?
c) các viên bi có mầu khác nhau ? d) một viên màu đỏ ?
e) nhiều nhất một viên màu đỏ ? f) ít nhất một viên màu đỏ ?
<b>BÀI 2. PHÉP THỬ - BIẾN CỐ </b>
<b>1. Khái niệm </b>
Hành động mà ta thực hiện là phép thử. Kết quả của phép thử được gọi là biến cố.
a) Tung một viên phấn lên cao, viên phấn rơi xuống.
b) Một sinh viên đi thi mơn Tốn và đậu mơn này, nhưng đi thi ngoại ngữ lại bị rớt.
c) Bóc một tờ lịch trong quyển lốc lịch năm 2017, được tờ có ghi ngày 31/2/2017.
Hãy chỉ ra phép thử và biến cố trong từng ví dụ trên.
a) Phép thử là ..., biến cố là ...
b) Phép thử là ..., biến cố là ...
c) Phép thử là ..., biến cố là ...
<b>2. Phân loại biến cố </b>
<b>- </b>Biến cố ln ln xảy ra trong phép thử được gọi là biến cố chắc chắn, kí hiệu là .
- Biến cố khơng bao giờ xảy ra được gọi là biến cố khơng thể, kí hiệu là .
<b>Ví dụ 2</b>. (Tiếp ví dụ 1) a) là biến cố ...
b) là các biến cố ...
c) là biến cố...
<b>3. Các phép toán đối với biến cố </b>
<b>a) Tổng các biến cố</b>
Cho hai biến cố A và B. Tổng của chúng là một biến cố C sao cho C xảy ra khi <b>A </b>
<b>hoặc B</b> xảy ra, kí hiệu <b>C = A + B</b>.
<b>b) Tích các biến cố </b>
Cho hai biến cố A và B. Tích của chúng là một biến cố C sao cho C xảy ra khi <b>A và B</b>
xảy ra, kí hiệu <b>C = A.B</b>
<b>c) Biến cố đối lập </b>
Hai biến cố A và B được gọi là đối lập nhau nếu biến cố A xảy ra thì biến cố B khơng
xảy ra và nếu A khơng xảy ra thì B phải xảy ra, kí hiệu <i>B</i> <i>A</i>.
<b>Ví dụ 3.</b> Một sinh viên thi hai mơn Tốn, Lý.
Gọi A là biến cố sinh viên đó đậu Tốn, B là biến cố sinh viên đó đậu Lý.
Hãy viết các biến cố sau thành phép tốn của A và B:
a) Sinh viên đó đậu ít nhất 1 mơn. b) Sinh viên đó đậu cả hai mơn.
c) Sinh viên đó bị rớt mơn Tốn. d) Sinh viên đó bị rớt cả hai mơn.
e) Sinh viên đó chỉ đậu mơn Lý. f) Sinh viên đó chỉ đậu một mơn.
g) Sinh viên đó đậu khơng q một mơn.
<b>4. Các biến cố xung khắc nhau </b>
Hai biến cố được gọi là xung khắc nhau nếu chúng khơng cùng xảy ra.
<b>5. Các biến cố độc lập </b>
Hai biến cố được gọi là độc lập nếu biến cố này xảy ra không ảnh hưởng đến biến cố
kia và ngược lại.
<b>6. Hệ biến cố đầy đủ </b>
Hệ n biến cố A1, A2,..., An được gọi là hệ đầy đủ nếu ln <b>có một và</b> <b>chỉ một</b>
biến cố của hệ xảy ra trong phép thử.
<b>Ví dụ 4</b>. Tung một súc sắc (hình lập phương gồm 6 mặt có đánh số từ 1 đến 6). Gọi
Ak là biến cố xuất hiện mặt k.
<b>BÀI TẬP </b>
<b>1</b>. Hai người cùng bắn, mỗi người bắn một viên đạn vào tấm bia. Gọi Ni là biến cố
người thứ i bắn trúng bia, i = 1,2. Hãy biểu diễn các biến cố sau qua N1, N2.
a) Chỉ có người thứ nhất bắn trúng bia. b) Có đúng một người bắn trúng.
c) Cả hai người đều bắn trúng. d) Khơng có ai bắn trúng.
e) Có ít nhất một người bắn trúng. f) Có khơng q một người bắn trúng.
<b>2.</b> Người ta chọn ngẫu nhiên 3 linh kiện từ một lơ hàng. Gọi <i>L<sub>k</sub></i>là biến cố linh kiện thứ
k đạt tiêu chuẩn loại A, k =
__
1,3 . Hãy biểu diễn các biến cố sau qua L1, L2, L3.
a) Cả ba linh kiện đều đạt loại A. b) Chỉ có một linh kiện đạt loại A.
c) Có đúng hai linh kiện đạt loại A. d) Khơng có kinh kiện nào đạt loại A.
e) Có nhiều nhất một linh kiện đạt loại A. f) Có khơng q hai linh kiện loại A.
g) Có ít nhất một linh kiện khơng đạt loại A. h) Có ít nhất một linh kiện đạt loại A.
<b>BÀI 3. ĐỊNH NGHĨA XÁC SUẤT </b>
<b>1. Định nghĩa</b>
Cho T là một phép thử và A là biến cố có thể xảy ra trong phép thử đó.
Giả sử T có n trường hợp có thể xảy ra, trong số đó có m trường hợp làm biến cố A
xuất hiện. Khi đó tỉ số <i>m</i>
<i>n</i> được gọi là xác suất của biến cố A, kí hiệu là P(A).
Vậy: <i>P A</i>
<i>n</i>
<b>Ý nghĩa của xác suất</b>: Xác suất của một biến cố là một số đặc trưng cho khả năng
xuất hiện biến cố đó trong phép thử, xác suất càng lớn, khả năng xuất hiện biến cố
càng nhiều.
<b>Phương pháp tính xác suất bằng định nghĩa</b>:
Để tính xác suất của một biến cố, ta cần thực hiện các bước sau đây
- <i><b>Gọi phép thử, tính số trường hợp có thể xảy ra. </b></i>
<i><b>- Gọi tên biến cố cần tìm xác suất, tính số trường hợp làm xuất hiện biến cố đó </b></i>
<i><b>trong phép thử. </b></i>
<b>Ví dụ</b> <b>1.</b> Đề cương thi mơn Triết có 70 câu hỏi. Một sinh viên chỉ ơn 40 câu. Cho biết
đề thi tự luận gồm 3 câu thuộc đề cương và nếu sinh viên trả lời đúng ít nhất hai câu
thì đậu. Tìm xác suất sinh viên đó đậu mơn Triết.
<b>Ví dụ 2.</b> Một chi đồn có 30 sinh viên nam và 15 sinh viên nữ. Cần chọn ra 8 sinh viên
tham gia chiến dịch mùa hè xanh. Tìm xác suất để trong nhóm chọn ra có đúng 3 sinh
viên nữ.
<b>2. Các tính chất của xác suất </b>
1) Với mọi biến cố A ta ln có 0<i>P A</i>( ) 1
2) ( )<i>P</i> 0 3) ( ) 1<i>P</i> 4) ( ) 1<i>P A</i> <i>P A</i>( )
<b>Ví dụ 3. </b>Mộtbộ bài có 52 lá với 4 chất khác nhau. Lấy ra 8 lá bài từ bộ bài đó. Tìm
xác suất lấy được
a) 3 lá màu đỏ. b) ít nhất 1 lá màu đỏ.
<b>BÀI TẬP </b>
<b>1.</b> Lớp học mơn xác suất có 64 sinh viên, trong đó có 15 sinh viên nữ. Chọn ngẫu
nhiên một nhóm gồm 10 sinh viên. Tìm xác suất trong nhóm chọn ra có
a) 4 sinh viên nữ.
b) khơng q 2 sinh viên nữ.
c) ít nhất 1 sinh viên nữ.
<b>2</b>. Từ một cái hộp có 20 viên phấn, trong đó có 5 viên phấn màu, người ta lấy ra 6
viên phấn. Tìm xác suất lấy được
a) 2 viên phấn màu.
<b>BÀI 4. CÁC CƠNG THỨC TÍNH XÁC SUẤT </b>
<b>1. Cơng thức cộng </b>
Cho hai biến cố A, B và C = A + B. Cần tính xác suất của C theo xác suất của A và
B.
a) <b>Trường hợp hai biến cố A và B xung khắc </b>
<b>P(C) = P(A) + P(B) </b>
b) <b>Trường hợp hai biến cố A và B không xung khắc </b>
<b>P(C) = P(A) + P(B) - P(AB) </b>
<b>Ví dụ 1</b>. Có 10 cái bút, trong đó có 4 bút đỏ, số cịn lại là bút xanh. Lấy ngẫu nhiên 3
cái bút.Tìm xác suất lấy được
a) 1 bút đỏ. b) 2 bút đỏ. c) 3 bút xanh.
d) khơng q 1 bút đỏ. e) ít nhất 1 bút đỏ.
<b>Ví dụ 2.</b> Một lớp học có 50 sinh viên, trong đó có 35 người đậu mơn Tốn, 28 người
đậu mơn Lý. Số sinh viên của lớp đậu cả hai mơn này là 20. Gọi ngẫu nhiên một sinh
viên của lớp. Tìm xác suất sinh viên đó đậu ít nhất một mơn.
<b>Ví dụ 3</b>. Trong hộp phấn có 10 viên phấn màu và 40 viên phấn trắng. Lấy ngẫu nhiên
5 viên phấn. Tìm xác suất lấy được
a) 1 viên phấn màu. b) tồn phấn trắng.
c) nhiều nhất 1 viên phấn màu. d) ít nhất 1 viên phấn màu.
Cho hai biến cố A, B và C = AB. Cần tính xác suất của C theo xác suất của A và B.
a) <b>Trường hợp hai biến cố A và B độc lập </b>
<b>P(C) = P(A) P(B) </b>
b)<b> Trường hợp hai biến cố A và B không độc lập </b>
<b>P(C) = P(A) P(B|A) </b>
<b>hoặc </b>
<b>P(C) = P(B) P(A|B) </b>
Trong đó : P(B|A) là xác suất của B nếu A đã xảy ra. Tương tự cho P(A|B)
<b>Ví dụ 4. </b>Một sinh viên phải thi Tốn và Lý. Cho biết xác suất đậu hai mơn đó lần lượt
là 0,9; 0,8. Hãy tính các xác suất sau đây:
e) Sinh viên đó đậu khơng q một mơn. f) Sinh viên đó đậu ít nhất một mơn.
<b>Ví dụ 5</b>. Một xạ thủ bắn hai viên đạn, xác suất bắn trúng từng viên lần lượt là 0,6 ; 0,7.
Tìm xác suất anh ta bắn trúng
a) cả hai viên. b) chỉ viên thứ nhất. c) chỉ một viên.
d) ít nhất một viên. e) khơng q một viên.
<b>Ví dụ 6</b>. Một cậu bé có 10 cái bút chì,trong đó có 3 bút chì màu. Cậu bé cho anh mình
2 cái bút, sau đó cho chị mình 1 cái bút. Tìm xác suất cậu bé cịn lại
a) tồn bút chì đen. b) 2 bút chì màu. c) 1 bút chì màu.
d) ít nhất 1 bút chì màu. e) khơng q 1 bút chì màu.
<b>Ví dụ 7.</b> Hai bạn An và Bình rủ nhau mua vé số tại một quầy có 50 vé, trong đó có 4
vé sẽ trúng thưởng. An mua trước 2 vé, sau đó Bình chọn mua 1 vé. Tìm xác suất hai
bạn đó mua được:
a) 3 vé trúng. b) 1 vé trúng. c) Ít nhất 1 vé trúng.
<b>3. Cơng thức xác suất đầy đủ </b>
Cho hệ đầy đủ các biến cố A1, A2, ... , An và B là biến cố xảy ra khi một trong các
biến cố của hệ đó xảy ra. Ta cần tìm xác suất của B. Ta có cơng thức
<b>P(B) = P(A1)P(B|A1) + P(A2)P(B|A2) + ... + P(An)P(B|An) </b>
<b>Ví dụ 8</b>. Cho 3 cái hộp đựng bút hình dáng giống nhau. Hộp thứ nhất có 2 bút đỏ, 8
bút xanh. Hộp thứ hai có 4 bút đỏ, 6 bút xanh. Hộp thứ ba có 4 bút đỏ, 8 bút xanh. Lấy
ngẫu nhiên một hộp, từ đó lấy ngẫu nhiên 3 cái bút. Tìm xác suất lấy được
a) 3 bút đỏ. b) 1 bút đỏ. c) ít nhất một bút đỏ.
<b>Ví dụ 9</b>. Có hai lơ hàng đựng các thuyết bị điện tử. Lơ thứ nhất có 4 phế phẩm và 46
sản phẩm tốt. Lơ thứ hai có 3 phế phẩm và 45 sản phẩm tốt. Từ lơ thứ nhất lấy ra 2 sản
phẩm bỏ sang lơ thứ hai. Sau đó từ lơ thứ hai lấy ra 5 sản phẩm.
Tìm xác suất lấy được: a) 5 sản phẩm tốt. b) ít nhất một phế phẩm.
<b>4. Cơng thức xác suất giả thiết </b>
Cho hệ đầy đủ các biến cố A1, A2, ... , An và B là biến cố xảy ra khi một trong
các biến cố của hệ đó xảy ra. Giả sử biến cố B đã xảy ra. Ta cần tìm xác suất để B xảy
( )
<i>k</i> <i>k</i>
<i>k</i>
<i>P A P B A</i>
<i>P A B</i>
<i>P B</i>
<b>Ví dụ 10.</b> Một nhà máy có ba phân xưởng cùng sản xuất một loại sản phẩm. Phân
xưởng thứ nhất sản xuất 25%, phân xưởng thứ hai sản xuất 35%, cịn phân xưởng thứ
ba sản suất 40% tổng số sản phẩm của cả nhà máy. Tỉ lệ phế phẩm của từng phân
xưởng lần lượt là 1%; 3%; 2%. Lấy ngẫu nhiên một sản phẩm trong kho hàng của nhà
máy.
a) Tìm xác suất lấy được phế phẩm.
b) Giả sử lấy được phế phẩm, tìm xác suất phế phẩm đó do phân xưởng thứ nhất sản
xuất.
c) Nếu lấy được sản phẩm tốt, theo ý bạn, khả năng sản phẩm đó do phân xưởng nào
sản suất là nhiều nhất?
<b>Ví dụ 11.</b> Cho 3 cái hộp đựng bút hình dáng giống nhau. Hộp thứ nhất có 2 bút đỏ, 8
bút xanh. Hộp thứ hai có 4 bút đỏ, 6 bút xanh. Hộp thứ ba có 4 bút đỏ, 8 bút xanh. Lấy
ngẫu nhiên một hộp, từ đó lấy ngẫu nhiên 2 cái bút.
a) Tìm xác suất lấy được hai bút khác màu.
b) Giả sử đã lấy được hai bút khác màu. Tìm xác suất đó là các bút của hộp thứ ba.
<b>PHƯƠNG PHÁP TÍNH XÁC SUẤT BẰNG CƠNG THỨC </b>
Để tính xác suất của một biến cố bằng cơng thức, ta cần thực hiện các bước sau
đây
- <i><b>Gọi tên biến cố cần tìm xác suất, phân tích nó thành phép tốn đối với các biến cố </b></i>
<i><b>khác đơn giản hơn. </b></i>
<i><b>- Phân tích mối quan hệ giữa các biến cố tham gia vào phép toán: xung khắc hay </b></i>
<i><b>khơng, độc lập hay khơng, có tạo thành hệ đầy đủ hay khơng... </b></i>
<i><b>- Chọn cơng thức tính xác suất của biến cố ban đầu theo xác suất của các biến cố </b></i>
<i><b>đơn giản. </b></i>
<i><b>- Tính xác suất của các biến cố tham gia vào phép toán, nếu cần. </b></i>
<i><b>- Tính xác suất của biến cố ban đầu. </b></i>
<b>5. Cơng thức Bernoulli </b>
Giả sử: - phép thử T lặp lại n lần
- biến cố A có thể xuất hiện trong mỗi lần thử với xác suất khơng đổi P(A) =
p.
( , ) <i>k</i> <i>k</i>(1 )<i>n k</i>
<i>n</i> <i>n</i>
<i>P k A</i> <i>C p</i> <i>p</i> (k = 0, 1, ... , n)
<b>Ví dụ 12</b>. Một sinh viên thi 5 mơn với xác suất đậu từng mơn là 0,7. Tìm xác suất sinh
viên đó
a) đậu 3 mơn. b) khơng đậu mơn nào. c) đậu ít nhất một mơn.
<b>Ví dụ 13</b>. Một xạ thủ đã bắn 6 viên đạn. Cho biết xác suất bắn trúng mục tiêu của mỗi
lần bắn đều là 0,9. Tìm xác suất anh ta bắn trúng
a) 4 viên. b) khơng q 2 viên. c) ít nhất một viên đạn.
<b>6. Các cơng thức tính gần đúng xác suất </b>
Trong cơng thức Bernoulli, nếu n và k tương đối lớn thì việc sử dụng cơng thức gặp
khó khăn nên người ta sử dụng các cơng thức gần đúng để thay thế. Muốn sai số chấp
nhận được thì tùy theo giá trị của n và k, cũng như tùy vào xác suất của biến cố trong
mỗi lần thử mà ta sử dụng cơng thức gần đúng cho thích hợp.
<b>1. Trường hợp </b><i><b>n</b></i><b> khá lớn, </b><i><b>P(A) = p</b></i><b> không quá lớn, không quá bé</b>. Khi đó ta sử
dụng cơng thức Gauss để tính <i>P k A<sub>n</sub></i>( , ) và sử dụng cơng thức Laplace để tính
1 2
( , )
<i>n</i>
<i>P k</i> <i>k A</i> .
1
( , )
(1 ) (1 )
<i>n</i>
<i>k</i> <i>np</i>
<i>P k A</i> <i>f</i>
<i>np</i> <i>p</i> <i>np</i> <i>p</i>
<sub></sub>
<sub></sub> <sub></sub>
<sub></sub> <sub></sub>
trong đó f(x) là hàm số Gauss có bảng giá trị cho trước.
2 1
1 2
( , )
(1 ) (1 )
<i>n</i>
<i>k</i> <i>np</i> <i>k</i> <i>np</i>
<i>P k</i> <i>k A</i>
<i>np</i> <i>p</i> <i>np</i> <i>p</i>
<sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub>
trong đó ( )<i>x</i> là hàm số Laplace có bảng giá trị cho trước, ký hiệu k1 k2 có nghĩa
là A xuất hiện từ k1 đến k2 lần.
<b>Ví dụ 14.</b> Một đề thi trắc nghiệm có 100 câu hỏi, xác suất trả lời đúng mỗi câu của
một sinh viên là 0,4. Tìm xác suất sinh viên đó trả lời đúng
a) 50 câu hỏi. b) Ít nhất 50 câu hỏi.
<b>Ví dụ 15.</b> Xác suất sinh một bé trai là 0,51. Tìm xác suất để trong 200 em bé, số bé trai
ít hơn số bé gái.
2. <b>Trường hợp </b><i><b>n</b></i><b> khá lớn, </b><i><b>P(A) = p</b></i><b> khá bé. </b>
Khi đó ta sử dụng cơng thức Poisson để tính <i>P k A<sub>n</sub></i>( , ).Ta có
( )
( , )
!
<i>np</i> <i>k</i>
<i>n</i>
<i>e</i> <i>np</i>
<i>P k A</i>
<i>k</i>
<b>Ví dụ 16.</b> Một chung cư có 160 hộ gia đình. Xác suất để mỗi hộ có sự cố về điện vào
buổi tối là 0,02. Tìm xác suất để trong một buổi tối có
a) 4 gia đình gặp sự cố về điện. b) từ 2 đến 5 gia đình gặp sự cố về điện.
<b>Ví dụ 17.</b> Xác suất để một hạt thóc giống bị lép là 0,006. Tìm xác suất sao cho trong
1000 hạt thóc giống sẽ có
a) 6 hạt bị lép. b) từ 3 đến 7 hạt bị lép.
<b> </b>
<b>BÀI TẬP </b>
1. Có ba người, mỗi người bắn một viên đạn vào bia với xác suất bắn trúng lần lượt là
0,6 ; 0,7 ; 0,8. Tìm các xác suất sau đây:
a) Chỉ có người thứ hai bắn trúng. b) Có đúng một người bắn trúng.
c) Chỉ có người thứ ba bắn trượt. d) Có đúng hai người bắn trúng.
e) Cả ba người đều bắn trúng. f) Khơng có ai bắn trúng.
g) Có ít nhất một người bắn trúng. h)Có khơng q hai người bắn trúng.
2. Có ba cái hộp đựng bút. Hộp thứ nhất có 5 bút đỏ, 10 bút xanh. Hộp thứ hai có 3 bút
đỏ, 7 bút xanh. Hộp thứ ba có 3 bút đỏ, 4 bút xanh. Từ hộp thứ nhất lấy ra 1 cái bút, từ
hộp thứ hai lấy ra 2 cái, cùng bỏ vào hộp thứ ba.
a) Tìm xác suất để trong hộp thứ ba số bút đỏ nhiều hơn số bút xanh.
b) Từ hộp thứ ba lấy ra 2 cái bút. Tìm xác suất lấy được 2 bút cùng màu.
3. Có hai lơ hàng, lơ thứ nhất có 10 sản phẩm loại A, 2 sản phẩm loại B ; lơ thứ hai có
16 sản phẩm loại A, 4 sản phẩm loại B. Từ mỗi lơ ta lấy ngẫu nhiên ra một sản phẩm.
Sau đó, trong hai sản phẩm thu được lại lấy ra một sản phẩm. Tìm xác suất để sản
phẩm lấy ra sau cùng là sản phẩm loại A.
4. Hai máy cùng sản xuất ra một loại chi tiết. Năng suất của máy thứ hai gấp đôi máy
thứ nhất. Tỉ lệ chi tiết đạt tiêu chuẩn của máy thứ nhất là 65%, của máy thứ hai là
80%. Lấy ngẫu nhiên một chi tiết từ lơ hàng do hai máy sản xuất.
a) Tìm xác suất lấy được chi tiết đạt tiêu chuẩn.
b) Nếu chi tiết đó là phế phẩm, tìm xác suất chi tiết đó do máy thứ hai sản xuất.
5. Ở một vùng cứ 100 người thì có 30 người hút thuốc lá. Biết tỉ lệ người bị viêm họng
trong số người hút thuốc là 60%, cịn trong số người khơng hút là 10%.
c) Nếu người đó khơng bị viêm họng thì xác suất để anh ta hút thuốc bằng bao nhiêu ?
6. Có bốn nhóm xạ thủ tập bắn. Nhóm thứ nhất có 6 người, nhóm thứ hai có 7 người,
nhóm thứ ba có 8 người và nhóm thứ tư có 4 người. Xác suất bắng trúng đích của mỗi
người trong bốn nhóm đó lần lượt là 0,8 ; 0,7 ; 0,6 ; 0,5. Chọn ngẫu nhiên một xạ thủ.
a) Tìm xác suất anh ta bắn trúng đích.
b) Giả sử xạ thủ này bắn trượt. Hãy xác định xem người đó có khả năng ở trong nhóm
nào nhất ?
7. Một xạ thủ có xác suất bắn trúng đích ở mỗi lần bắn là 0,7. Anh ta đã bắn 5 lần, mỗi
lần 1 viên đạn.
a) Tìm xác suất có 3 viên trúng đích.
b)Tìm xác suất có khơng q 3 viên trúng.
8. Tỉ lệ phế phẩm ở một nhà máy là 0,002. Tìm xác suất để trong 500 sản phẩm sẽ có
a) 3 phế phẩm. b) nhiều nhất 3 phế phẩm.
9. Xác suất thi đậu mơn Tốn của sinh viên một trường đại học là 0,8. Tìm xác suất
trong 300 sinh viên thi mơn Tốn sẽ có
<b>BÀI 5. BIẾN NGẪU NHIÊN </b>
<b>1. Khái niệm </b>
Biến cho tương ứng mỗi kết quả của phép thử với một số được gọi là biến ngẫu nhiên
hay biến ngẫu nhiên trên các kết quả của phép thử đó. Nói một cách khác, biến ngẫu
nhiên là biến có giá trị thay đổi tuỳ theo phép thử.
<i><b>Ghi chú :</b> một số tài liệu dùng thuật ngữ <b>đại lượng ngẫu nhiên</b> thay vì <b>biến ngẫu </b></i>
<i><b>nhiên. </b></i>
<b>Ví dụ 1</b>.
a) Số mơn thi đậu của một sinh viên trong một học kì (khi phải thi 5 mơn).
b) Nhiệt độ của phịng học trong một ngày đêm.
c) Số người đến giao dịch tại một ngân hàng trong một tháng.
<b>2. Các loại biến ngẫu nhiên </b>
Biến ngẫu nhiên X có dạng <i>X</i>
Biến ngẫu nhiên <i>X</i>
Biến ngẫu nhiên có giá trị lấp đầy một khoảng hay đoạn nào đó được gọi là biến
ngẫu nhiên liên tục.
<b>Ví dụ 2</b>. Xem lại các biến ngẫu nhiên cho ở ví dụ 1.
a) là biến ngẫu nhiên ……….
b) là biến ngẫu nhiên ……….
c) là biến ngẫu nhiên ……….
<b>3. Bảng phân phối xác suất (BNN rời rạc) </b>
Cho <i>X</i>
Khi đó bảng sau đây được gọi là bảng phân phối xác suất của X.
X x1 x2 … <i>x<sub>n</sub></i>
P p1 p2 … <i>p<sub>n</sub></i>
Bảng phân phối xác suất có các tính chất sau :
(1) 0 <i>p<sub>i</sub></i> 1 (2)
1
1
<i>n</i>
<i>i</i>
<i>i</i>
<i>p</i>
<b>Ví dụ 3</b>. Gọi X là số mơn thi đậu của một sinh viên trong học kì phải thi 5 mơn. Khi
đó X nhận các giá trị: 0, 1, 2, 3, 4, 5. Giả sử X có bảng phân phối xác suất sau đây.
X 0 1 2 3 4 5
P 0,05 0,15 0,3 0,35 0,15 0
Từ bảng ta có xác suất thi đậu 4 mơn của sinh viên đó là 0,15; xác suất thi đậu
cả 5 mơn là 0.
Trong các xác suất ta thấy (<i>P X</i> 3) lớn nhất nên khả năng sinh viên đậu 3
mơn là nhiều nhất.
<b>Ví dụ 4.</b> Một xạ thủ được phép bắn 3 viên đạn. Gọi X là số viên đạn anh ta bắn trúng
bia. Hãy lập bảng phân phối xác suất của X trong hai trường hợp sau:
a) Biết xác suất bắn trúng mục tiêu của mỗi viên đạn đều 0,8.
b) Biết xác suất bắn trúng mục tiêu của ba viên đạn lần lượt là 0,7; 0,8; 0,9.
<b>4. Hàm phân phối xác suất </b>
Cho X là biến ngẫu nhiên. Ta gọi hàm số
( ) ( ) ( )
<i>F x</i> <i>P X</i> <i>x</i> <i>x</i>
là hàm phân phối xác suất của X.
Hàm phân phối xác suất có các tính chất sau
(1) F(x) là hàm khơng giảm;
(2) 0 F(x) 1, x R;
(3) lim ( ) 0
<i>x</i><i>F x</i> ; lim<i>x</i><i>F x</i>( )1;
(4) P(a X < b) = F(b) – F(a), với mọi a, b R , a < b.
Ngược lại, nếu F(x) là hàm số xác định trên R và có các tính chất (1) – (3) thì F(x) là
hàm phân phối xác suất của một biến ngẫu nhiên nào đó.
Nếu X là biến ngẫu nhiên rời rạc có bảng phân phối xác suất
X x1 x2 … <i>x<sub>n</sub></i>
P p1 p2 … <i>p<sub>n</sub></i>
Với x1 < x2 < … < <i>x<sub>n</sub></i>, thì hàm phân phối xác suất của X là
F(x) =
1
2
1
1 2 1
0
...
...
....
1
,nếu
,nếu
...
,nếu
,nếu
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i>
<i>x</i> <i>x</i>
<i>x</i> <i>x</i> <i>x</i>
<i>p</i>
<i>x</i> <i>x</i> <i>x</i>
<i>p</i> <i>p</i> <i>p</i>
<i>x</i> <i>x</i>
<sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>
<b>Ví dụ 5.</b><i> Một sinh viên thi ba mơn Tốn, Lý, Hóa với xác suất đậu lần lượt là 0,6; 0,7 </i>
và 0,8. Hãy tìm hàm phân phối xác suất của số mơn anh ta đậu trong ba mơn đó.
<b>5. Hàm mật độ xác suất (bnn liên tục) </b>
<b>a) Định nghĩa: </b>Hàm mật độ xác suất của biến ngẫu nhiên liên tục X ký hiệu là <i>f x</i>
Ta có: <i>f x</i>
Từ định nghĩa trên ta thấy rằng hàm mật độ xác suất chỉ áp dụng được đối với biến
ngẫu nhiên liên tục vì chỉ trong trường hợp đó hàm phân phối xác suất <i>F x</i>
<b>b) Các tính chất của hàm mật độ xác suất: </b>
) 0
<i>b</i>
<i>a</i>
<i>ii</i> <i>f x dx</i> <i>iii P</i>
<i>i f x</i> <i>x</i> <i>R</i> <i>a</i> <i>X</i> <i>b</i> <i>f x dx</i>
<b>Ví dụ 6. </b>Hàm phân phối xác suất của biến ngẫu nhiên liên tục X có dạng:
3
0 0
( ) 0 1
1 1
<i>x</i>
<i>F x</i> <i>ax</i> <i>x</i>
<i>x</i>
<sub></sub>
<sub></sub>
a) Tìm hệ số a.
b) Tìm hàm mật độ xác suất f(x).
c) Tìm xác suất để biến ngẫu nhiên X nhận giá trị trong khoảng (0,2; 0,8).
<b>5. Các đặc trưng của biến ngẫu nhiên </b>
<b>a)</b> <b>Kỳ vọng của biến ngẫu nhiên: </b>
<b>Đối với bnn rời rạc: </b>
1
( )
<i>n</i>
<i>i</i> <i>i</i>
<i>i</i>
<i>E X</i> <i>x p</i>
<b>Đối với bnn liên tục: </b><i>E X</i>( ) <i>xf x dx</i>
Kỳ vọng của một biến ngẫu nhiên là trung bình theo xác suất các giá trị có thể nhận
của biến đó.
<b>Tính chất: </b>
) )
) ) . .
<i>i E C</i> <i>C</i> <i>ii E X</i> <i>C</i> <i>E X</i> <i>C</i>
<i>iii E X</i> <i>Y</i> <i>E X</i> <i>E Y</i> <i>iv E k X</i> <i>k E X</i>
) .Y .
<i>v E X</i> <i>E X E Y</i> <i> khi X và Y là các bnn độc lập. </i>
<b>Đối với bnn rời rạc: </b>
1 1
( )
<i>n</i> <i>n</i>
<i>i</i> <i>i</i> <i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>V X</i> <i>x</i> <i>p</i> <i>x p</i>
<b>Đối với bnn liên tục: </b>
( )
<i>V X</i> <i>x</i> <i>f x dx</i> <i>x f x dx</i>
<i><b>Phương sai là giá trị trung bình của bình phương sai số giữa X và kỳ vọng của </b></i>
<i><b>nó. </b></i>
<b>Chú ý:</b>
<i>E X</i>( )<i> là kì vọng của X , </i>
2 2
1
( )
<i>n</i>
<i>i</i> <i>i</i>
<i>i</i>
<i>E X</i> <i>x p</i>
) 0 ) ) . .V
<i>i V C</i> <i>ii V X</i> <i>C</i> <i>V C</i> <i>iii V k X</i> <i>k</i> <i>X</i>
)
<i>iv V X</i> <i>Y</i> <i>V X</i> <i>V Y</i> <i> khi X và Y là các bnn độc lập. </i>
<b>c) Độ lệch chuẩn: </b>
Số
<b>Ví dụ 8. </b>Cho biến ngẫu nhiên X có bảng phân phối xác suất như sau
X 0 1 2 3 4
P 0,1 0,2 0,3 0,25 0,15
Hãy tính kì vọng, phương sai, độ lệch của X.
<b>Ví dụ 9. </b>Cho X1, X2, X3 là các biến ngẫu nhiên độc lập sao cho:
<i>E X</i> <i>E X</i> <i>E X</i> .
Đặt: 1 2 3
1
4
<i>G</i> <i>X</i> <i>X</i> <i>X</i>
a) Tìm E(G)
b) Tìm , sao cho <i>E G</i>
<b>BÀI TẬP </b>
phân phối xác suất, hàm phân phối xác suất và tính kì vọng, phương sai, độ lệch của
số viên đạn
a) trúng mục tiêu. b) anh ta đã sử dụng.
<b>2. </b>Một hộp chứa 10 viên phấn trắng và 6 viên phấn màu. Chọn ngẫu nhiên ra 3 viên
phấn. Gọi X là số viên phấn màu lấy được. Hãy lập bảng phân phối xác suất, hàm phân
phối xác suất của X. Tính kì vọng, phương sai, độ lệch của X.
<b>3.</b> Trong một hộp có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy ngẫu nhiên 3 sản
phẩm. Gọi X là số phế phẩm trong các sản phẩm lấy ra. Hãy lập bảng phân phối xác
suất và hàm phân phối xác suất của X.
<b>4.</b> Một sinh viên thi 4 mơn, xác suất đậu từng mơn là 0,6. Gọi X là số mơn anh ta đậu.
Hãy lập bảng phân phối xác suất và tính kì vọng, phương sai của X.
<b>5.</b> Một ơtơ đi trên đoạn đường có 3 đèn tín hiệu giao thơng hoạt động độc lập. Tính kì
vọng, phương sai, độ lệch của số lần ơtơ dừng khi đi trên đoạn đường đó, biết rằng chỉ
tín hiệu xanh mới được phép đi và
a) cả 3 đèn đều có thời gian tín hiệu xanh là 30 giây, tín hiệu vàng là 5 giây, tín hiệu
đỏ là 15 giây.
b) ở đèn thứ nhất thời gian dành cho ba tín hiệu đó lần lượt là : 40 giây, 10 giây, 30
giây ; ở đèn thứ hai : 25 giây, 5 giây, 10 giây ; ở đèn thứ ba 20 giây, 5 giây, 35 giây.
<b>BÀI 6. CÁC PHÂN PHỐI XÁC SUẤT THƯỜNG GẶP </b>
<b>6.1 Phân phối Siêu bội </b>
<b>Phép thử:</b> lấy ngẫu nhiên n phần tử khơng hồn lại từ tập hợp gồm N phần tử, trong
đó có NA phần tử có tính chất A.
<b>Biến ngẫu nhiên: </b> Gọi X là số phần tử có tính chất A trong n phần tử lấy ra.
<b>Cơng thức xác suất: </b>
<i>k</i> <i>n k</i>
<i>N</i> <i>N N</i>
<i>n</i>
<i>N</i>
<i>C C</i>
<i>P X</i> <i>k</i>
<i>C</i>
<b>Đặc trưng: </b>
1
<i>A</i>
<i>N</i> <i>N</i> <i>n</i>
<i>E X</i> <i>n</i> <i>n p</i> <i>V X</i> <i>n p</i> <i>p</i>
<i>N</i> <i>N</i>
<b>Ví dụ 1.</b> Trong một lơ hàng có 800 sản phẩm loại 1 và 200 sản phẩm loại 2. Lấy ngẫu
nhiên 5 sản phẩm để kiểm tra. Gọi X là số sản phẩm loại 1 lấy được.
a) X tn theo qui luật gì? Viết biểu thức xác suất tổng qt của qui luật?
b) Tìm E(X), V(X)?
c) Tìm số sản phẩm loại 1 trung bình lấy ra và tính khả năng để xảy ra điều đó?
<b>6.2 Phân phối Nhị thức </b>
<b>Phép thử:</b>
Lấy ngẫu nhiên n phần tử có hồn lại từ tập hợp gồm N phần tử, trong đó có NA
phần tử có tính chất A.
Quan sát một q trình Bernoulli gồm n phép thử
<b>Biến ngẫu nhiên: </b> Gọi X là số phần tử có tính chất A trong n phần tử lấy ra.
Khi này X có phân phối Nhị thức, ký hiệu: <i><sub>X</sub></i> ~<i><sub>B n p</sub></i>
<i>N</i>
<b>Công thức xác suất:</b> <i>P X</i>
<b>Ví dụ 2.</b><i> Một bài thi trắc nghiệm(multiple choice test) gồm 50 câu hỏi, mỗi câu </i>
hỏi có 4 phương án trả lời, trong đó chỉ có một phương án đúng. Một học sinh
kém làm bài bằng cách chọn ngẫu nhiên một phương án trả lời cho mỗi câu hỏi.
a) Tính xác suất để học sinh này làm được đúng 25 câu.
b) Trung bình học sinh này trả lời được bao nhiêu câu?
c) Tính phương sai của số câu học sinh này trả lời được.
a) có ít nhất 10 người sống sót;
b) có từ 3 đến 8 người sống sót;
c) có đúng 5 người sống sót.
<b>Ví dụ 4.</b><i> Một phân xưởng có 5 máy hoạt động độc lập, xác suất để trong một ngày mỗi </i>
máy bị hỏng đều bằng 0,1. Tìm xác suất để:
a) Trong một ngày có 2 máy hỏng.
b) Trong một ngày có khơng q 2 máy hỏng.
<b>6.3 Phân phối Poisson </b>
<b>Phép thử:</b> Quan sát sự xuất hiện của một biến cố trong một khoảng thời gian hay một
khoảng khơng gian.
<b>Biến ngẫu nhiên: </b> Gọi X là số lần biến cố xuất hiện trong khoảng quan sát.
Khi này X có phân phối Poisson, ký hiệu: <i>X</i> ~<i>P</i>
<b>Cơng thức xác suất:</b>
!
<i>k</i>
<i>P X</i> <i>k</i> <i>e</i>
<i>k</i>
<b>Đặc trưng:</b> <i>E X</i>
<b>Ví dụ 5.</b> Số khách hàng vào một cửa hàng bách hoá trong 1 giờ là biến ngẫu
nhiên tn theo qui luật Poisson với mật độ là 8 khách trong 1 giờ. Tìm xác suất
để trong 1 giờ nào đó có hơn 4 khách vào?
<b>Ví dụ 6.</b> Một trạm điện thoại trung bình nhận được 300 cuộc gọi trong một giờ.
Tính xác suất:
a) Trạm nhận được đúng 2 cuộc gọi trong vịng 1 phút.
b) Trạm nhận được đúng 3 cuộc gọi trong vịng 5 phút.
<b>6.4 Phân phối Chuẩn </b>
<b>Ký hiệu: </b><i><sub>X</sub></i> <sub>~</sub> <i><sub>N</sub></i>
<b>Công thức hàm mật độ: </b>
2
2
2
1
( ) ,
2
<i>x</i>
<i>f x</i> <i>e</i> <i>x</i> <i>R</i>
<b>Đặc trưng: </b>
<i>E X</i> <i>V X</i>
<b>Đặc điểm đồ thị: </b>
- Đối xứng qua đường <i>x</i>
- Dạng hình chng
1 2/2
2
<i>x</i>
<i>f x</i> <i>e</i>
2<sub>/2</sub>
0
1
2
<i>z</i>
<i>x</i>
<i>z</i> <i>e</i> <i>dx</i>
<i>z</i>
<b>Nhận dạng: </b>thường thì đề bài sẽ tự quy định, thường gặp đối với các biến ngẫu nhiên
ngồi thực tế: chiều cao, cân nặng, lãi suất, doanh thu, <b>phân phối của trung bình </b>
<b>mẫu</b> …
<b>Tính chất: </b>
<i>- Tích của bnn có phân phối chuẩn với một số cũng có phân phối chuẩn. </i>
<i>- Tổng hiệu của các bnn có pp chuẩn độc lập cũng có phân phối chuẩn. </i>
<b>Phân phối chuẩn tắc: </b>dạng đặc biệt của họ phân phối chuẩn. Là phân phối chuẩn có
0; 1
<b>Chuẩn hóa biến ngẫu nhiên: </b>Nếu <i>X</i> ~ <i>N</i>
<i>Nhớ: lấy biến ngẫu nhiên trừ đi kỳ vọng sau đó chia cho phương sai </i>
<b>Cơng thức xác suất: (tính thơng qua phân phối Chuẩn tắc) </b>
<i>P a</i> <i>X</i> <i>b</i>
<i>a</i> <i>a</i>
<i>P X</i> <i>a</i>
<i>b</i> <i>b</i>
<i>P X</i> <i>b</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<i>1. Hàm </i>
<i>2. Hàm </i>
<i>3. Khi z</i>4<i> thì </i>
<i>4. Đường cong f(x) bên phải là đồ thị của phân phối </i>
<i>Chuẩn tắc N(0;1) </i>
Giá trị phân vị (giá trị tới hạn) <i>U</i><sub></sub>
<i>Đây là một giá trị của bnn có phân phối </i>
<i>chuẩn tắc thỏa mãn điều kiện: </i>
<i>P Z</i> <i>U</i><sub></sub>
<b>Ví dụ 7. </b>Cho X~N(3,1) và Y~N(4,2) độc lập. Tìm các xác suất X>2Y.
<b>Giải </b>
Do X và Y là các biến ngẫu nhiên độc lập và đều có phân phối chuẩn nên nếu đặt
Z=X-2Y thì Z cũng có phân phối chuẩn.
Ta có:
2 2 3 2.4 5
2 4 1 4.2 9
<i>E T</i> <i>E X</i> <i>Y</i> <i>E X</i> <i>E Y</i>
<i>V T</i> <i>V X</i> <i>Y</i> <i>V X</i> <i>V Y</i>
Vậy <i>T</i> <i>X</i> 2 ~<i>Y</i> <i>N</i>
<i>P X</i> <i>Y</i> <i>P T</i> <i>P Z</i><sub></sub> <sub></sub><i>P Z</i>
<i>Thơng thường khi tính xác suất của phân phối chuẩn ta hay đưa về phân phối chuẩn </i>
<i>tắc Z. Sau đó áp dụng quy tắc hàm </i><i> hoặc kết hợp với thơng tin xác suất đề cho để </i>
<i>tính xác suất. </i>
<b>Ví dụ 8.</b> Giả sử thời gian khách phải chờ để được phục vụ tại một cửa hàng là bnn X,
biết X~N(4,5; 1,21)
a) Tính xác suất khách phải chờ từ 3,5 đến 5 phút?
b) Tìm t biết xác suất khách phải chờ khơng q t là khơng q 5%?
<b>Ví dụ 9. </b>Trọng lượng sản phẩm X do một máy tự động sản xuất là biến ngẫu nhiên
tn theo wui luật chuẩn với μ=100 gam và σ=1 gam. Sản phẩm được coi là đạt tiêu
chuẩn nếu trọng lượng của nó đạt từ 98 đến 102 gam.
a) Tìm tỉ lệ sản phẩm đạt tiêu chuẩn của nhà máy?
b) Tìm tỉ lệ phế phẩm của nhà máy?
c) Giải thích bằng đồ thị kết quả tìm được ở phần a?
<b>6.5 Phân phối Khi bình phương </b>
<b>Ký hiệu: </b> 2
~
<i>X</i> <i>n</i>
<b>Đặc điểm đồ thị: </b>
<i>- Không đối xứng, bị lệch bên phải. </i>
<i>- Chỉ nhận giá trị dương </i>
<i>- Chỉ có một đi và thấp dần </i>
<i>- Khi bậc tự do n lớn thì đồ thị ngày càng đối xứng </i>
<i>và di chuyển sang phải.</i>
<b>Nhận dạng: </b>thường thì đề bài sẽ tự quy định, thường gặp đối với các biến ngẫu nhiên
liên quan đến phương sai mẫu trong bài tốn lý thuyết mẫu.
<b>Tính chất: </b>
<i>- Bắt nguồn từ tổng bình phương các bnn độc lập có phân phối N(0;1). </i>
<i>- Tổng các bnn độc lập có pp Khi bình phương cũng có phân phối Khi bình phương. </i>
<i>- Xấp xỉ với phân phối chuẩn khi bậc tự do lớn. Ta có: </i> 2
~ ; 2
<i>X</i> <i>n</i> <i>N n</i> <i>n</i>
Giá trị phân vị (giá trị tới hạn) <sub></sub>2
<i>P</i> <i>n</i> <sub></sub> <i>n</i>
<b>Có nghĩa là xác suất bên phải điểm </b><sub></sub>2
<b>Ký hiệu: </b><i>X</i> ~<i>t n</i>
<b>Công thức hàm mật độ: </b><i>quá phức tạp, không xét.</i>
<b>Đặc trưng: </b>
2
<i>n</i>
<i>E X</i> <i>V X</i>
<i>n</i>
<b>Đặc điểm đồ thị: </b>
<i>- Đối xứng qua 0. </i>
<i>- Nhận giá trị trong R </i>
<i>- Hai đuôi thấp dần </i>
<b>Nhận dạng: </b>thường thì đề bài sẽ tự quy định, thường gặp đối với các <b>biến ngẫu nhiên </b>
<b>Tính chất: </b>
<i>- Sinh ra khi một biến ngẫu nhiên Chuẩn tắc và Khi bình phương kết hợp nhau. </i>
<i>- Xấp xỉ với phân phối chuẩn tắc khi bậc tự do lớn. Ta có: X</i> ~ t
Giá trị phân vị (giá trị tới hạn) <i>t</i><sub></sub> <i>n</i>
<i>Là giá trị của bnn có phân phối Student n bậc </i>
<i>tự do thỏa mãn: </i>
<i>P t n</i> <i>t</i><sub></sub>
<b>Có nghĩa là xác suất bên phải điểm </b><i>t</i> <i>n</i> <b> bằng </b>
<b>đúng </b><b> - chỉ số dưới của </b><i>t n</i>
<i>Ta dò các giá trị này trong bảng tính sẵn. Khi </i>
<i>n>30 thì t</i> <i>n</i> <i>U</i>
<b>6.7 Phân phối Fisher </b>
<b>Ký hiệu: </b><i>X</i> ~<i>F n m</i>
<b>Công thức hàm mật độ: </b><i>quá phức tạp, không xét.</i>
<b>Đặc điểm đồ thị: </b>
<i>- Giống đồ thị của Khi bình phương </i>
<i>- Chỉ nhận giá trị dương </i>
<i>- Khi hai bậc tự do tăng thì phân phối ngày càng đối </i>
<i>xứng.</i>
<b>Nhận dạng: </b>thường thì đề bài sẽ tự quy định, thường gặp đối với các <b>biến ngẫu nhiên </b>
<b>là thương của hai phương sai mẫu. </b>
<b>Tính chất: </b>
<i>Là giá trị của bnn có phân phối Fisher với bậc </i>
<i>tự do là (n, m) và thỏa mãn: </i>
<i>P F</i> <i>f</i><sub></sub>
<b>Có nghĩa là xác suất bên phải điểm </b>
<b>BÀI 7. LÝ THUYẾT MẪU </b>
<b>1. Tổng thể: </b>
Tổng thể là tập hợp tất cả các đối tượng cần nghiên cứu. Các phần tử của tổng thể có
chung dấu hiệu nghiên cứu X, gọi là biến ngẫu nhiên gốc của tổng thể.
Phân phối xác suất của X gọi là phân phối của tổng thể.
<b>Đặc điểm của tổng thể: </b>
<b>Ký hiệu </b> <b>Cơng thức </b>
Kích thước N (rất lớn)
Trung bình <i>E X</i>
Phương sai 2
<i>V X</i>
<sub>2</sub>
<i>N</i>
Tỷ lệ <i>p</i> <i><sub>M</sub></i>
<i>p</i>
Tỷ lệ tổng thể (về t/c A): <i>p</i> <i>M</i>
<i>N</i>
trong đó M là số lượng phần tử có tính chất
A trong tổng thể.
Các số , 2, <i>p</i> gọi là các tham số của tổng thể. Thơng thường các giá trị trên khơng
xác định trước.
<b>2. Bài tốn lý thuyết mẫu </b>
Ta muốn xác định các tham số của tổng thể. Nhưng do vấn đề về thời gian, tiền bạc,
sai sót … nên khơng thể tiến hành điều tra tồn bộ các phần tử của tổng thể. Do đó, ta
chọn một nhóm phần tử từ tổng thể, gọi là mẫu. Từ các kết quả nghiên cứu trên mẫu ta
tìm cách suy diễn các kết quả của tổng thể.
Cho tổng thể có trung bình , phương sai 2 và tỷ lệ p chưa biết.
Lấy mẫu ngẫu nhiên cỡ n từ tổng thể. Khi này ta được một mẫu ngẫu nhiên ký hiệu
W <i>X X</i> <i>X<sub>n</sub></i> với <i>X<sub>i</sub></i> là giá trị của đối tượng thứ i được lấy vào mẫu.
<b>Một số tính chất cần nhớ: </b>
X1, X2, …, Xn là các biến ngẫu nhiên.
X1, X2, …, Xn độc lập nhau.
<i>E X</i>
<b>Thống kê mẫu </b> <b>Ký hiệu </b> <b>Cơng thức tính </b>
Kích thước n
Trung bình <i><sub>X</sub></i> <sub> </sub> <i><sub>X</sub></i> <i>X</i>1 <i>X</i>2 ... <i>Xn</i>
<i>n</i>
Phương sai chưa hiệu
chỉnh
2
<i>S</i>
2 2 2
2 <i>X</i>1 <i>X</i> <i>X</i>2 <i>X</i> ... <i>Xn</i> <i>X</i>
<i>S</i>
<i>n</i>
<b>Phương sai đã hiệu </b>
<b>chỉnh </b>
2
<i>S</i>
2 2 2
1 2
2 ...
1
<i>n</i>
<i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>
<i>S</i>
<i>n</i>
Phương sai biết *2
<i>S</i>
2
2 2
1 2
*2 <i>X</i> <i>X</i> ... <i>Xn</i>
<i>S</i>
<i>n</i>
Tỷ lệ <i>F</i> <i>F</i> <i>Y</i>
<i>n</i>
; Y là số phần tử có t/c A trong mẫu
<b>4. Các tham số đặc trưng của các thống kê mẫu </b>
<b>4.1 Kỳ vọng và phương sai của trung bình mẫu </b><i>X</i>
Ta có: <i><sub>X</sub></i> <i>X</i>1 <i>X</i>2 ... <i>Xn</i>
<i>n</i>
trong đó W
Ta có: <i>E X</i>
1 2
1 2
2 2 2 2 2
1 2
1 2
2 2 2
...
... ... .
...
... ... .
<i>n</i>
<i>n</i>
<i>n</i>
<i>n</i>
<i>E X</i> <i>E X</i> <i>E X</i>
<i>X</i> <i>X</i> <i>X</i> <i>n</i>
<i>E X</i> <i>E</i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i>
<i>V X</i> <i>V X</i> <i>V X</i>
<i>X</i> <i>X</i> <i>X</i> <i>n</i>
<i>V X</i> <i>V</i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i> <i>n</i>
<b>4.2 Kỳ vọng và phương sai của tỷ lệ mẫu </b><i>F</i>
Gọi Y là số phần tử có tính chất A trong mẫu cỡ n lấy từ tổng thể.
Ta có: <i>Y</i> ~ <i>B n p</i>
<i>n</i>
Do đó:
.
. . 1 1
<i>E Y</i>
<i>Y</i> <i>n p</i>
<i>E F</i> <i>E</i> <i>p</i>
<i>n</i> <i>n</i> <i>n</i>
<i>V Y</i> <i>n p</i> <i>p</i> <i>p</i> <i>p</i>
<i>Y</i>
<i>V F</i> <i>V</i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i>
<sub></sub> <sub></sub>
<sub></sub> <sub></sub>
<b>4.3 Kỳ vọng và phương sai mẫu </b>
Ta có:
2 2 2
2 1 2
2 2 2
2 2
1 1 1
2 2
2 2
1 1
2
2 2 2 2 2 2 2
1
...
<i>n</i> <i>n</i> <i>n</i>
<i>i</i> <i>i</i> <i>i</i>
<i>i</i> <i>i</i> <i>i</i>
<i>n</i> <i>n</i>
<i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>n</i>
<i>i</i>
<i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>
<i>E S</i> <i>E</i>
<i>n</i>
<i>E</i> <i>X</i> <i>X</i> <i>X</i> <i>n X</i> <i>E</i> <i>X</i> <i>n X</i> <i>n X</i>
<i>n</i> <i>n</i>
<i>E</i> <i>X</i> <i>n X</i> <i>E X</i> <i>nE X</i>
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i>
<i>n</i> <i>n</i> <i>n</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
2 2 2
2
1 2
2
2
2
2 2
...
1 1
1
.
1 1
<i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i><sub>n</sub></i>
<i>E S</i> <i>E</i> <i>E</i> <i>S</i>
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i> <i>n</i>
<i>E S</i> <i>E S</i>
<i>n</i> <i>n</i> <i>n</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
2 2 2 2
1 1 1
2 2 2 2 2
1 1
2 2 2 2 2 2
1
...
1 1
2 2 .
1 1
2 2 . .
1 1
. . .
<i>n</i>
<i>n</i> <i>n</i> <i>n</i>
<i>i</i> <i>i</i> <i>i</i>
<i>i</i> <i>i</i> <i>i</i>
<i>n</i> <i>n</i>
<i>i</i>
<i>i</i> <i>i</i>
<i>n</i>
<i>i</i>
<i>X</i> <i>X</i> <i>X</i>
<i>E S</i> <i>E</i>
<i>n</i>
<i>E</i> <i>X</i> <i>X</i> <i>n</i> <i>E</i> <i>X</i> <i>n X</i> <i>n</i>
<i>n</i> <i>n</i>
<i>E X</i> <i>nE X</i> <i>n</i> <i>n</i> <i>n</i>
<i>n</i> <i>n</i>
<i>n</i>
<i>n</i> <i>n</i> <i>n</i> <i>n</i>
<i>n</i> <i>n</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<b>4.4 Tổng hợp: </b>
<b>Trung bình mẫu </b> <b>Phương sai mẫu </b> <b>Tỷ lệ mẫu </b>
<i>E X</i> <i>V X</i>
<i>n</i>
<i>E S</i>
<i>n</i>
<i>E F</i>
<i>n</i>
<b>5. Phân phối xác suất của các thống kê mẫu </b>
<b>5.1 Phân phối xác suất của </b><i>X F</i>,
Nếu tổng thể có phân phối chuẩn:
2
~ N ;
<i>X</i>
<i>n</i>
đúng với mọi n
Nếu tổng thể khơng có phân phối chuẩn:
2
N ;
<i>X</i>
<i>n</i>
khi <i>n</i>30
Khi cỡ mẫu trên 30 thì: <i>F</i> <i>Y</i> ~ <i>N p</i>; <i>p</i>
<i>n</i> <i>n</i>
<sub></sub> <sub></sub>
Phân phối xác suất của các phương sai mẫu không thường gặp.
<b>5.2 Phân phối của một số thống kê mẫu đặc biệt </b>
~ N 0;1 ; ~ t 1 ;
1
~ 1 ; ~
~ N 0;1
1
<i>X</i> <i>n</i> <i>X</i> <i>n</i>
<i>Z</i> <i>Z</i> <i>n</i>
<i>S</i>
<i>n</i> <i>S</i> <i>nS</i>
<i>Z</i> <i>n</i> <i>Z</i> <i>n</i>
<i>F</i> <i>p</i> <i>n</i>
<i>Z</i>
<i>p</i> <i>p</i>
<b>6. Tính tốn các thống kê mẫu </b>
Với mẫu đã cho, tính các thống kê mẫu như trung bình mẫu, các phương sai mẫu và tỷ
lệ mẫu.
<i><b>u cầu: tính đúng, ký hiệu đúng và làm trịn đúng. </b></i>
Thơng thường mẫu được cho dạng bảng tần số dạng điểm hoặc bảng tần số ghép lớp.
Đơi khi mẫu cho dưới dạng các số đặc trưng: tổng tần số, tổng giá trị và tổng bình
phương các giá trị.
<b>6.1 Dùng bảng và cơng thức tính </b>
<b>Ví dụ</b>. Điều tra năng suất lúa của một vùng, ta có bảng số liệu sau
<i>x<sub>i</sub></i> <i>n<sub>i</sub></i> <i>x n<sub>i i</sub></i> 2
<i>i</i> <i>i</i>
<i>x n</i>
41
44
45
Do đó 4600
<i>X</i> = 46 ; 2 212680 2126,8
100
<i>X</i> ;
2
<i>S</i>
= 2126,8 – 462<sub> = 10,8 ; </sub>
S2<sub> = </sub>100
99 .10,8 = 10,9091 ; S = 3,3029.
<b>Ví dụ</b>. Để nghiên cứu nhu cầu mua gạo ở một thành phố, người ta tiến hành điều tra
một số gia đình và ghi kết quả ở bảng sau đây.
Nhu cầu
(kg/tháng) Số gia đình Nhu cầu Số gia đình
30 – 35
35 – 40
40 – 45
45 – 50
50 - 55
<i>x<sub>i</sub></i> <i>n<sub>i</sub></i> <i>x n<sub>i i</sub></i> 2
<i>i</i> <i>i</i>
<i>x n</i>
62,5
67,5
72,5
129, 2028; 129,3105 1
2917
<i>i i</i> <i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>n x</i> <i>n x</i>
<i>X</i> <i>X</i>
<i>n</i>
<i>S</i> <i>S</i> <i>S</i> <i>S</i> <i>S</i>
<i>n</i>
<i>n</i>
<i>X</i> <i>X</i>
<i>n</i>
1200
<i>k</i>
<i>f</i>
<i>n</i>
<b>BÀI TẬP </b>
<b>1. </b>Đo chiều cao của một số thanh niên lứa tuổi 18 – 20 ở HCM, ta thu được bảng sau
đây
Chiều cao (cm) Số người có chiều cao tương ứng
154 – 158
158 – 162
162 – 166
166 – 170
170 – 174
174 – 178
178 - 182
10
14
26
28
12
8
2
Tuổi thọ (giờ) Số bóng tương ứng
1010 – 1030
1030 – 1050
1050 – 1070
1070 – 1090
1090 – 1110
1110 – 1130
1130 – 1150
1150 – 1170
1170 – 1190
1190 – 1210
2
3
8
13
25
20
12
10
6
1
Sau khi cải tiến kĩ thuật, người ta lại thắp thử 100 bóng, kết quả là
Tuổi thọ (giờ) 1150 1160 1170 1180 1190 1200
Số bóng 10 15 20 30 15 10
Hãy so sánh tuổi thọ trung bình và độ lệch mẫu hiệu chỉnh của các bóng đèn trước
<b>Cách 2. Sử dụng máy tính và cơng thức </b>
1. Shift + 9 + 3 + = + =: Reset máy
2. Shift + Mode + + 4 + 1: bật tần số
3. Mode + 3 + 1: vào tính thống kê 1 biến
4. Khi này ta có bảng sau:
X (giá trị) FREQ (tần số)
1
2
3
5. Nhập số liệu, kiểm tra và nhấn AC để thốt ra.
6. Lấy số liệu thống kê: Shift + 1 + 5 (hoặc 4 tùy máy). Ta có bảng sau:
1: n (cỡ mẫu) 2: <i>x</i> (trung bình mẫu)
<b>BÀI 8. ƯỚC LƯỢNG THAM SỐ </b>
<i>Dùng để suy diễn các tham số đặc trưng của tổng thể dựa trên các thống kê đặc </i>
<i>trưng của mẫu. Đó là các tham số như: giá trị trung bình, phương sai, tỉ lệ tổng thể về </i>
<i>một tính chất nào đó. </i>
<b>8.1. BÀI TỐN ƯỚC LƯỢNG ĐIỂM </b>
Tổng thể có các tham số chưa biết, chẳng hạn 2
, , <i>p</i>
. Ta ước lượng điểm tức là tìm
cách xác định gần đúng giá trị của các tham số này bằng một “giá trị đại diện” nào đó.
Thơng thường, giá trị đại diện này là một thống kê mẫu. Tức là một biến ngẫu nhiên
xác định trên mẫu tổng qt, giá trị của nó có thể thay đổi, biến đổi từ mẫu cụ thể này
sang mẫu cụ thể khác.
Tóm lại, tìm một ước lượng điểm đồng nghĩa với việc tìm một thống kê mẫu. Trên
mẫu có thể xác định được rất nhiều thống kê. Do đó ta cần có các tiêu chuẩn cụ thể.
<b>1. Ước lượng điểm không chệch </b>
<b>Định nghĩa. </b>Thống kê T gọi là một ước lượng điểm không chệch (ULKC) của tham số
nếu <i>E T</i>
<b>Ý nghĩa.</b> Giá trị trung bình của thống kê T trên các mẫu bằng đúng giá trị của tham số
cần ước lượng.
<b>Chú ý. </b>
<i>Trường hợp E T</i>
<i>Trong hai ULKC, ước lượng nào có phương sai nhỏ hơn thì hiệu quả hơn. </i>
<b>Ví dụ 1.</b>
<i>X</i> là ULKC của vì ……….
2<sub>;</sub> *2
<i>S S</i> là ULKC của 2 vì ……….
<i>F</i> là ULKC của <i>p</i> vì ………..
2
<b>Ví dụ 2. </b>Cho mẫu ngẫu nhiên <i>W</i>
;
<i>N</i> . Lập các thống kê sau:
8 5
1 2 6 7 8
1 1
1 1
, 2 3 4
8 <i>i</i> <i>i</i> 14 <i>i</i> <i>i</i>
<i>Y</i> <i>X</i> <i>Y</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
a. Nêu quy luật phân phối xác suất, tính kỳ vọng tốn của Y1, Y2.
b. Chứng minh rằng thống kê Y1 hiệu quả hơn thống kê Y2 khi dùng để ước lượng
cho µ.
<b>Giải. </b>
a) Vì tổng thể có phân phối chuẩn <i>N</i>
<b>Theo lý thuyết mẫu thì các bnn </b><i>X<sub>i</sub></i><b> độc lập nhau và có cùng phân phối với X. </b>
Do đó: <i>X<sub>i</sub></i> ~ <i>N</i>
Do <i>Y Y</i><sub>1</sub>, <sub>2</sub> là tổ hợp tuyến tính của các biến ngẫu nhiên <i>X<sub>i</sub></i> độc lập và có phân phối
chuẩn nên <i>Y Y</i><sub>1</sub>, <sub>2</sub> cũng có phân phối chuẩn.
Ta có:
8 8 8
1
1 1 1
2 2
8 8 8
2
1 2 2
1 1 1
1 1 1
8 8 8
1 1 1 8
8 8 8 64 8
<i>i</i> <i>i</i>
<i>i</i> <i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>i</i> <i>i</i> <i>i</i>
<i>E Y</i> <i>E</i> <i>X</i> <i>E X</i>
<i>V Y</i> <i>V</i> <i>X</i> <i>V X</i>
<sub></sub> <sub></sub> <sub></sub><sub></sub>
<sub></sub> <sub></sub> <sub></sub><sub></sub>
2 6 7 8 6 7 8
1 1
5 5
2 6 7 8
1 1
5 5
2 6 7 8 2
1 1
1 1
2 3 4 2 3 4
14 14
1 1
2 3 4 2 3 4
14 14
1 1
2 3 4
14 14
<i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>i</i>
<i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>i</i> <i>i</i>
<i>E Y</i> <i>E</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>E</i> <i>X</i> <i>E</i> <i>X</i> <i>E</i> <i>X</i> <i>E</i> <i>X</i>
<i>E Y</i> <i>E X</i> <i>E X</i> <i>E X</i> <i>E X</i>
<i>V Y</i> <i>V</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>V</i> <i>X</i>
<sub></sub> <sub></sub> <sub></sub><sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
<sub></sub> <sub></sub> <sub></sub><sub></sub> <sub></sub> <sub></sub>
6 7 8
5 5
2 2 2 2 2 2 2
2 2 6 7 8
1 1
2 2
2
2 3 4
1 1
2 3 4 4 9 16
14 296
5 4 9 16 34
296 296
<i>i</i>
<i>i</i> <i>i</i>
<i>V</i> <i>X</i> <i>V</i> <i>X</i> <i>V</i> <i>X</i>
<i>V Y</i> <i>V X</i> <i>V X</i> <i>V X</i> <i>V X</i>
<i>V Y</i>
<sub></sub> <sub></sub> <sub></sub> <sub></sub>
Như đã tính ở trên vì
296 8
<i>V Y</i> <i>V Y</i> nên thống kê Y1 hiệu quả hơn
thống kê Y2 khi dùng để ước lượng cho µ.
<i><b>Ghi chú:</b> để so sánh hiệu quả của hai ước lượng thì trước đó cần chứng tỏ hai ước </i>
<i>lượng đó đều là các ước lượng không chệch. </i>
<b>2. Ước lượng điểm hiệu quả </b>
<b>Định nghĩa. </b>Trong số tất cả các thống kê là ULKC của tham số . Thống kê nào có
phương sai nhỏ nhất thì thống kê đó là ước lượng điểm hiệu quả (ULHQ) của tham số
.
<i><b>Nhận xét.</b> Vì có vơ số các ULKC nên ta không thể so sánh từng cặp các ULKC cho </i>
<i>đến hết. Thông thường ta dùng bất đẳng thức Rao – Crammer để tìm giá trị nhỏ nhất </i>
<i>của phương sai của các thống kê là ULKC. Sau đó cố gắng tìm một ULKC nào đó có </i>
<i>phương sai đúng bằng giá trị nhỏ nhất ở trên. </i>
<i>Bài tốn tìm ULHQ khá khó nên thơng thường đề bài u cầu tìm hoặc chứng minh </i>
<i>một thống kê là ULHQ trong một lớp các ULKC nào đó mà thơi. Khi này sinh viên </i>
<i>nhớ liên hệ với bài tốn tìm cực trị của hàm nhiều biến. </i>
<b>8.2. BÀI TOÁN ƯỚC LƯỢNG KHOẢNG </b>
Ta đã biết, các ước lượng điểm là một giá trị cụ thể của biến ngẫu nhiên với một phân
phối xác suất nào đó, ví dụ trung bình và tỉ lệ mẫu (với mẫu đủ lớn) có phân phối
chuẩn. Chúng khơng thể hiện tính chính xác của ước lượng. Do vậy, cần thực hiện ước
Một cách tổng qt, gọi là đặc trưng của tổng thể cần ước lượng. Giả sử dựa vào
mẫu quan sát ta tìm được hai thống kê mẫu hay hai biến ngẫu nhiên A và B sao cho
xác suất (<i>P A</i> <i>B</i>) 1 .
Các dạng khoảng ước lượng thường sử dụng:
KUL hai phía có dạng
KUL tối đa (bên trái) có dạng
Ta gọi a, b lần lượt là giới hạn tin cậy dưới, giới hạn tin cậy trên; 1( )
2 <i>b</i> <i>a</i>
là độ
chính xác (hay sai số) của ước lượng khoảng.
Nói chung, với cỡ mẫu n cố định thì độ tin cậy và độ chính xác có xu hướng đối lập
nhau. Khoảng ước lượng càng dài (độ chính xác thấp) thì càng có cơ hội trúng cao (độ
tin cậy cao). Ngược lại, khoảng ước lượng càng ngắn (độ chính xác cao) thì càng dễ
trật (độ tin cậy thấp).
<b>8.3. ƯỚC LƯỢNG KHOẢNG CHO TRUNG BÌNH CHO TỔNG THỂ </b>
<b>1. Bài tốn </b>
Giả sử tổng thể có phân phối chuẩn và có giá trị trung bình là chưa biết. Ta cần ước
<b>2. Trường hợp đã biết phương sai </b>2
<b>Dạng KUL </b> <b>Cơng thức tính </b>
Hai phía
<i>n</i>
Tối đa
<i>n</i>
Tối thiểu
<i>n</i>
<b>Chú ý: </b>
<i>u</i><sub></sub><sub>/ 2</sub><i> là giá trị tới hạn của phân phối chuẩn tắc N(0;1). Đây là điểm trên phân </i>
<i>phối chuẩn tắc có xác suất bên phải nó bằng </i>
2
. Hay <i>P Z</i>
<i>n</i>
<i> chính là độ lệch chuẩn của X - chính là ULKC của </i>
<i>Như vậy, độ chính xác </i> <i>GTTH DLC</i>. <i>. </i>
<b>Ví dụ 1.</b> Kết quả thu thập trong 15 ngày tại một cơng ty cho thấy trung bình một ngày
có 267 trang tài liệu được chuyển đi bằng fax. Theo kinh nghiệm từ các văn phịng
tương tự thì độ lệch tiêu chuẩn là 32 trang. Giả sử rằng số trang tài liệu chuyển bằng
fax trong một ngày có phân phối chuẩn. Hãy ước lượng số trang tài liệu được chuyển
trong một ngày của cơng ty với độ tin cậy 95%.
<b>Ví dụ 2.</b> Một mẫu gồm 16 sản phẩm được chọn từ tổng thể có phân phối chuẩn với
phương sai là 25. Cho biết trung bình mẫu là 330 gam. Hãy xác định khoảng ước
lượng cho trung bình của tổng thể với độ tin cậy 90%.
<b>3. Trường hợp chưa biết phương sai của tổng thể </b>
<b>Dạng KUL </b> <b>Cơng thức tính </b>
Hai phía
Tối đa
<i>n</i>
Tối thiểu
<i>n</i>
<b>Chú ý: </b>
<i>t</i><sub></sub><i>n</i><sub>/2</sub>1<i> là giá trị tới hạn của phân phối Student t(n-1). Đây là điểm trên phân phối </i>
<i>Student có xác suất bên phải nó bằng </i>
2
. Hay <i>P Z</i>
<i>Khi n</i>30<i> thì t</i><sub></sub><i>n</i><sub>/2</sub>1 <i>u</i><sub></sub><sub>/ 2</sub><i> do phân phối Student xấp xỉ với phân phối Chuẩn </i>
<i>tắc. </i>
<i>Như vậy nếu cỡ mẫu trên 30 thì </i> <i>u</i> <sub>/ 2</sub> <i>S</i>
<i>n</i>
<i> (bài tốn hai phía). </i>
<b>Ví dụ 3. </b>Khảo sát 100 sinh viên chọn ngẫu nhiên trong trường thì thấy điểm trung bình
mơn Tốn là5,12 và phương sai mẫu hiệu chỉnh là0,0676. Hãy ước lượng điểm trung
bình mơn Tốn của sinh viên tồn trường với độ tin cậy 97%.